The invention relates to firing mechanisms for firearms. More particularly, the invention relates to a trigger group module pre-assembled with one or more trigger group components and adapted to be received in the frame of the firearm. The invention also relates to a method of installing trigger group components in a firearm.
Firearm firing mechanisms generally include a number of components that cooperate to hold a spring-loaded hammer in a cocked position and then selectively release the hammer. The firearm is fired or discharged when the force of the released hammer is applied, directly or through an intermediate device, to an ammunition cartridge loaded in the firearm. The components for holding the hammer in a cocked position and then releasing the hammer as desired may be referred to as a trigger group. In addition to the hammer itself, a trigger group generally includes a trigger component having a finger lever or trigger that a user pulls to release the hammer, and further includes a sear which may be a separate component or integrally formed with the trigger component. Some trigger groups also include other components such as a disconnector for example. The disconnector is used in semi-automatic firearms to catch the hammer as it rebounds after firing and to hold the hammer in a cocked position until the shooter can release the trigger and thereby reset the trigger group to the “ready to fire position.” The disconnector is required for this function because semi-automatic firearms usually cycle so quickly that it is physically impossible for the shooter to release the trigger quickly enough after a discharge to allow the sear to recapture the hammer in the cocked position.
Both the hammer component and trigger component are commonly mounted for rotation in the firearm. The hammer is mounted on a hammer pin to facilitate the desired rotation, while the trigger component is mounted on a trigger pin. Each pin is retained in a respective pin receptacle formed in the firearm. Each such pin receptacle is defined by a first opening on one side of the firearm and a second opening on the opposite side of the firearm. A hammer spring is included in the trigger group to, among other things, bias the hammer forward to a striking position. The trigger component is also spring biased to provide resistance against pulling the trigger and to return the trigger after it has been pulled.
It may be desirable to modify or replace trigger group components in a firearm. This is particularly true for firearms used in competition. Such competition firearms may be fitted with special trigger group components designed to improve firearm performance or operational characteristics, or to suit the preferences of the particular user. Also, different competitions or firearm applications may require different trigger group characteristics. However, due to the relatively small components in the trigger group, the spring loading of components, the close tolerances between components, and the small area in the firearm allotted for trigger group components, a trigger group may commonly be installed only by a skilled gunsmith using specialized tools in order to ensure safe, proper, and reliable trigger group functioning. Due to the difficulty in changing out trigger group components, it is common for many competition shooters to have several different complete firearms each with a different trigger group setup for a particular competition or portion of a competition. Maintaining several complete firearms greatly increases the cost of competitive shooting.
Some prior art original equipment manufacturer (OEM) firearm designs include a detachable housing that houses trigger group components. The housing may be attached to the firearm frame with screws or with pins that extend transversely through the housing and are supported at either end by receptacles or bearing openings in the firearm frame. These prior art OEM trigger group housings attach from the bottom of the firearm and include a trigger guard and surfaces that actually form part of the exterior of the fully assembled firearm. Prior art OEM trigger group housings also house safety components that cooperate with the trigger group components. These structures and surfaces associated with the prior art OEM trigger group housings limit their use to firearms specifically designed for such housings.
The present invention provides a trigger group module that is pre-assembled with the trigger group components and adapted to be mounted in a trigger group receiving area in place of the OEM trigger group. The invention includes a special module housing and also includes the special housing pre-assembled with one or more trigger group components to form the self-contained trigger group module. The invention further includes methods for mounting or installing a trigger group in a firearm.
A module housing according to the invention is adapted to be inserted into an operating position in the trigger group receiving area of a firearm. The module housing includes at least one pin receiver defined by two openings formed in the module housing, one on each lateral side of the housing. In one form of the invention a module pin is received in the pin receiver and at least one trigger group component is mounted or supported for rotation on the module pin. In this form of the invention, the module pin includes a pin receiving opening there through and is located on the module housing so that this pin receiving opening aligns with a pin receptacle of the firearm when the module housing is in the operating position. That is, the two openings defining the pin receiver on the module housing and the pin receiving opening through the module pin are adapted to align with the openings on the firearm that define a pin receptacle for the firearm.
By locating the pin receiver in the module housing so as to align with a corresponding pin receptacle of the firearm when the module housing is in the operating position and by providing a pin receiving opening in the module pin, the trigger group module and the trigger group components housed in the module housing may be readily supported by the OEM pin receptacle. The trigger group module, pre-assembled with one or more trigger group components, may be inserted to the operating position and then a pin may be inserted or extended through the OEM pin receptacle and aligned trigger group component and module pin to support the trigger group component in the desired functional position in the firearm. The module housing and module pin hold the trigger group component in place while the module housing is being placed in the firearm. No modification to the frame of the firearm is required and no special skill or tools are required to install the self-contained, pre-assembled trigger group module.
One preferred form of the invention is adapted to be used with a firearm that includes a hammer pin receptacle and a trigger pin receptacle. The trigger group module for this firearm includes a first pin receiver and a second pin receiver. The first pin receiver aligns with the hammer pin receptacle of the firearm when the housing is in the operating position and the second pin receiver aligns with the trigger pin receptacle when the housing is in the operating position. The first pin receiver is adapted to receive a first module pin having a pin receiving opening there through and the second pin receiver is adapted to receive a second module pin having a separate pin receiving opening there through. To install this trigger group module, the original trigger group components are removed from the firearm together with any interfering components such as safety mechanisms for example, and then the pre-assembled trigger group module is placed in the operating position in the firearm. Once in the operating position, the trigger group module may be held in place by pins inserted through the openings defining the hammer pin receptacle and trigger pin receptacle, respectively. Alternatively, caps, screws, or other elements may be inserted into the OEM pin receptacle openings to cooperate with a trigger group module or module pin to retain the trigger group module in the operating position.
In yet other forms of the invention, the module housing may include no pin receiver openings located to align with OEM pin receptacle openings when the trigger group module is in the operating position in the firearm frame. Rather, the trigger group component geometry may be completely changed from the OEM trigger group geometry. In these forms of the invention, the OEM pin receptacle openings may still be used to receive screws, pins, or other devices to secure the trigger group module in the operating position in the firearm frame.
A module housing according to the invention may also include a trigger component control feature that defines or sets either the forward most or rearward most position of the trigger component. Two different trigger component control features may be used to set both the forward most and rearward most position of the trigger component. The trigger component control feature setting the rearward most position of the trigger component provides overtravel control to minimize the amount of trigger movement possible after the hammer release point. The trigger component control feature setting the forward most position of the trigger component provides take-up control which minimizes the movement of the trigger required before reaching the hammer release point. A major advantage of the present invention is that by incorporating the overtravel and take-up features in the module housing, trigger overtravel and take-up may be modified without having to modify the frame of the firearm itself.
These and other features and advantages of the invention will be apparent from the following description of the preferred embodiments, considered along with the accompanying drawings.
A trigger group module 10 and module housing 11 embodying the principles of the invention may be described with reference to
In the following description and claims, certain elements may be described as right side elements while others may be described as left side elements. The terms right side and left side are used only for purposes of convenience to indicate that a particular element is located on one lateral side of the respective structure while another element is located on the opposite lateral side of the structure. Of course, whether an element is truly located on a right side or left side depends upon the perspective of the viewer. For purposes of consistency, the right side elements described below will be those elements located on the right side of trigger group module 10 as viewed from the front of the module with the trigger extending downwardly, while the left side elements will be those elements on the left side as viewed from the front of the module. The direction from the rear to the front of the module will be indicated by the arrow F in each figure showing the module 10.
Referring first to
Housing 11 includes a first pin receiver for receiving first module pin 21 and supporting the first module pin by its ends. This first pin receiver is made up of a first right side receiver opening 26 on a right lateral side or first side wall 31 of housing 11 and a first left side receiver opening 27 on the opposite lateral side or second side wall 32 of the housing. Similarly, housing 11 includes a second pin receiver for receiving second module pin 22 and supporting the second module pin by its ends. This second pin receiver is made up of a second right side receiver opening 29 and a second left side receiver opening 30. Module pins 21 and 22 may be held in place in module housing 11 by frictional engagement with the receiver openings, by “C” retainers, or by any other suitable means.
Those familiar with different types of firearms will recognize that the trigger group components shown for purposes of example in the embodiment of the invention shown in
As shown best in
The illustrated module 10 also includes a take-up feature 44. Take-up feature 44 extends from housing bottom wall 42 in a rear portion of housing 11 in position to contact a rear part of trigger component 15. Contact between take-up feature 44 and trigger component 15 prevents the trigger component from rotating further counterclockwise in
Both overtravel feature 41 and take-up feature 44 represent trigger component control features that define the limits of movement of the trigger component. In the preferred embodiment of the invention where housing 11 is formed from sheet metal, both features may be formed by pressing out a portion of the bottom wall of the housing using a suitable stamp or press. The illustrated overtravel and take-up features are stamped to form an elongated member that is unsupported at one end. These elongated members may be bent upward or downward to adjust the overtravel and take-up. Set screws or other adjustable arrangements in housing 11 may also be used to form adjustable overtravel and take-up features within the scope of the present invention. It will be appreciated, however, that the invention is not limited to modules including trigger component control features of any type.
The method of installing a trigger group in a firearm may be described with reference to
The OEM trigger group for the AR-15 model rifle includes the hammer, trigger component, disconnector, and associated springs similar to that shown in connection with module 10. In order to support the OEM trigger group components in the trigger group receiving area 51, firearm frame 50 includes a first pin receptacle for receiving and supporting a first OEM trigger group pin and a second pin receptacle for receiving and supporting a second OEM trigger group pin. In this case, the first pin receptacle comprises a hammer pin receptacle made up of a right side receptacle opening 57 and a left side receptacle opening 58 (retaining the definition of right and left as described above and using arrow F to indicate the front of the devices in
It will be appreciated that the trigger group receiving area of a firearm is a relatively small area, commonly less than two inches wide. Considering the small area in which to work, the small components that fit in the area, the close tolerances between components, and the spring loading of the components, it is no easy matter to position the trigger group components in the trigger group receiving area of a firearm and hold the components in the proper position under spring pressure and aligned with the pin receptacle openings while pressing the pins in place. This trigger group installation according to the prior art method generally requires special tools, skills, and experience. The prior art trigger group installation method also requires great hand strength to hold the various components in position against the pressure of the springs in the trigger group.
Trigger group installation according to the present invention using trigger group module 10 greatly simplifies installation, and may allow a new trigger group to be installed without special tools and skills. After the previous or OEM trigger group components are removed to place the firearm frame in the condition shown in
When module housing 11 is in the operating position shown in
After inserting module 10 to the operating position shown in
The trigger group installation method according to the invention finally includes positioning first retainer pin 65 so that the pin is supported at one end by first right side pin receptacle opening 57 and is supported at its opposite end by first left side pin receptacle opening 58 on the opposite side of firearm frame 50. This final position of retainer pin 65 is shown in
In the embodiment of the invention shown in the figures, trigger group module 10 includes two module pins, first module pin 21 supporting hammer 12 and second module pin 22 supporting trigger component 15. Thus, once openings 29 and 30 making up the second pin receiver are aligned with openings 59 and 60 making up the second pin receptacle, the method includes inserting a second retainer pin 66 through one opening of the pin receptacle and into module pin opening 22a.
In some forms of the invention, module pins 21 and 22 may not align with the OEM pin receptacles of the firearm frame. Because the module pins in the module 10 need not align with the OEM pin receptacles in some forms of the invention, those modules may include a completely different trigger group geometry and structure from the one originally designed for the firearm. Even where the module pins 21 and 22 do not align with the OEM pin receptacles the OEM pin receptacles may still be used in retaining the trigger group module 10 in the operating position in the firearm frame 50. For example, pins, screws, or other elements may be mounted in or through OEM pin receptacles and contact the module 10 or some feature on the module to serve as retaining devices or a retaining arrangement to retain the module in the desired operating position. The OEM pin receptacles may need to be modified to provide the desired function. For example, threads may be tapped into the OEM pin receptacles to accept a retainer or set screw.
It should also be noted that in the model AR-15 rifle example described above, the OEM pin receptacles are designed by the original manufacturer to support trigger group components that are not pre-assembled in a module according to the present invention. However, trigger group modules within the scope of the invention are not limited to use in firearms originally designed to be used with trigger group components assembled in place in the firearm. Rather, trigger group modules within the scope of the present invention may be used with firearms specifically designed to use the trigger group module. An OEM pin receptacle may be a receptacle designed to cooperate with a trigger group module according to the invention.
As used herein, whether in the above description or the following claims, the terms “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” and the like are to be understood to be open-ended, that is, to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of,” respectively, shall be considered exclusionary transitional phrases, as set forth, with respect to claims, in the United States Patent Office Manual of Patent Examining Procedures (Eighth Edition, August 2001 as revised September 2007), Section 2111.03.
Any use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another, or the temporal order in which acts of a method are performed. Rather, unless specifically stated otherwise, such ordinal terms are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term).
The above described preferred embodiments are intended to illustrate the principles of the invention, but not to limit the scope of the invention. Various other embodiments and modifications to these preferred embodiments may be made by those skilled in the art without departing from the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/621,485, filed Jan. 9, 2007, and entitled “Modular Trigger Group for Firearms and Firearm Having a Modular Trigger Group,” now U.S. Pat. No. ______, which is a divisional of U.S. patent application Ser. No. 10/806,300, filed Mar. 22, 2004, and entitled “Modular Trigger Group for Firearms and Trigger Group Installation Method,” now U.S. Pat. No. 7,162,824 B1, which is a continuation of U.S. application Ser. No. 10/152,557, filed May 21, 2002, and entitled “Trigger Group Module for Firearms and Method for Installing a Trigger Group in a Firearm,” now U.S. Pat. No. 6,722,072 B1. The Applicant hereby claims the benefit of these prior patent applications under 35 U.S.C. §120. The entire content of each of these prior patent applications is incorporated herein by this reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10806300 | Mar 2004 | US |
Child | 11621485 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11621485 | Jan 2007 | US |
Child | 11937430 | Nov 2007 | US |
Parent | 10152557 | May 2002 | US |
Child | 10806300 | Mar 2004 | US |