This section provides background information to facilitate a better understanding of the various aspects of the disclosure. It should be understood that the statements in this section of this document are to be read in this light, and not as admissions of prior art.
Vehicle barrier systems are used to stop motor vehicles trying to forcibly gain access to a compound or facility. Anti-ram vehicle barriers (AVB) systems or vehicle security barriers (VSB) are configured to stop motor vehicles, such as trucks, that are intentionally crashed into the barrier in an attempt to breach the barrier. Passive barriers (e.g., fences, walls) are static after installation and deployment, in other words, passive barriers “never” allow vehicular access to certain areas, while active barriers (e.g., gates, drop arms, active wedges) control or limit vehicular access to a particular area.
Some anti-ram vehicle barriers are crash tested to ensure compliance with and obtain certification from a recognized standard. For example, the American Standard Test Method (ASTM F2656 Standard Test Method for Vehicle Crash Testing of Perimeter Barriers), British Standard Institute (PAS 68) and the International Organization for Standardization (ISO) and International Works Agreement (IWA 14-1).
The U.S. State Department (DOS) published the certification standard SD-STD-02.01 (Test Method for Vehicle Crash Testing of Perimeter Barriers and Gates) in 1985. The test vehicle was specified as a medium-duty truck weighing 15,000 lb. (6800 kg) and the nominal velocities were 30 mph (50 km/hr), 40 mph (65 km/hr) and 50 mph (80 km/hr). Penetration was measured from the pre-impact attack (front) side of the vehicle security barrier (VSB) and classified into three categories of penetration rating. In 2003, the standard was revised with measuring the penetration from the asset or protected (rear) side of the barrier and the limitation of permissible vehicle penetration to one meter (the highest level of penetration rating).
In 2007, the SD-STD-02.01 was replaced with ASTM F2656-07. This new standard included the medium-duty truck and added three new test vehicle types, a small passenger car, pickup truck, and heavy good truck. ASTM F2656-07 maintained three predetermined impact velocities for each vehicle category and the penetration is measured from the rear face of the barrier and classified into four categories of penetration rating. ASTM F2656 was revised in 2015 (ASTM F2656-15) to include two additional vehicle types, a full-sized sedan and a cab over/cab forward class 7 truck and it excluded the lowest penetration rating (P4).
The vehicle rating is designated with a prefix indicating the test vehicle weight: “M” prefix designates a medium duty vehicle with a gross weight of 15,000 pounds (6,810 kg), “C” prefix designates a car having a vehicle weight of 2,430 pounds (1,100 kg), “PU” prefix designates a pickup having a vehicle weight of 5,070 pounds (2,300 kg), and “H” prefix designates a heavy goods vehicle having a vehicle weight of 65,000 pounds (29,500 kg). The penetration ratings include P1 for less than or equal to 1 meter (3.3 ft); P2 for 1.10 to 7 m (3.31 to 23.0 ft); P3 for 7.01 to 30 m (23.1 to 98.4 ft); and, prior to 2015, P4 for 30 m (98 ft) or greater.
An ASTM F2656 crash tested vehicle barrier is rated based on the test vehicles weight (e.g., M, C, PU, H), the speed (miles per hour) of impact (e.g., 30, 40, 50, 60), and the penetration (P1, P2, P3, and P4) of the vehicle. For example, an M50-P1 crash barrier is designed to stop a medium duty truck traveling 50 mph with a penetration distance of 3.3 feet or less.
In 2005, the British Standard Institute (BSI) published PAS 68:2005 Specification for Vehicle Barriers: Fixed Bollards. The standard was expanded within two years to include other types of barriers, such as gates and road blockers. The 2013 version, “Impact Test Specifications for Vehicle Security Barrier Systems,” rates vehicle barrier systems based on six types of test vehicles, including seven test speeds, and penetration is measured from the rear (protected side) face of the barrier. PAS 68 defines the vehicle type, penetration, dispersion of debris and records the angle of the vehicle's approach. The PAS 68 rating includes a 5 to 7 part classification code, the includes: Classification of Test/Gross Weight of Vehicle (kg) (Vehicle Class)/Impact Speed/Angle of Impact: Distance Leading Edge of Load Bay travels beyond the Original Position of Rear Face/Dispersion Distance of major debris weighing 25 kg or more from the barrier to establish standoff distance. For example, a barrier (bollard) tested by impact by a 7500 kg day cab (“V”) at a ninety-degree angle traveling 80 km/hr and resulting in penetration of 7.5 m with significant debris scattered up to 20.0 m away would be designated as V/7500(N3)/80/90:7.5/20.0. The dispersion distance may be utilized to determine a standoff distance for example to mitigate damage from a vehicle born improvised explosive device (VBIED).
The European Committee for Standardization (CEN), recognized across 34 European countries has produced a standard CWA 16221 that combines details of BS PAS 68 and PAS 69. PAS 69 provides guidance on the barrier's use and installation.
In 2013, the International Works Agreement (IWA) 14-1:2013 was published to provide an international specification for crash testing. The system was developed by government agencies, military bodies and providing companies from the USA, UK, Germany, Norway, Oman, Singapore and Syria. This standard includes a merging of the British PAS 68 and the American ASTM F2656 vehicle impact test specifications. This international standard assesses vehicle barrier performance based on nine types of test vehicles with up to seven test speeds. Penetration is measured from the front (attack side) face of the vehicle safety barrier. The IWA 14-1 classification code represents Vehicle Impact Test/Gross Weight of Vehicle (Vehicle Class)/Impact Speed/Angle of Impact/Penetration beyond the original position of the front/impact face.
Many different types of passive and active AVB systems are available or permanent sites. However, few anti-ram vehicle barriers are available for use at temporary sites such as fairs, street parties, sporting events, and the like.
An exemplary modular vehicle barrier includes a rigid, generally L-shaped frame having a base and an upright portion. the base including two or more joists spaced apart and extending orthogonal to a foot plate, wherein the foot plate is attached to a bottom surface at a front end of the two or more joists, the upright portion configured in a ladder arrangement having spaced apart vertical posts secured at bottom ends to a bottom beam and at top ends to a top beam, wherein the bottom beam is attached to a top surface at a back end of the two or more joists, and a wedge point formed the bottom surface of the second end of the two or more joists.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of claimed subject matter.
The disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of various features may be arbitrarily increased or reduced for clarity of discussion. As will be understood by those skilled in the art with the benefit of this disclosure, elements and arrangements of the various figures can be used together and in configurations not specifically illustrated without departing from the scope of this disclosure.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various illustrative embodiments. Specific examples of components and arrangements are described below to simplify the disclosure. These are, of course, merely examples and are not intended to be limiting. For example, a figure may illustrate an exemplary embodiment with multiple features or combinations of features that are not required in one or more other embodiments and thus a figure may disclose one or more embodiments that have fewer features or a different combination of features than the illustrated embodiment. Embodiments may include some but not all the features illustrated in a figure and some embodiments may combine features illustrated in one figure with features illustrated in another figure. Therefore, combinations of features disclosed in the following detailed description may not be necessary to practice the teachings in the broadest sense and are instead merely to describe particularly representative examples. In addition, the disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not itself dictate a relationship between the various embodiments and/or configurations discussed.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include such elements or features.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “inboard,” “outboard, “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction. As used herein, the terms “connect,” “connection,” “connected,” “in connection with,” and “connecting” may be used to mean in direct connection with or in connection with via one or more elements. Similarly, the terms “couple,” “coupling,” and “coupled” may be used to mean directly coupled or coupled via one or more elements.
Often times it is desirable to put up temporary passive vehicle anti-ram barriers at events (e.g., sporting events, concerts, festivals, etc.). Some public events can be quite large, covering a lot of acreage. Thus, an amount of temporary barrier or fencing used can be quite large. Temporary barriers that provide protection from vehicle impacts and other forces (e.g., pushing by a crowd of people) that might move or alter the positioning of temporary barriers can be heavy, large, and difficult to transport to the event and to setup at the event. A modular vehicle barrier is disclosed herein that can withstand vehicle impacts and allows for a reduction in transportation and setup costs. Transportation costs can be reduced by managing a weight of the modular vehicle barrier and utilizing an ability of the modular vehicle barrier to efficiently stack to maximize a number of the modular vehicle barrier that may be transported in a given space without exceeding transportation restrictions (e.g., highway weight restrictions). Setup costs can be reduced by reducing the weight of the modular vehicle barrier, which makes it easier to handle the modular vehicle barrier, and thus reduces labor costs to set up the modular vehicle barrier.
In accordance with embodiments of the disclosure, the portable gate assemblies are configured to provide a requisite stopping capability in the event that a motor vehicle, such as a 15,000 pounds (6.8 metric tons) medium-duty truck, crashes into the portable gate. In accordance with embodiments of the disclosure, a requisite stopping capability will be in accordance with standards established for example by ASTM F-2656, which identifies impact conditions including the vehicle weight, impact velocity, and penetration distance. With reference to a medium-duty truck, having a weight of about 15,000 lb. (6,800 kg), the speed ratings include M30 for traveling at 28.0 to 37.9 miles per hour (mph), M40 traveling at 38.0 to 46.9 mph, and M50 traveling at 47.0 mph and above. The penetration ratings include P1 for less than or equal to 1 meter (3.3 ft); P2 for 1.10 to 7 m (3.31 to 23.0 ft); and P3 for 7.01 to 30 m (23.1 to 98.4 ft). For example, an ASTM F2656 crash-rated M50-P1 barrier is designed to stop a medium duty truck traveling 50 mph with a penetration distance of 3.3 feet or less.
In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M30 speed rating with a P1 penetration rating. In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M30 speed rating with a P2 penetration rating. In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve a M30 speed rating with a P3 penetration rating.
In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M40 speed rating with a P1 penetration rating. In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M40 speed rating with a P2 penetration rating. In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M40 speed rating with a P3 penetration rating.
In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M50 speed rating with a P1 penetration rating. In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M50 speed rating with a P2 penetration rating. In accordance with at least one embodiment, the modular vehicle barrier is configured to achieve an M50 speed rating with a P3 penetration rating.
Some embodiments may be configured to achieve similar speed and penetration ratings for impact vehicles such as cars having a weight up to about 2,430 lb. (1,100 kg) (e.g., C40, C50, C60) and heavy goods vehicles having a weight of about 65,000 lbs (29,500 kg) (e.g., H30, H40, H50).
MVB 10 is a rigid, generally L-shaped framework having a base 12 and an upright portion 14 configured to sit directly on a ground surface 7, e.g., grade, without being anchored to the ground to provide crash barrier protection. In an exemplary embodiment, upright portion 14 is configured to extend perpendicular to grade 7 and offset from perpendicular relative to base 12, see, e.g.,
Base 12 includes a laterally extending foot plate 16 and two or more base joists 18 spaced apart and orthogonal to foot plate 16. Base joists 18 are linear members, e.g., I-beams, hollow tubular steel, extending from a front end 20 to a back end 22. Foot plate 16 is secured, e.g. by welding, to the bottom surface 24 of joists 18 at front end 20. Upright portion 14 is secured, e.g. by welding, to the top surface 26 of joists 18 at back end 22. In use, upright portion 14 separates the protected side 28 from the attack side 30 with front end 20 facing away from the protected side 28. Protected side 28 is associated with the area to be protected from approaching motor vehicles and attack side 30 is the side from which the vehicles are approaching protected side 28.
Foot plate 16 does not extend from front end 20 to back end 22 of joists 18. For example, in
MVB 10 has a wedge point 32 at bottom surface 24 of back end 22, which is configured to dig into ground surface 7 as MVB 10 rolls underneath an attacking vehicle. Wedge point 32 is positioned behind upper portion 14 a distance 54 as shown in particular in
Upper portion 14 is configured in a ladder arrangement having spaced apart vertical posts 34 secured at their opposing ends to laterally extending bottom beam 36 and top beam 38. Bottom beam 36 is secured, e.g., by welding, to the bottom end 40 of posts 34 and aligned in the same vertical plane as vertical posts 34. Top beam 38 is secured, e.g., by welding, to the top end 42 of posts 34. In
The exemplary embodiment illustrated in
A single MVB unit 5 according to the modular vehicle barrier 10 illustrated in
The result of the interaction between the test vehicle and modular vehicle barrier 10 was that the test vehicle's forward motion was arrested by the modular vehicle barrier. At initial impact the test vehicle's engine cowl made contact with upright portion 14 of modular vehicle barrier 10. As the test vehicle continued to move forward, the entire modular vehicle barrier 10 rolled forward underneath the test vehicle's front wheels as the bottom of modular vehicle barrier 10 dug into the road surface 7. At approximately 90 degrees of rotation of modular vehicle barrier 10, the test vehicle was propelled upwards and forwards as the terminal end of the base of modular vehicle barrier 10 contacted the undercarriage of the test vehicle. At this point in the event the test vehicle's engine cowl became detached from the test vehicle and the test vehicle's cab rotated slightly forward. As the test vehicle and the modular vehicle barrier continued to move forward, the front of the test vehicle came to rest on top of the modular vehicle barrier and they both continued to move forward together until they both came to a stop at a point between the P1 and P2 penetration lines, thus resulting in the P2 rating.
Upper portion 14 is configured in a ladder arrangement having spaced apart vertical posts 34 secured at their opposing ends to laterally extending bottom beam 36 and top beam 38. Bottom beam 36 is secured, e.g., by welding, to the bottom end 40 of posts 34 and aligned in the same vertical plane as vertical posts 34. Top beam 38 is secured, e.g., by welding, to a front surface 34a of post 34 proximate top end 42 and is positioned in a different vertical plane from posts 34 and bottom beam 36. Top surface 42a of vertical posts 34 may be cut at a non-right angle as illustrated for example in
In an exemplary embodiment described with reference to
The term “approximately” is defined as largely but not necessarily wholly what is specified (and includes what is specified; e.g., approximately 90 degrees includes 90 degrees and approximately parallel includes parallel), as understood by a person of ordinary skill in the art. In any disclosed embodiment, the terms “substantially,” “approximately,” “generally,” and “about” may be substituted with “within [a percentage] of” what is specified, where the percentage may include for example 0.1, 1, and 5 percent as may be recognized by a person skilled in the art.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the disclosure. Those skilled in the art should appreciate that they may readily use the disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the disclosure. The scope of the invention should be determined only by the language of the claims that follow. The term “comprising” within the claims is intended to mean “including at least” such that the recited listing of elements in a claim are an open group. The terms “a,” “an” and other singular terms are intended to include the plural forms thereof unless specifically excluded.
Number | Date | Country | |
---|---|---|---|
62546971 | Aug 2017 | US |