The present invention relates to antennas for use in a wireless communications system and, more particularly, to a high performance/capacity, low profile telecommunications antenna.
Typical cellular systems divide geographical areas into a plurality of adjoining cells, each cell including a wireless cell site or “base station.” The cell sites operate within a limited radio frequency band and, accordingly, the carrier frequencies employed must be used efficiently to ensure sufficient user capacity in the system.
There are many ways to increase the call carrying capacity, the quality and reliability of a telecommunications antenna. One way includes the creation of additional cell sites across a smaller geographic area. Partitioning the geographic area into smaller regions, however, involves purchasing additional equipment and real estate for each cell site.
To improve the efficacy and reliability of wireless systems, service providers often rely on “antenna diversity”. Diversity improves the ability of an antenna to see an intended signal around natural geographic structures and features of the landscape, including man-made structures such as high-rise buildings. A diversity antenna array helps to increase coverage as well as to overcome fading. Antenna polarization is another important consideration when choosing and installing an antenna. For example, polarization diversity combines pairs of antennas with orthogonal polarizations to improve base station uplink gain. Given the random orientation of a transmitting antenna, when one diversity-receiving antenna fades due to the receipt of a weak signal, the probability is high that the other diversity-receiving antenna will receive a strong signal. Most communications systems use a variety of polarization diversity including vertical, slant or circular polarization.
“Beam shaping” is another method to optimize call carrying capacity by providing the most available carrier frequencies within demanding geographic sectors. Oftentimes user demographics change such that the base transceiver stations have insufficient capacity to deal with current demand within a localized area. For example, a new housing development within a cell may increase demand within that specific area. Beam shaping can address this problem by distributing the traffic among the transceivers to increase coverage in the demanding geographic sector.
All of the methods above can translate into savings for the telecommunications service provider. Notwithstanding the elegant solutions that some of these methods provide, the cost of cellular service continues to rise simply due to the limited space available on elevated structures, i.e., cell towers and high rise buildings. As the user demand has risen, the cost associated with antenna mounting has also increased, largely as a function of the “base loading” on the cell tower, i.e., the moment loads generated at the base of the tower. Accordingly, cell tower owners/operators typically lease space as a function of the “sail area” of the telecommunications antenna. It will, therefore, be appreciated that it is fiscally advantageous for service providers to operate telecommunications antennas which have a small, faired, aerodynamic profile to lease space at the lowest possible cost.
As a consequence of the aerodynamic drag/sail area requirements of the antenna, it will be appreciated that the various internal components thereof, i.e., the high and low-band radiators, will necessarily be densely packed within the confined area(s) of the antenna housing. The close proximity of the internally-mounted, high and low-band radiators can effect signal disruption and interference. Such interference is exacerbated as a consequence of the bandwidth being transmitted by each of the high and low-band radiators.
For example, a first radiator can produce a resonant response in a second, adjacent radiator, if the transmitted bandwidth associated with the first radiator is a multiple of the bandwidth transmitted by the second radiator. As the bandwidth differential approaches one-quarter (¼) to one-half (½) of the transmitted wavelength (λ), a first radiator which is transmits in this range may be additionally excited by the energy transmitted by the second radiator. This combination causes portions of the transmitted signal to be amplified while yet other portions to be cancelled. Consequently, the Signal to Noise Interference Ratio, (i.e., SINR,) grows along with the level of white noise or “interference.”
Other design considerations relate to a manufacturer's ability to be responsive to the needs of its customers by providing a flexible solution based upon a customer's design requirements. For example, one client may have access to a limited number of low-rise buildings while another client may have access to a number of high-rise buildings. The low rise buildings are subject to light wind loading while the high-rise buildings often experience hurricane velocity wind gusts, i.e., greater then seventy-five miles/hour. The foregoing requirements require vastly different design considerations producing vastly different antenna configurations. While these produce two different antenna solutions, a myriad of other design requirements produce a similar number of different configurations.
The prior art is filled with single use, one-piece antenna configurations which satisfy a particular design requirement. These antennas rely upon the strength/structural integrity of the reflectors upon which the antennas transmit and receive data. As such, every base/mounting station requires a unique antenna design based upon a unique antenna analysis.
Accordingly, there is a constant need in the art to provide an antenna solution which: (i) satisfies a myriad of design requirements and considerations, (ii) increases the number of mobile devices serviced, and (iii) improves the reliability and performance of the cell phones serviced by the telecommunications antenna.
The foregoing background describes some, but not necessarily all, of the problems, disadvantages and shortcomings related to telecommunications antennas.
A unit cell is provided for an antenna, comprising a conductive ground plane, a low-band radiator, a high-band radiator, and a conductive partition disposed along an edge intersecting a pitch axis of the conductive ground plane. The low-band radiator comprises a pair of orthogonally coupled dipoles each having a vertical stem portion and an arm portion. Each arm disposed in a plane orthogonal to the conductive ground plane. The arm portions, collectively and on-edge, produce an L-shaped radiator parallel to the conductive ground plane. The high band radiator comprises a pair of cruciform radiators, each cruciform electrically connected to, spaced-apart from, and parallel to the conductive ground plane. The conductive partition isolates at least a portion of the RF energy transmitted by the low and high-band radiators.
A method is provided for producing an electrically flexible telecommunications antenna comprising the steps of: producing a modular unit cell capable of directing a known quantity of RF energy, and selectively coupling the modular unit cells together along a pitch axis thereof such that the summation of the individual gains may be used to increase the total gain of the telecommunications antenna. Each unit cell comprises at least one low band and one high band dipole electrically coupled to a conductive ground plane. The low band dipole includes a pair of L-shaped radiators disposed in a plane parallel to the conductive ground plane. Each of the high band dipoles have a pair of cruciform radiators electrically connected to, spaced apart from, and disposed parallel to the conductive ground plane.
Additional features and advantages of the present disclosure are described in, and will be apparent from, the following Brief Description of the Drawings and Detailed Description.
The disclosure is directed to a high aspect ratio, telecommunications antenna having a high capacity output while remaining within a relatively compact, small/narrow design envelope. While the antenna may be viewed as a sector antenna, i.e., connected to a plurality of antennas to provide three-hundred and sixty (360°) degrees of coverage, it will be appreciated that the antenna may be employed individually to radiate RF energy to a desired coverage area. Furthermore, while the elongate axis of the antenna will generally be mounted vertically, i.e., parallel to a vertical Y-axis, it should be appreciated that the antenna may be mounted such that the elongate axis is parallel to the horizon.
In
In this embodiment, a power component of the power/data distribution system is: (i) conveyed over a high gauge, low weight copper cable 30, (ii) maintained at a first power level above a threshold on a first side (identified by arrow S1) of the connecting interface/distribution box 40, and (iii) lowered to a second power level below the threshold on a second side (denoted by arrow S2) of the connecting interface. A data component of the power/data distribution system may be: (i) carried over a conventional, light-weight, fiber optic cable 50, and (ii) passed through the connecting interface/distribution box 40. With respect to the latter, the fiber optic cable 50 may be passed over, or around, the interface/distribution box 40 without discontinuing, breaking or severing the fiber optic cable 50. Alternatively, the fiber optic cable 50 may be terminated in the distribution box 40 and converted, by a fiber switch to convert optic data into data suitable for being carried over a coaxial cable.
It should be appreciated that various technologies may be brought to bare on the power/data distribution system. For example, Wave Division Multiplexing (WDM) may be used to carry multiple frequencies, i.e., the frequencies used by various service providers/carriers, along a common fiber optic cable. This technology may also be used to carry the signal across greater distances. Additionally, to provide greater flexibility or adaptability, a splitter (not shown) may be employed to split the fiber optic signal, i.e., the data being conveyed to the distribution box 40, such that it may be conveyed/connected to one of the many Remote Radio Units 60 which converts the data into RF energy for being radiated and received by each of the telecommunications antennas 100.
Digital energy or Packet Energy Transfer (PET) technology may be employed on the first or upstream side S1 of the connecting interface/distribution box 40 while analog energy or power, i.e., conventional AC/DC power, is employed on the second or downstream side S2 of the interface/distribution box 40. In the context used herein, digital energy is characterized by the delivery of discrete packets of energy conveyed on periodic or regular schedule over a conductive wire cable. In the described embodiment, the digital energy employed is high potential, e.g., at or about three-hundred forty-five volts (DC 345 V). Digital energy offers an alternative mechanism for safe handling and does not have an upper potential limit for the packets of digital energy delivered. Furthermore, since PET technology may be delivered over high gauge, low weight metal or copper cable, i.e., conventional Category 5 or 6 cable may be used on the first, or upstream side S1 of the Power Distribution System (PDS). The second, or downstream side S2 of the PDS is characterized by the use of analog power which may be carried by conventional direct or alternating current.
The digital energy system 70 includes a PET transmitter 72, generally located within the Base Station, and a PET receiver 74 generally located within the distribution box 40 for powering the Remote units 60. The distribution box 40 will also generally include a DC-to-DC power converter 76 inasmuch as each Remote Radio Unit 40 is powered by direct current.
As mentioned in the background, each of the telecommunications antennas 100 have a characteristic aerodynamic profile drag which produces a moment vector at the base 80 of the tower 16. The larger the surface, or sail area, of the telecommunication antenna 100, the larger the magnitude of the tower loading. As a consequence, owner/operators of base stations calculate lease rates based on the profile drag area produced by the antenna 100 rather than on other measurable criteria such as the weight, capacity, or voltage consumed by the telecommunication antennas 100. Therefore, it is fiscally advantageous to minimize the overall aerodynamic drag produced by the telecommunications antenna 100.
In
In
A first pair of low-band radiators 130, best seen in
Each of the unit cells 110, 120 comprises at least one pair of L-shaped, low-band, dipoles 130 or 132 and at least one pair of cruciform-shaped, high-band radiators 140, 142. More specifically, each of the unit cells 110, 120 comprises a total of two (2) L-shaped, back-to-back dipoles 134a, 134b or two (2) face-to-face low-band, dipoles 136a, 136b. Additionally, each of the unit cells 110, 120 comprises a total of four cruciform shaped, high-band radiators 144a, 144b, 146a, 146b. In the context used herein, each of the low-band dipoles 134a, 134b, 136a, 136b include a pairs of L-shaped radiators 134a-1, 134a-2, 136a-1, 136a-2 (see
For the purposes of establishing a frame of reference, a Cartesian coordinate system 150 is shown in
The offset spacing between the pairs of high-band radiators 140, 142 in a first unit cell 110 is 4.84 inches. This corresponds to an offset spacing of about 0.83λ @ a mean high-band frequency of 2030 MHz. The offset spacing between the pairs of high-band radiators 140, 142 in the second unit cell 120 is 8.25 inches (4.84″+3.50.″) This corresponds to an offset spacing of about 1.43λ @ a mean high-band frequency of 2030 MHz. The offset spacing between one of the low-band radiators 130 or 132 (measured from a corner of the L-shaped radiator) in either of the unit cells 110, 120 to the centerline 148 of one of the high-band radiators 140, 142 is within a range of between about 3.5 inches to 4.1 inches. This corresponds to an offset spacing within a range of about 0.57λ and 0.63λ or about 0.6λ @ a mean high-band frequency of 2030 MHz. In the described embodiment, the offset spacing is 3.75 inches @ a mean high-band frequency of 2030 MHz.
Finally, the Aspect Ratio (AR) of the telecommunications antenna 100 is approximately 10:1. In the described embodiment, the total length (L) of the telecommunications antenna 100 is about 64.9 inches when summing the length of all seven modules 100a-100g, or unit cells 110, 120.
As mentioned above the alternating low-band radiators 130, 132 within adjacent cells 110, 120 are configured such that the radiator output combines to yield an array factor in the azimuth plane of the antenna. This array factor yields a radiation pattern in the azimuth plane which rolls-off quickly, or more abruptly, to avoid, mitigate or minimize PIM interference from adjacent sectors, i.e., sector antennas. In the context used herein, the term fast roll-off radiation pattern means that the azimuth pattern level changes steeply along the lateral edges of the radiation pattern, or at high angles relative to a mechanical boresight.
The low-band radiators 130, 132 are also spaced-away from the high-band radiators 140, 142 to mitigate shadowing. More specifically, it will be appreciated that the cruciform-shaped high-band radiators define a substantially polygonal-shaped region corresponding to the planform area of each cruciform plate. More specifically, the cruciform defines a bounded area which produces a substantially square shaped region. In the described embodiment, an arm of each of the L-shaped radiators is caused to bifurcate, yet avoid cross-over or overlap into the planform area defined by the cruciform plates of each high-band radiator. Inasmuch as the arm of the L-shaped radiator does not encroach into the planform area of the cruciform-shaped radiators, shadowing is mitigated and performance improved. In the described embodiment, each of the low-band L-shaped radiators 130, 132 are spaced a distance of at least about 2.4 inches from the high-band radiators 140, 142 to mitigate shadowing.
Similar to the previous embodiment, the telecommunication antenna 300 comprises as many as seven (7) unit cells 100a-100g wherein the unit cells 100a, 100g at each end are identical and the unit cells therebetween 100b-100f consecutively alternate from a first arrangement or configuration in each of the first unit cells 110 to a second arrangement or configuration in each of the second unit cells 120. The radiators 130, 132 within adjacent cells 110, 120 are configured such that the radiator output combines to yield an array factor in the azimuth plane of the antenna. This array factor yields a radiation pattern in the azimuth plane which rolls-off quickly, or more abruptly, to avoid, mitigate or minimize PIM interference from adjacent sectors, i.e., or sector antennas.
Furthermore, each of the first and second unit cells 110, 120 include at least one pair of low-band radiators 130, 132 and two pairs of high-band radiators 140, 142. Each of the low-band radiators 130, 132 have a substantially L-shaped configuration while each of the high-band radiators 140, 142 form a paired cruciform configuration. The low-band radiators 130 in the first unit cells 110 are back-to-back while those radiators 132 in the second unit cells 120 are face-to-face. Each of the L-shaped dipoles 130, 132 bifurcate the adjacent high-band radiators 140, 142 of the respective cell 110, 120.
In the described embodiment, the low-band corresponds to frequencies in the range of between about 496 MHz to about 960 MHz while the high-band corresponds to frequencies in a range of between about 1700 MHz to about 3300 MHz. In the described embodiment, the low-band corresponds to a frequency of about 800 MHz while the high-band corresponds to a frequency of about 1910 MHz. The arrangement of the low and high-band radiators 130, 132, 140, 142 differs from one unit cell 110 to an alternating, adjacent unit cell 120. While the low- and high-band radiators 130, 132, 140, 142 may comprise any electrical configuration, the low- and high-band radiators 130, 132, 140, 142 are preferably dipoles. However, the high-band radiators 140, 142 may alternately comprise patch or other stacked/spaced conductive radiators.
For the purposes of establishing a frame of reference, a Cartesian coordinate system 150 is shown in
The array factor producing this azimuth spacing corresponds to an offset between about 6.20 inches to about 6.8 inches. Alternatively, the array factor producing this azimuth spacing corresponds to an offset of between about 0.40λ to about 0.48λ @ a mean low-band frequency of 797 MHz. In the described embodiment, the azimuth spacing corresponds to an offset of precisely 0.44λ.
The offset spacing between the pairs of high-band radiators 140, 142 in a first unit cell 110 is 4.84 inches. This corresponds to an offset spacing of about 0.83λ @ a mean high-band frequency of 2030 MHz. The offset spacing between the pairs of high-band radiators 140, 142 in the second unit cell 120 is 8.25 inches (4.84″+3.50″). This corresponds to an offset spacing of about 1.43λ @ a mean high-band frequency of 2030 MHz. The offset spacing between one of the low-band radiators 130 or 132 (measured from a corner of the L-shaped radiator) in either of the unit cells 110, 120 to the centerline 148 of one of the high-band radiators 140, 142 is within a range of between also 3.5 inches to 4.1 inches. This corresponds to an offset spacing within a range of about 0.57λ and 0.63λ or about 0.6λ @ a mean high-band frequency of 2030 MHz. In the described embodiment, the offset spacing is 3.75 inches @ a mean high-band frequency of 2030 MHz.
In
In
In
In
Each of the low-band radiator elements 312, 314, 316, 318, 320, 322, 324, 326, 328 has an effective length corresponding to or less than at least λ/2, however, a smaller effective length may avoid resonances at lower order harmonics, i.e., second, third and fourth order harmonics. While an optimum length of each radiator element can be determined to mitigate resonance and maximize efficiency, high-band radiators should employ radiator elements having an effective length corresponding to a wavelength of less than about λ/4, wherein λ is the operating wavelength of an adjacent low-band radiator. Low-band radiators, on the other hand, may employ radiator elements having an effective length corresponding to a wavelength of at less than about λ/7, wherein λ is the operating wavelength of the adjacent high-band radiator. While the effective length of the radiator elements 312, 314, 316, 318, 320, 322, 324, 326, 328 corresponds to an effective wavelength of at least about λ/7, even smaller effective lengths, i.e., λ/9-λ/16, may be desirable.
Finally,
In summary, the first and second unit cells 110, 120 are configured to improve the efficacy of the signal, the amount and type of signal interference imposed by the low and high-band radiators 130, 132, 140, 142 and the signal to noise ratio developed by the low and high-band radiators 130, 132, 140, 142. That is, by changing the configuration of the low and high-band radiators 130, 132, 140, 142, the resonant response thereof can be mitigated along with amplification or cancellation of the RF energy transmitted by the radiators 130, 132, 140, 142. In one embodiment, the coupling elements 313, 315, 317, 319, 323, 325, 327 of one of the unit cell radiators 130, 132, e.g., the low-band radiator elements, have a length dimension which is less than about λ/2, in another embodiment, the length dimension is less than about λ/4, and in yet another embodiment, the length dimension is less than about is less than about λ/7, wherein the wavelength λ corresponds to the transmission frequency of other of the unit cell radiators 140, 142. In yet other embodiments, it may be desirable to suppress a resonant response associated with lower order harmonics. Consequently, the length dimension of the gap G may be smaller, and the length dimension of the radiator elements 312, 314, 316, 318, 320, 322, 324, 326, 328 may be within a range between about λ/9-λ/16. As such, the resonant response is obviated with respect to other lower order harmonics of the same radiator element 312, 314, 316, 318, 320, 322, 324, 326, 328.
In yet another embodiment, the unit cells 110, 120 both individually and collectively, facilitate the ability to deliver antennas having various capabilities to a variety of telecommunications customers. The various embodiments disclosed therein, i.e., the telecommunications antennas 100, 200 and 300, disclose modular units or cells which can provide the transmission of a larger or smaller amount of RF energy. In addition to varying the power to the low and high band radiators 130, 132, 140, 142, an antenna may include as few as one and as many as eleven (11) unit cells, e.g., two (2) unit cells 110 at each end with nine (9) alternating cells 110, 120 therebetween.
As mentioned in the background of the invention, one client may have access to a plurality of low-rise buildings while another client may have access to a number of high-rise buildings. An antenna assembly designed for the low-rise buildings can be much larger than an antenna assembly designed for the high-rise buildings. This is due principally to the wind loadings which will be much greater for the high-rise buildings. Consequently, a designer has much greater flexibility to employ large antenna assemblies in connection with the client having access to a network of low-rise buildings.
A modular approach, such as that illustrated in
In the broadest sense of this embodiment and referring to
A method is provided to produce an electrically flexible telecommunications antenna, i.e., one which configures an antenna based upon unit cell building blocks. Each building block, i.e., unit cell, comprises at least one pair of low band radiators and one pair of high band radiators, each being electrically coupled to a conductive ground plane. The low band dipole includes an L-shaped radiator disposed in a plane parallel to the conductive ground plane while a high band dipole includes a pair of cruciform radiators electrically connected to, spaced apart from, and disposed parallel to the conductive ground plane. The unit cells are selectively coupled along the pitch axis such that the summation of the individual gains may be used to increase the total gain required to be delivered by the telecommunications antenna. That is, a select gain value may be achieved by summing the RF energy transmitted by the low and high band radiators of the antenna.
In the described embodiment, each unit cell 110, 120 is approximately ten inches (10″) along the length (in the pitch or Y direction) and approximately twelve inches (12″) along the width (in the offset or X direction) of the antenna. The partition or fence 410 can be a relatively small structural member extending across one edge of the unit cell or a tall six inch (6″) high structure to support an aerodynamic fairing and augment the stiffness of the conductive ground plane. The partition may be a combination of plastic and conductive elements to provide a low weight/electrical solution.
In another embodiment, and referring to
Additional embodiments include any one of the embodiments described above, where one or more of its components, functionalities or structures is interchanged with, replaced by or augmented by one or more of the components, functionalities or structures of a different embodiment described above.
It should be understood that various changes and modifications to the embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present disclosure and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Although several embodiments of the disclosure have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the disclosure will come to mind to which the disclosure pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the disclosure is not limited to the specific embodiments disclosed herein above, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the present disclosure, nor the claims which follow.
This application claims the benefit of the filing date and priority of U.S. Provisional Patent Application No. 62/467,569, entitled “Cloaking Arrangement for Telecommunications Antenna,” filed on Mar. 6, 2017 and U.S. Provisional Patent Application No. 62/368,587, entitled “High Performance, Low Profile (GENII) Antenna System,” filed on Jul. 29, 2016. The complete specification of each application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62467569 | Mar 2017 | US | |
62368587 | Jul 2016 | US |