1. Field of the Disclosure
The present disclosure relates to pile driving equipment. More particularly, the present disclosure relates to a modular vibratory side grip pile driver system and method for assembly.
2. Description of the Related Art
Vibratory pile drivers are used in a plurality of applications to drive pile, such as sheet pile, pipes, I-beams, H-beams, and poles, for example, into the ground. The pile driver may be mounted on an excavator and include articulating arms and side-gripping jaws to facilitate the pile driving process.
Current side grip vibratory pile drivers have the disadvantage that they are designed for driving only one type of pile. Therefore, if it is desired to switch from driving sheet pile to H-pile, for example, a separate unit must be employed. This leads to significant increased cost at a job site and requires that the construction company inventory more than type of pile driver for use at its various job sites.
The modular vibratory pile driving system of the present invention comprises a base unit having a housing, a vibratory gear case and a mounting base rigidly connected to the housing. It also includes two jaws that are spaced apart longitudinally wherein the jaws include jaw halves that are movable relative to each other to enable a pile to be gripped. In a preferred embodiment, each of the jaws includes a stationary jaw half rigidly connected to the mounting base and a pivotable jaw rotatably connected to the mounting base and caused to open and close through the action of one or more hydraulic cylinders. The pile driver system also includes a set of gripping assemblies having different gripping profiles adapted for gripping a variety of different pile profiles. These gripping assemblies are interchangeable so that the same base unit can be utilized to drive a variety of pile profiles. In one embodiment, the gripping assemblies include elements that are removably attached to the stationary jaw halves as well as removable pivot arms including gripping profiles that match the profiles of the gripping assemblies mounted to the stationary jaws.
Advantageously, the modular vibratory pile driver system eliminates the need to obtain a plurality of pile drivers matching the types of pile to be driven. Instead, the modular vibratory pile driver uses the same housing and gear case for all types of pile and utilizes modular sets of gripping assemblies to facilitate driving different types of pile, thereby reducing costs and saving time. Further, the modular vibratory pile drivers of the present disclosure facilitate centering of the pile with the pile driver, thereby enhancing the efficiency of energy transfer to the pile and reducing the stress on the gear case of the pile driver. Moreover, the modular vibratory pile driver facilitates straight driving of the pile because the centerline of the pile matches the centerline provided by the selected modular gripping assembly set.
In one form thereof, the present invention is a modular side grip vibratory pile driver system comprising a housing that includes a mounting base comprising first jaw halves. A vibratory gear case is mounted to the housing and a pivotable arm assembly forming two second jaw halves is pivotally connected to the housing. The respective first and second jaw halves form a pair of spaced apart jaws adapted for gripping a pile at two longitudinally spaced apart locations. An attachment assembly connects the housing to a construction machine. The housing is rotatably connected to the attachment assembly and rotatable between a first position wherein the jaws are oriented vertically and spaced apart horizontally and a second position wherein the jaws are oriented horizontally and spaced apart vertically. The jaws are open thereby forming a gap so that a pile can enter the jaws laterally. A plurality of sets of gripping assemblies having different gripping profiles adapted for gripping a variety of different pile profiles are interchangeably connected to and form the pile gripping elements of the jaws. The jaws include a single set of the interchangeable gripping assemblies detachably and interchangeably connected thereto.
In another form thereof, the invention constitutes a method of changing a modular side grip vibratory pile driver from a first configuration to a second configuration. One of the sets of gripping assemblies is selected from the plurality of sets wherein the selected gripping assembly accommodates the profile of a pile to be driven and this gripping assembly is substituted for the current set of gripping assemblies forming the gripping surfaces on each of the jaws. In one embodiment each of the jaws comprises a stationary jaw half and a removably rotatable jaw half and the step of substituting comprises replacing the current rotatable jaw halves with rotatable jaw halves from the plurality of sets having a gripping profile that accommodates the profile of the pile to be driven. The gripping assembly on the stationary jaw is replaced with a gripping assembly from the plurality of sets that accommodates the pile profile.
The above-mentioned and other features of the disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the disclosure and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to
A further example of a side grip vibratory pile driver is disclosed in U.S. Reissue Pat. No. RE37,661. The disclosure of this patent is specifically incorporated herein by reference.
Mounting assembly 35 includes a mounting base 37 rigidly connected to the housing 31 and forming a first pair of jaw halves 37a and first gripping assembly 39. In an exemplary embodiment, mounting base 37 having jaws 37a is stationary relative to gear case 36. In an alternative embodiment, mounting base 37 is movable relative to gear case 36. Referring to
Referring now to
Referring now to
In operation and referring to
Referring now to
Referring still to
Mounting assembly 135 includes mounting base 37 and first gripping assembly 139. First gripping assembly 139 includes first gripping mount 153 detachably mounted to base 37. First gripping assembly 139 also includes two contact surfaces 147 for providing direct contact with pile 133. In an exemplary embodiment, contact surfaces 147 are arcuate to match the outer diameter of pile 133 and are knurled to enhance and facilitate gripping of pile 133.
Jaw assembly 150 includes mounting base 37, first gripping assembly 139, arms 140, and arm gripping assemblies 152. Each arm 140 is pivotally and detachably affixed to base 37 via pin 48 which creates a pivot joint of arm 140 relative to mounting base 37. Each arm 140 is connected via pin 49 to hydraulic cylinder 42 which is connected to a hydraulic system (not shown) of the excavator to which pile driver 130 is attached to provide pivot control of arms 140. Each arm 140 includes an arm gripping assembly 152 detachably affixed thereto. Arm gripping assembly 152 includes arm gripping mount 156 with contact surfaces 147 for providing direct contact with pile 133. In an exemplary embodiment, contact surfaces 147 are arcuate to match an outer diameter of pile 133 and are knurled to enhance and facilitate gripping of pile 133.
Arm gripping assembly 152 and first gripping assembly 139 encircle pile 133 and form pipe grip engagement 157 therebetween, as shown in
In operation and referring again to
To switch from the configuration shown in
Referring now to
In operation, jaw assembly 250 provides side gripping force on pile 233 in a substantially similar manner as jaws 50, 150, described above with respect to
To switch from the embodiment shown in
Referring to
Piles 133, 233 may be formed as Schedule 40 piping having an outer diameter as small as approximately ½″, 1″, 1½″, 2″, 3″, 4″, or 4½″, or as large as 40″, 30″, 20″, 15″, 10″, 9″, 8″, 7″, 6⅝″, 6″, 5½″, or 5″.
In operation, modular vibratory pile driver configurations 30, 130, 230 provide flexibility and options depending on the type of pile to be driven into the ground. For example, pile driver configuration 30 may be used to drive a sheet pile, e.g., sheet pile 33, into the ground. Subsequently, a user of pile driver 30 may want to drive a pipe pile. Advantageously, the user simply removes arms 40 from pile driver 30 and replaces them with arms 140 using the same attachments, i.e., pins 48, 49, to attach arms 140 to mounting base 37 and hydraulic cylinders 42 to form configuration 130. In one embodiment, arms 140 have arm gripping assembly 152 detachably affixed thereto and mounting base 37 has complementary first gripping assembly 153 detachably affixed thereto to accommodate large pipe pile 133. Alternatively, arms 140 have arm gripping assemblies 252 detachably affixed thereto and base 37 has complementary first gripping assembly 253 detachably affixed thereto to accommodate small pipe pile 233. Therefore, arms 40, 140, arm gripping assemblies 152, 252, and first gripping assemblies 153, 253 are modular attachments that may be interchanged depending on the size and type of pile to be driven into the ground.
Advantageously, the modular vibratory pile driver configuration described in the present application provide various degrees of modularity to provide variability and flexibility in selecting components to provide the optimum outcome for a desired pile driving procedure. For example, the pivotable arms are replaced with a different set of pivotable arms. In another example, the arms remain attached to the first portion but the gripping assemblies are replaced with a different set of gripping assemblies. Advantageously, the modular vibratory pile driver configurations of the present application all utilize the same housing 31 including gear case 36 and mounting base 37. Thus, a user of the pile driver only needs to purchase a single base unit, instead of purchasing three or more separate pile drivers. The modular attachments of the present application are advantageously used interchangeably with the base unit to provide a modular side grip vibratory pile driver. Therefore, the overall cost of the pile driving system is substantially reduced. Moreover, the efficiency of the pile driving system is maintained.
While this disclosure has been described as having exemplary designs, the present disclosure can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains and which fall within the limits of the appended claims.
This application claims the benefit under Title 35, U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/943,979, entitled MODULAR VIBRATORY PILE DRIVER, filed on Jun. 14, 2007.
Number | Date | Country | |
---|---|---|---|
60943979 | Jun 2007 | US |