This invention relates to fabrication and assembly of turbine engine airfoils and platforms, and mounting of such assemblies on a turbine disk.
Turbine engines have at least one circular array of blades mounted around the circumference of a rotor disk. Each blade can be mounted by forming a mounting platform on the shank of the blade, in which the platform has a dovetail geometry that slides axially into a matching slot in the disk. U.S. Pat. No. 5,147,180 shows an example of a platform having an inverted “fir tree” geometry with multiple lateral teeth of descending width that is sometimes used.
The blade and platform may be cast integrally of an advanced single crystal superalloy such as CMSX-4 or PWA1484. However, casting the blade and platform in one piece has disadvantages. The size of the hole in the baffle through which the casting is withdrawn during the single crystal solidification process is dictated by the largest cross-sectional area of the part, which is usually the platform in the case of an integrally cast blade. The thermal gradient is not optimized when the baffle does not closely fit around the casting and can lead to the formation of casting defects such as low and high angle grain boundaries. It is also difficult to maintain the single crystal structure in regions where there are large geometric changes in the casting, for example in the fillet region where the airfoil transitions to the platform. Casting defects such as ‘freckle chains’ are often observed. Material requirements of the blade and platform are different. The blade must tolerate high temperatures and corrosive gas flow. The platform does not reach the highest temperatures of the blade, but needs strength and castability.
Forming the blade and platform as a single piece does not allow material optimization. However, forming them of separate pieces involves fastening, close tolerances, stress concentrations, and vibration issues. U.S. Pat. No. 7,080,971 shows a platform attached to a blade by a pin inserted through a hole passing completely through the platform and shank. This causes stress concentrations.
The invention is explained in the following description in view of the drawings that show:
The two platform portions 32E, 34E may be bonded to each other at matching end-walls 37 around the shank 23E by means such as metal diffusion bonding, transient liquid phase bonding, or brazing. Forming the platform in two parts and bonding them together around the shank allows each platform part 32E, 34E to be formed as a single crystal. The airfoil 22E and shank 23E may be formed of a first metal alloy, and the platform 30E may be formed of a second metal alloy, allowing specialization of material properties. For the same reason, the airfoil 22E and shank 23E may be formed of a ceramic or ceramic matrix composite, and the platform 30E may be formed of a metal alloy. As an alternative to forming the platform in two parts 32E, 34E, and bonding them together around the shank, the platform 30E may be bi-cast onto the shank 23E.
Embodiment 20F has pins 36F on one or both platform portions 32F, 34F that pass through pin holes 28 in the shank 23F. The pins 36F may be bonded to the opposite platform portion after assembly. For example pins 36F on platform portion 34F as shown, may be bonded to platform portion 32F in the same manner as the matching end-walls 37 previously described. End-walls 37 are not needed when pins are used, but the pins may be in addition to end-walls. The pins connect the two platform portions 32F, 34F. The pins may fill the holes 28 and thus provide load sharing between the shank and the platform.
Alternately, the pins may be undersized in the holes 28 so that there is no load transfer between the shank and the platform. In this embodiment, the pins perform the function of connecting the two platform portions 32F, 34F. Providing at least one pin is beneficial, because it can be used to provide a clamping force of the platform onto the shank, thus increasing vibration frequencies, reducing leakage gaps, and increasing damping.
It is not necessary for the pins 36F to support all or any of the centrifugal load of either the blade or platform, since the teeth 25, 27, 33, 35 perform this function. As a result, the pins can be much smaller in diameter than if they supported the load of the airfoil. Smaller pins allow more space in the shank for cooling passages, while leaving enough material in the shank for strength and rigidity to carry the airfoil load via the shank teeth 25, 27.
The pins 36F may be integrally formed with a platform portion 34F, and bonded to the opposed platform portion 32F. Alternately, the platforms and pins may be formed by bi-casting the platform 30F onto the already-formed shank. In either of these embodiments, the platforms lack holes extending to an outer surface of the platform for the pins, such as found in U.S. Pat. No. 7,080,971. This lack of holes in the outer surface of the platform allows the thickness of the platform 30F to be reduced, and stress concentrations therein to be reduced.
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/638,034 filed on 15 Dec. 2009 (attorney docket 2009P16191 US) incorporated by reference herein.
Development for this invention was supported in part by Contract No. DE-FC26-05NT42644, awarded by the United States Department of Energy. Accordingly, the United States Government may have certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
Parent | 12638034 | Dec 2009 | US |
Child | 12793935 | US |