The present invention relates to modular void forms for construction.
Because some soils expand as they absorb moisture, it is a common practice in concrete construction to create a void space under a structure, such as a building foundation, to isolate the concrete and accommodate soil movement. Void forms are positioned on graded soil, a substrate covering is placed over them to span the gaps between supporting elements, and then reinforcing steel and fresh (i.e. plastic) concrete is placed on top. The void forms temporarily withstand the weight of the concrete until the concrete and reinforcing steel become self-supporting across drilled piers, grade beams, or other load-bearing elements. As the concrete sets, the void form material absorbs humidity and moisture inherent in the surrounding soil and becomes non-structural. This effectively creates a void space into which the soil can expand with tremendous uplift pressure and not displace or damage the foundation. The most effective and desirable void form designs are those that are sufficiently strong enough to support the working load of the concrete placement without resisting additional forces thereafter. Void forms that are too strong can actually transfer the energy from expansive soils into the structure above, which naturally defeats their intended purpose. Void forms can also be used beneath or within a foundation system to provide hollow chases for running wires and pipes or to reduce the concrete volume and weight.
Void forms that are designed to accommodate soil expansion are typically constructed from molded pulp, fiberboard, or corrugated paper materials that will become non-structural over time through the absorption of moisture. In their original dry condition, such void forms are sufficiently strong enough to support the fresh (i.e. plastic) concrete load placed over them. Degradation weakens the void forms, so that they can deform under the pressure of the expanding soil, preventing the void forms themselves from functioning as structural components that transfer damaging energy from expanding soil into the building structure above.
Moisture content changes in some soils having expansive clays will cause them to repeatedly expand and contract—sometimes up to twelve inches or more. The specified height of the void space formed under a concrete structure will vary with the expected soil upheaval. This is called “potential vertical rise (PVR)” or often simply “swell potential”. For soil that is less expansive, a void space with a shorter height may suffice. When more soil upheaval is expected (higher swell potential (PVR)), a taller void space is required. Pre-construction soil analysis can provide the structural engineer with the expected soil movement, allowing him or her to select a void space of an appropriate height. Depending on the geographical region in which the project is located, as well as the footprint of the project, multiple soil types having different swell potentials (PVRs) may be found on the same construction site. Therefore, different height requirements for void spaces on a project are not uncommon. This requires the contractor to purchase void forms of varying heights for a single job.
Void forms that are designed to be weakened by moisture may partly compress as the soil expands somewhat. In some cases, they can even dry out again if the soil loses moisture content and retreats. Some void forms regain their strength as they dry out, hardening to such sufficient rigidity that they act as a structural member. Such void forms, even when partly compressed, will transmit energy from the upheaving soil into the building structure above and cause damage.
One example of a void form is described in U.S. Pat. No. 10,267,012 to Michael Turner for a “Plumbing Void Construction Unit”. This patent, which is owned by the applicant of the present application, describes a water-resistant structure that creates space beneath concrete structures for the passage of plumbing and electrical lines. U.S. Pat. No. 9,273,476 to Hoyle for a “Modular Void Form” describes modular void forms of various shapes that can be assembled to form closed structures. U.S. Pat. No. 5,352,064 to Carruthers et al. for a “Collapsible Spacer” describes various spacers that support a planar base onto which concrete is placed. When the ground heaves, the spacers can be crushed, leaving the concrete on the base undisturbed. Canadian Patent Publication No. 2030080A1 to McCarthy for a “Void Form” describes a polystyrene void form designed for cold regions that has a cross section composed of a rectangle from which rectangular or triangular projections extend into the soil. U.S. Pat. No. 9,771,728 to Gilpin et al. for a “Device for Forming a Void in a Concrete Foundation” describes a substantially planar void form structure formed as an array of cylindrical channels. The Gilpin form is composed of molded pulp that can be configured to inhibit the penetration of moisture by, for example: (a) including at least thirty percent of wax-coated corrugated paper in the pulp composition; (b) adding wax to the pulp slurry; or (c) coating the molded form.
An object of the invention is to provide a method and apparatus for providing a void space between a building structure and underlying soil to reduce damage to the building structure caused by soil upheaval.
A preferred embodiment includes a void form panel that exhibits multiple, repeating subunits. Each subunit is open at the bottom to allow soil to expand into a cavity formed by each subunit, as well as the gaps between subunits as they are collapsed. The void form panel is designed to have an appropriate strength that is sufficiently strong enough to support the initial working load of fresh (i.e. plastic) concrete poured above it, yet weak enough to collapse upon compression so as to prevent transmission of energy from soil upheaval into the building structure above. When partly compressed, the module loses its structural integrity and does not regain its mechanical strength upon drying.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter. It should be appreciated by those skilled in the art that the conception and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more thorough understanding of the present invention and advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Some soils are dynamic—expanding and contracting as they repeatedly absorb moisture and then dry out. The applicant has found that some prior art moisture-resistant void forms weaken as their moisture content increases but then strengthen again as the void forms dry out, even if the void forms have been partly compressed by soil upheaval. Void forms that have regained structural strength after drying may not compress adequately during subsequent soil upheaval and can transmit the damaging energy of the expanding soil into the building structure above.
This restrengthening is a problem with some prior art void forms, like those having cylindrical or conical structural elements, which, when dry, retain a similar strength (i.e. resistance to compression) throughout much of their range of compression (i.e. percent compressed). In other words, when these types of void forms are weakened by moisture and partially compressed, they can dry out again and regain strength that is close to their original uncompressed strength.
Prior art void forms composed of a degradable material, such as molded pulp, fiberboard, or corrugated paper, were typically constructed to be as strong and resistant to moisture as possible. With void forms designed to degrade through the absorption of moisture, those having a higher moisture resistance degrade more slowly. Void forms having high initial strengths and slow degradation rates will transmit destructive energy into the building structure if the ground begins to move before the void forms have sufficiently weakened.
The applicant has determined that any given void form should not simply be as strong as possible, but rather, it should have an appropriate strength—neither too strong nor too weak. It should be just strong enough to support the initial working load, as the concrete is placed, and just moisture-resistant enough to maintain structural integrity while the concrete sets. Such a void form t will collapse as intended if any upheaval load is added, thereby preventing the upheaval load from being transferred into the structure.
A preferred void form loses structural integrity after it is compressed beyond a certain point, yet does not regain strength, even if the soil recedes and the void form dries out. Such a void form type permits rapid degradation due to a low level of moisture resistance. This, combined with its loss of structural integrity and ensuing compression as additional loads are applied, allow these void form types to properly protect the structure as moisture levels change, a dynamic state that causes soils to expand and contract.
A preferred void form has sufficient moisture resistance to maintain just enough strength to support the static load of fresh (i.e. plastic) concrete until the concrete sets, but insufficient moisture resistance to maintain its structural strength afterwards. While prior art molded pulp void forms typically use a large percentage of water resistant additives such as wax to strengthen them, the formula of the slurry designed for the present void forms allows them to deteriorate much more quickly. It preferably contains a water-resistant additive such as alkyl ketene dimer (AKD) in quantities less than 10%, less than 5%, or less than 2%, with a preferred range of approximately 5% to 2%, depending upon the degree of water resistance required. Naturally, the lower amount of additive that is used, the faster the void form will absorb moisture and deteriorate in strength. By controlling the amount of additive used in the slurry, the void form can be engineered to maintain varying degrees of water resistance, providing greater options for various jobsite applications.
The strength and design profile of any specific void form will depend on the intended load, which is dictated primarily by the thickness of the concrete to be placed. Other considerations, such as the intended application (concrete slab or wall), jobsite conditions, potentially inclement weather, etc. may play a part in the design recommendations. For example, void forms that are designed to support three feet of concrete will obviously require much greater strength than those that are designed to support only eight inches. Furthermore, the void forms designed to support a three-foot-tall grade beam that is only twelve inches wide need not have nearly as much strength and water resistance as those that will support a very large concrete slab that is also three-foot thick. This is due to the extensive humidity that is generated under a large slab due to limited exhaust, especially towards the center of the slab. However, the stronger void form may require more time to absorb moisture and weaken, so careful consideration of multiple factors must be exercised when recommending the proper void form material for any given application.
In designing a void form for strength and water-resistance (or durability) in order to properly perform in a specific application, one must consider many factors. The void form must support not only fresh (i.e. plastic) concrete, but also a substrate covering, reinforcing steel, equipment for placing and finishing the concrete, and live loads imposed by crew members. This is known as the “working load”. Since the strength of the void form will begin to decrease as it absorbs moisture from the fresh concrete and surrounding soils, the void form must be designed with an initial dry strength sufficient to support the working load, as well as the appropriate durability to ensure that it can continue to support the concrete as it sets.
The following is a hypothetical, but typical, example of the preceding considerations: Concrete typically weighs approximately 150 pounds per cubic foot, so a layer of concrete that is eight inches thick would weigh approximately 100 pounds per square foot (psf). A void form designed to support an eight-inch-thick slab would preferably have a minimum initial strength of about 500 to 600 psf, which provides a sufficient margin of error to support not only the weight of the fresh (i.e. plastic) concrete, but also the weight of the substrate covering, the reinforcing steel, the equipment for placing and finishing the concrete, and live loads imposed by crew members (i.e. in total, the working load). As the concrete sets, the void form begins to weaken through the absorption of moisture. In a relatively short time, the void form will have rapidly degraded in strength, such that it will be compressed by soil upheaval, rather than maintaining sufficient strength that can transmit energy into the structure, thereby causing damage. In other embodiments, the initial compressive strength of the void form, as well as its durability or water-resistance, can be modified by adjusting the slurry pulp content and moisture-resistant additives contained therein to accommodate a range of working loads imposed by varying construction applications.
The void forms described herein can be manufactured and implemented at a relatively low cost.
Some of the void forms described herein are manufactured as monolithic panels of molded pulp. Each void form panel comprises an array of multiple, repeating cavity subunits. A void form panel may include any number of cavity subunits, although quantities of 8, 16, 20, or 32 subunits are the most common.
The profile design of the monolithic molded pulp void form panel limits the stress imposed upon it by distributing the working load of the concrete placement across a network of support elements. For example, a void form panel can be composed of multiple, repeating cavity subunits, each of which is designed to support a portion of the weight of concrete poured above the void form panel. The cavity subunits are connected by a web on only one face of the void form panel to form a structured network of equally spaced supporting elements. Void form panels can be installed with the webbed face either upward (against the substrate covering), or downward (against the soil), as is more commonly recommended. Void form panels can be inverted and stacked in layers to achieve a greater void space height (as shown in
A void form subunit having a cavity formed by opposing planar major walls running in a first direction, connected by a top closure and by shorter side walls at the ends, will tend to fold under compression such that the major walls fold in either a single fold or in multiple folds like an accordion. The walls and top closure can be, for example, sinusoidal, barrel shaped, triangular, or any other asymmetrical shape, that provides a folding path of least resistance in which the cavity subunit walls would tend to fold upon compression. The major walls and side walls forming the cavity are of different shapes to facilitate folding.
In other embodiments, the void form has curved sides that form a wave-shaped cross section across multiple, repeating cavity subunits. The wave-shaped cross section may be similar to a sinusoidal curve, although the cross section can vary. In some embodiments, each of the repeating cavity subunits comprises two sets of opposing planar sides, with each of the opposing planar sides within a set tilted towards the opposing side in the set. In some embodiments, an arcuate top closure connects the four planar sides to form a cavity subunit that is closed on top and has a downward-facing opening. In some embodiments, the top edges of two of the opposing sides are horizontal and linear, and the top edges of the other two opposing sides are curved, forming an arcuate top closure. In some embodiments, the transitions from one or both sets of sides to the top closure lack defined top edges, but rather are continuous arcs from each planar side of the cavity subunit to the top closure. In other embodiments, one or both sets of the opposing sides can be vertical. The top closure can be flat or comprised of multiple flat planes, rather than being arced.
A preferred void form is designed to lose its mechanical strength, after the compression amount surpasses its designed capacity for resistance to the compression imposed by the actual working load of concrete placement. Void forms that best exhibit this characteristic use a rotationally asymmetric design throughout its network of supporting elements. Prior art void forms with cylinder- or cone-shaped cavity subunits have circular symmetry in each and tend to resist compression as there is no weaker direction for collapse. Therefore, a void form that is intentionally designed without rotational symmetry can be configured to fold more readily under compression. The cavity subunit of a void form that folds when compressed will exhibit reduced resistance to compression and will not regain strength after drying.
Void forms shown in
A cross section taken along a plane parallel to the bottom of the void form panel would preferably have the shape of a rectangle. The dimensions of the rectangle will vary with the height above the bottom at which the cross section is taken. In various embodiments, the rotational asymmetry, the translational symmetry, and the rectangular horizontal cross section can facilitate the loss of mechanical strength after a sufficient compression of the void form.
Large void form panels that can still be carried and handled comfortably are much more efficient when covering large areas under concrete slabs than smaller ones. They are also more efficient to manufacture and transport. However, larger void forms may require more field-cutting and configuration to fill narrow or irregular areas, such as those under walls and grade beams.
The void forms described herein are manufactured as large, monolithic panels that can be divided on a construction site into smaller, stable segments of various widths as needed to fill narrow or irregular areas, such as those under walls and grade beams. As each void form panel is comprised of preferably multiple, repeating cavity subunits connected by a web in between them, the web can be severed between the cavity subunits into smaller void form segments that can include a variety of configurations, the only factor for stability being that the substrate covering must be able to span between two or more parallel cavity subunits without falling. In other words, the segment should be able to stand on its own “legs” when flipped over. In some embodiments, the web has an indentation, score, or perforations to facilitate cutting.
In some embodiments, a void form panel can be folded so that the cavity subunits face each other and have their cavities aligned, creating a void form having twice the height of an unfolded void form panel. Folding along the web between the cavity subunits ensures that the cavities align with each other on both halves of the folded structure. A flat or slightly curved web area provides sufficient space between multiple cavity subunits and facilitates the folding. For example, the web may be about ½″ wide, 1″ wide, 2″ wide, or 3″, with a preferred width of between approximately 1″ to 2″ wide, depending on the size of the void form panel and its particular cavity subunits.
Folding a single void form panel, as opposed to stacking two independent ones, provides the advantage that the cavity subunits on opposing sides will be aligned with each other. Some embodiments include an indentation, score, or perforations on the web between cavity subunits to facilitate bending and folding the void form panel back onto itself. Allowing it to be folded onto itself to double its height reduces the number of void form sizes that need to be purchased or maintained in inventory and allows changing the void form height in the field as may be required. It also eliminates the need for a separate layer of substrate material to be placed between layers of void forms when stacking them to achieve greater heights.
A single preferred void form panel preferably covers an area of greater than about 5 ft2, greater than about 10 ft2, greater than about 12 ft2, and preferably greater than or equal to about 15 ft2. One embodiment of a void form panel covers a rectangular area of approximately 45″×48″, or about 15 ft2. Prior art molded pulp void forms, such as those described in U.S. Pat. No. 9,771,728 are typically designed to be approximately 2-foot square, covering an area of about 4 ft2.
In some embodiments, with any wax layer having first been removed, corrugated paper is added to the slurry used to form the molded pulp void form. The slurry preferably contains a water-resistant additive in quantities less than 10%, less than 5%, or less than 2%, with a preferred range of approximately 5% to 2%, depending upon the degree of water resistance required.
The molded pulp structure is typically formed using a Type 1 molded pulp process, which can produce walls that typically have a thickness between 3/16″ and 5/16″, preferably being as close to ¼″ thick as possible. Void forms can vary in height with the most typical being 6″, 8″, and 10″ high. The horizontal, external dimensions of void form panels can be, for example, up to approximately 45″×48″. They can be fabricated with indentations, scores, or perforations in the web that connects their respective cavity subunits This facilitates breaking or cutting them into smaller sections to accommodate forming void spaces in narrow or irregular areas, such as those under walls and grade beams.
While some prior art void forms include a small hole in each of the cavity subunit surfaces that contact the ground, the applicant has found that such holes are an unnecessary complication, and the void form embodiments described herein form a continuous barrier without holes in any of their surfaces.
The void form panel 103 can be formed using a molded pulp process, typically a Type 1 molded pulp process. The Type 1 molded pulp process produces desirable properties in the void form, including sufficient strength to support fresh (i.e. plastic) concrete until it sets, while eventually degrading in strength through the absorption of moisture thereafter. The Type 1 molded pulp process typically provides a product with one smooth side and one rough side. In some embodiments, the rough side of the void form panel 103 has subunits with open cavities typically oriented downward (against the soil) when in use, although either side of void form panel 103 can be oriented downward when in use. Regardless of orientation, a substrate covering must be placed over the void forms to span the supporting cavity subunits and carry the reinforcing steel, fresh concrete, crewmembers, and equipment during concrete placement.
In the embodiment shown in
First major wall 106 lies substantially in a plane 206. Second major wall 108 lies substantially in a plane 208. First major wall 106 and second major wall 108 can depart from their respective planes to form a rounded top closure 112 and/or to form a radius where the major walls 106 and 108 are attached to a connecting web 120, which holds the multiple, repeating cavity subunits 104 together to form void form panel 103. While web 120 is referred to as a separate element, web 120 can be formed by the bottom of walls 106, 108, 100A, and 110B.
For clarity, only a representative few of the repeating cavity subunits 104 and their components are labeled in
The shape of cavity subunit 104 exhibits translational symmetry. That is, the cross section shown in
The angles 210 of the planes 206 and 208, as well as those coincident with side walls 110A and 110B, respectively, will vary with the height of the void form. Void forms are typically between 4″ and 12″ high, although heights outside this range are possible. The height of the void form will depend on the swell potential (PVR) of the soil over which they are placed.
In one embodiment, the angle 210 between each major wall and a vertical plane is about 15 degrees. The radius of the arcuate top closure 112 is about ¼ inch. The bottom of the triangular face of side wall 110, rather than coming straight down to form part of web 120 has a radius of about ½ inch. In a preferred embodiment, each of the multiple, repeating cavity subunits is approximately 11 inches long by about 6 inches wide. The top closure 112 typically represents about one eighth or less of the height of the void form panel 103.
Again, with respect to a preferred embodiment, a projection of the top closure 112 onto a horizontal plane measures approximately 2½ inches by 7 inches, and each of the multiple, repeating cavity subunits 104 extends about six inches from the bottom horizontal plane. The angle 210 is about 15 degrees, that is, each of the major walls 106 and 108 are sloped about 15 degrees from the vertical. Side walls 110A and 110B may or may not be sloped at similar angles as the major walls 106 and 108.
The angles of the walls will be different for void forms of different heights to ensure that the void form will lose its strength once compression exceeds its designed resistance to uplift pressures.
A base or web 520 connects the multiple, repeating cavity subunits 505 to form a complete void form panel 503. Web 520 extends between the multiple, repeating cavity subunits 503 and also extends around the edge of void form panel 503. When multiple void form panels 503 are juxtaposed, to form a larger void form structure (not shown), the edges of the webs from adjacent void form panels 503 can, but need not, overlap. Web 520 is sufficiently wide to facilitate cutting void form panel 503 into smaller void form segments.
In a six-inch void form having a wavelike design like that shown in
The shape of cavity subunit 505 exhibits translational symmetry. That is, any cross section of cavity subunit 505 taken between side walls 510 and 511 along a plane perpendicular to the plane of the web and parallel to line 524 will be essentially the same. The translational symmetry provides a preferred failure mode. As the cavity subunit 505 is compressed beyond its designed resistance to uplift pressures, major walls 506 and 508 will collapse on themselves, folding either in a single fold or in multiple folds like an accordion. A cross section of the interior of a cavity subunit 505 taken in a plane parallel to the web will be a rectangle. The size of the rectangle will get smaller as the cross-section plane moves from the web toward the top of the top closure 112.
While the embodiments described above include multiple novel and unobvious features, not all embodiments provide all of the features or all of the benefits. For example, a void form that is designed to collapse upon substantial compression can be produced with significantly higher water resistance, whereas a void form having limited water resistance will absorb moisture more readily; it will weaken more quickly and then collapse under lighter compressive loads.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
885158 | Kahn | Apr 1908 | A |
949668 | Swinscoe | Feb 1910 | A |
1053256 | Weakley | Feb 1913 | A |
1147000 | Burk | Jul 1915 | A |
1621664 | Gersman | Mar 1927 | A |
1677073 | Cohen | Jul 1928 | A |
1701238 | Kennedy | Feb 1929 | A |
1977260 | Birdsey | Oct 1934 | A |
2018085 | Otte | Oct 1935 | A |
D160877 | Moorman | Nov 1950 | S |
2732707 | Ries | Jan 1956 | A |
2734250 | Thompson | Feb 1956 | A |
2934934 | Berliner | May 1960 | A |
2939602 | Grant | Jun 1960 | A |
3185370 | Reifers | May 1965 | A |
3376629 | Baumann et al. | Apr 1968 | A |
3527004 | Sorensen | Sep 1970 | A |
3543458 | Guritz | Dec 1970 | A |
3592437 | Dashew | Jul 1971 | A |
3632078 | Dashew | Jan 1972 | A |
3863414 | Dunn, Jr. | Feb 1975 | A |
3908323 | Stout | Sep 1975 | A |
3931952 | Dashew | Jan 1976 | A |
4289818 | Casamayor | Sep 1981 | A |
4418463 | McNeill | Dec 1983 | A |
4487000 | Ball | Dec 1984 | A |
4611450 | Chen | Sep 1986 | A |
4615166 | Head | Oct 1986 | A |
4653959 | Richard | Mar 1987 | A |
5044821 | Johnsen | Sep 1991 | A |
5056281 | McCarthy | Oct 1991 | A |
5230943 | Pregont | Jul 1993 | A |
5306100 | Higginbotham | Apr 1994 | A |
5352064 | Carruthers | Oct 1994 | A |
5397096 | Nelson | Mar 1995 | A |
5421968 | Bennett et al. | Jun 1995 | A |
5527590 | Priluck | Jun 1996 | A |
D375574 | Pickett | Nov 1996 | S |
5782049 | Gates et al. | Jul 1998 | A |
5799455 | Gates et al. | Sep 1998 | A |
5915884 | Gates et al. | Jun 1999 | A |
5962150 | Priluck | Oct 1999 | A |
6003283 | Hull | Dec 1999 | A |
6116568 | Rosenblat | Sep 2000 | A |
6289638 | Vasseur | Sep 2001 | B1 |
6794017 | Comeau et al. | Sep 2004 | B2 |
7131239 | Williams | Nov 2006 | B2 |
7353641 | Yoshii | Apr 2008 | B2 |
7424967 | Ervin et al. | Sep 2008 | B2 |
7458186 | Carter | Dec 2008 | B2 |
7543419 | Rue | Jun 2009 | B2 |
D618366 | Allmann | Jun 2010 | S |
7771814 | Grimble | Aug 2010 | B2 |
D623773 | Ryan | Sep 2010 | S |
8245469 | Rubel et al. | Aug 2012 | B2 |
8353640 | Sawyer | Jan 2013 | B2 |
8646239 | Rulon | Feb 2014 | B2 |
8793877 | Kim et al. | Aug 2014 | B2 |
9038342 | Hassan | May 2015 | B2 |
9212485 | Wolynski et al. | Dec 2015 | B2 |
9273476 | Hoyle | Mar 2016 | B2 |
9732478 | Kriech et al. | Aug 2017 | B2 |
9739018 | Kriech et al. | Aug 2017 | B2 |
9771728 | Gilpin | Sep 2017 | B2 |
9797147 | Turner | Oct 2017 | B2 |
9803329 | El-Sheikhy et al. | Oct 2017 | B1 |
10000938 | Gilpin et al. | Jun 2018 | B2 |
10060080 | Kriech et al. | Aug 2018 | B2 |
10066404 | Parodi | Sep 2018 | B2 |
10184253 | Ryan | Jan 2019 | B1 |
10239228 | Hertz | Mar 2019 | B2 |
10267012 | Turner | Apr 2019 | B2 |
10364535 | Kriech et al. | Jul 2019 | B2 |
10428467 | Chung | Oct 2019 | B2 |
D883805 | Abdelnour | May 2020 | S |
11293179 | Heath | Apr 2022 | B2 |
11851880 | Rajkovic | Dec 2023 | B2 |
20030161685 | Vasseur | Aug 2003 | A1 |
20050011152 | O'Grady | Jan 2005 | A1 |
20050055926 | Ben-Lulu | Mar 2005 | A1 |
20070051069 | Grimes | Mar 2007 | A1 |
20070214740 | O'Grady | Sep 2007 | A1 |
20090242731 | Dinkins | Oct 2009 | A1 |
20100084540 | Talley | Apr 2010 | A1 |
20110120036 | Wignall | May 2011 | A1 |
20110120995 | Landry | May 2011 | A1 |
20110305526 | Turner et al. | Dec 2011 | A1 |
20120297701 | Oakley | Nov 2012 | A1 |
20130313740 | Gilpin | Nov 2013 | A1 |
20140300026 | Taccolini | Oct 2014 | A1 |
20140311077 | Firouz | Oct 2014 | A1 |
20150027071 | Studebaker | Jan 2015 | A1 |
20160115698 | Parodi | Apr 2016 | A1 |
20160262843 | Sellers | Sep 2016 | A1 |
20170241100 | Turner | Aug 2017 | A1 |
20170275903 | Gilpin | Sep 2017 | A1 |
20180030658 | Chung | Feb 2018 | A1 |
20180112389 | Lake | Apr 2018 | A1 |
20200354918 | Cook | Nov 2020 | A1 |
20210317670 | Gates | Oct 2021 | A1 |
20220145647 | Armstrong | May 2022 | A1 |
Number | Date | Country |
---|---|---|
102017018536 | Mar 2019 | BR |
2030080 | May 1992 | CA |
2041324 | Oct 1992 | CA |
1314681 | Mar 1993 | CA |
2282109 | Mar 2001 | CA |
2373217 | Aug 2003 | CA |
2502047 | Sep 2005 | CA |
2282109 | Dec 2005 | CA |
2232091 | May 2006 | CA |
2236443 | Sep 2006 | CA |
2231346 | Oct 2006 | CA |
2231707 | Jan 2007 | CA |
2607539 | May 2008 | CA |
2431614 | Dec 2010 | CA |
2662214 | Mar 2012 | CA |
2607539 | Dec 2013 | CA |
2916214 | Dec 2013 | CA |
2742434 | Jan 2014 | CA |
2923039 | Sep 2016 | CA |
3029299 | Mar 2019 | CA |
3023745 | May 2019 | CA |
202023295 | Nov 2011 | CN |
113323381 | Aug 2021 | CN |
1570967 | Sep 2005 | EP |
2530595 | Mar 2015 | ES |
2002-097742 | Apr 2002 | JP |
WO-2005061804 | Jul 2005 | WO |
WO-2009067723 | May 2009 | WO |
WO-2013192141 | Dec 2013 | WO |
WO-2014196878 | Dec 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20210317670 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63010027 | Apr 2020 | US |