1. The Field of the Invention
invention generally relates to modular wall systems. More specifically, the present invention relates to apparatus, systems, and methods for nesting windows, other panels, passthroughs, or other objects into module wall panels.
2. Background and Relevant Art
Office space can be relatively expensive be due to the basic costs of the location
and size of the office space. In addition to these costs, an organization may incur further expense configuring the office space in a desirable layout. An organization might purchase or rent a large open space in a building, and then subdivide or partition the open space into various offices, conference rooms, or cubicles. Rather than having to find new office space and move as an organization's needs change, it is often desirable to reconfigure the existing office space. Many organizations address their configuration and reconfiguration issues by dividing large, open office spaces into individual work areas using modular wall segments (or wall modules) and partitions.
In particular, at least one advantage of modular wall systems is that they are relatively easy to configure. In addition, modular wall systems can be less expensive to set up and can allow for reconfiguration more easily than more permanently constructed office dividers. For example, an organization can construct a set of offices and a conference area within a larger space in a relatively short period of time with the use of modular wall systems. If office space needs change, the organization can readily reconfigure the space.
In general, modular office partitions typically include a series of individual wall modules (and/or panels). The individual wall modules are typically free-standing or rigidly attached to one or more support structures. In particular, a manufacturer or assembler can usually align and join the various wall modules together to form an office, a room, a hallway, or otherwise divide an open space.
While conventional modular wall systems can provide various advantages, such as those described above, conventional modular wall systems are limited in design choices. For example, many conventional modular wall systems do not allow for inclusion of windows or other objects within a panel. Other conventional modular wall systems may allow for windows or other objects within a panel, typically do not provide much functional or aesthetic variability without complicated or time consuming installation procedures.
Accordingly, there are a number of disadvantages with conventional solid wall systems that can be addressed.
Implementations of the present invention solve one or more of the foregoing or other problems in the art with systems, methods, and apparatus for nesting windows, other panels, passthroughs, or other objects into module wall panels to form nested wall modules. For instance, the nested wall modules can include one or more center-mounted panels nested within face-mounted panels. In such systems, the center-mounted panel can form a window within the face-mounted panels. In additional implementations, the nested wall modules can include face-mounted panels nested within a center-mounted panel. Still further implementations, can include passthroughs, openings, shadow boxes, or other objects nested within a modular wall panel. Furthermore, these systems and components enable quick and efficient assembly, disassembly, and reconfiguration of nested wall modules with great ease. Accordingly, implementations of the present invention can be easily adapted to the environment of use and provide a number of secure mounting options.
For example, an implementation of a nested wall module includes at least two upright supports configured to couple the nested wall module to another wall module. The nested wall module further includes a center-mounted panel and a pair of face-mounted panels secured between the at least two upright supports. Additionally, the center-mounted panel is nested within the pair of face-mounted panels. Alternatively, the pair of face-mounted panels are nested within the center-mounted panel.
Additionally, one implementation of a modular wall system includes a plurality of wall modules coupled together to form a divider or wall. One or more wall modules of the plurality of wall modules comprise a nested wall module. The nested wall module includes a pair of face-mounted panels coupled to a support frame, a hole extending through the pair of face-mounted panels, and a center-mounted panel secured within the hole of the pair of face-mounted panels. Alternatively, the nested wall modules include a center-mounted panel coupled to a support frame, and a hole extending through the center-mounted panel, and a pair of face-mounted panels secured within the hole of the center-mounted panel. Still further, the nested wall modules includes a pair of face-mounted panels coupled to a support frame, and a passthrough nested within the pair of face-mounted panels
In addition to the foregoing, a nesting frame assembly for coupling one or more face-mounted panel and center-mounted panels within a nested wall module comprises a plurality of nesting brackets. The nesting frame assembly also includes one or more corner cinch assemblies sized and configured to couple two or more nesting brackets of the plurality of nesting brackets together. Each bracket of the plurality of nesting brackets comprises a panel channel sized and configured to hold an edge of a center-mounted panel therein; one or more cinch channels sized and configured to a corner cinch assemblies; and one or more engagement protrusions configured to couple one or more connectors.
Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. For better understanding, the like elements have been designated by like reference numbers throughout the various accompanying Figures. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Implementations of the present invention provide systems, methods, and apparatus for nesting windows, other panels, passthroughs, or other objects into module wall panels to form nested wall modules. For instance, the nested wall modules can include one or more center-mounted panels nested within face-mounted panels. In such systems, the center-mounted panel can form a window within the face-mounted panels. In additional implementations, the nested wall modules can include face-mounted panels nested within a center-mounted panel. Still further implementations, can include passthroughs, openings, shadow boxes, or other objects nested within a modular wall panel. Furthermore, these systems and components enable quick and efficient assembly, disassembly, and reconfiguration of nested wall modules with great ease. Accordingly, implementations of the present invention can be easily adapted to the environment of use and provide a number of secure mounting options.
In one or more implementations, the nested wall module also can have a plurality of face-mounted and center-mounted panels nested one within the other in an alternating fashion. In particular, the nested wall module can have a pair of face-mounted panels that has center-mounted panel nested therein, and the center-mounted panel in turn can have a second pair of face-mounted panels nested therein. Furthermore, the nested wall module can incorporate multiple and alternating face-mounted and center-mounted panels nested one within the other.
In particular, in one or more implementations, a panel of a modular wall system includes one or more openings for encasing an inner tile, such as glass or another transparent or translucent material, to form one or more windows in the panel. The openings in the panel can include window extrusions (i.e., nesting brackets) for securing the glass or other material within the panel. Panels according to one or more implementations are modular and enable an existing solid wall system to be modified to include panels with windows.
In still further implementations, the nested wall module can nest a shadow box, an inset or outset aesthetic detail, a passthrough (i.e., a hole through the modular wall), or a functional component (e.g., a shelf, a desktop). Indeed, one will appreciate in light of the disclosure herein that the hardware, systems, and methods can allow an installer to seamlessly nest a wide variety of objects within a modular wall. In particular, implementations of the present invention can allow an installer to nest such objects within a modular wall without have to add external framework or other aesthetically unpleasing hardware.
Throughout this specification, reference is made to panels of a modular wall system. A panel can comprise an individual section of the modular wall system which a manufacturer can attach and remove independently of other sections of the modular wall system. For example, an existing installed solid wall system that does not include a nested object (such as a window) may be retrofitted with a panel that includes a nested object (such as a window) according to one or more implementations of the present invention by replacing an existing panel in the installed wall without requiring the disassembly of the wall system. The invention, however, is not limited to retrofitting existing walls, but also extends to solid wall installations that include panels with nested objects at the time of initial installation.
As described above, various wall modules, including nested wall modules, can form a modular wall system which can define an individual space, a partition, and/or a barrier. For example, as illustrated in
In one or more implementations, the center-mounted panels 140a-d and/or the face-mounted panels 130a-e can comprise transparent and/or translucent material, such as thermoplastic resin and/or glass. Accordingly, the center-mounted panels 140a-d can allow one to see through the nested wall modules 120a-d or center-mounted wall modules 110b. In other words, in one or more implementations, the center-mounted panels or tiles 140a-d can comprise windows. Additionally, an installer or designer can adjust window area. For instance, the designer can determine the window area based on the shape and size of the transparent or translucent portions of the center-mounted panels 140a-d. The designer also can define the window area by adjusting the transparent and/or translucent properties of the transparent and/or translucent material (e.g., by etching a portion of a transparent center-mounted panel 140a-d).
Thus, the designer can form the modular wall system 100 to provide a desired level of privacy to the users. In particular, the designer can choose and/or arrange the center-mounted and face-mounted wall modules 110a, b and the nested wall modules 120a-d in the modular wall system 100, which can determine the window areas. Similarly, the designer can choose and/or arrange the face-mounted panels 130 and the center-mounted panels 140a-d in the nested wall modules 120a-d to define window areas.
It should be noted, however, that the nested wall modules 120a-d can incorporate one or more nested face-mounted panels 130a-e and center-mounted panels 140a-d for other decorative, aesthetic, and functional purposes. For instance, the center-mounted panels 140a-d and/or face-mounted panels 130a-e may comprise opaque material thereby preventing visibility through the nested wall modules 120a-d entirely. Alternatively, the center-mounted panels 140a-d and face-mounted panels 130a-e can comprise transparent and/or translucent material, which may allow the user to see through portions of the modular wall system 100.
One will appreciate in light of the disclosure that the nested wall modules 120a-dcan have almost limitless configurations. For example, the nested wall module 120a includes a pair of face-mounted panels 130a nested within a center-mounted panel 140a. As shown, the center-mounted panel 140a can surround and support the pair of face-mounted panels 130a nested therein. In one or more implementations, the center-mounted panel 140a completely surrounds and supports the pair of face-mounted panels 130a nested therein. As explained below, the center-mounted panel 140a can comprise a hole within which the pair of face-mounted panels 130a are mounted.
One will appreciate that the pair of face-mounted panels 130a can comprise any number of different aesthetic or functional purposes. For example, in one or more implementations the nested pair of face-mounted panels 130a can comprise an outset aesthetic detail. For example, the nested pair of face-mounted panels 130a can comprise a painting, sign (e.g., office name plate, bathroom sign, or other sign). In other implementations, the nested pair of face-mounted panels 130a can comprise a fold down shelf or other functional feature.
In contrast to nested wall module 120a, nested wall module 120b includes a center-mounted panel 140b nested within a pair of face-mounted panels 130b. As shown, the pair of face-mounted panels 130b can surround and support the center-mounted panel 140b nested therein. In one or more implementations, the pair of face-mounted panels 130b completely surrounds and supports the center-mounted panel 140b nested therein. As explained below, the pair of face-mounted panels 130b can comprise a hole within which the center-mounted panel 140b is mounted.
One will appreciate that the center-mounted panel 140b can comprise any number of different aesthetic or functional purposes. For example, in one or more implementations the nested center-mounted panel 140b can comprise an inset aesthetic detail. For example, the nested center-mounted panel 140b can comprise a painting, sign (e.g., office name plate, bathroom sign, or other sign). Alternatively, the nested center-mounted panel 140b can comprise a stain glass window or other aesthetic detail. In other implementations, the nested center-mounted panel 140b can comprise a fold down shelf or other functional feature.
In addition to the foregoing, the nested wall modules can include more than one layer of nesting. For example, nested wall module 120c includes a pair of face-mounted panels 130e nested within a center-mounted panel 140c, which in turn is nested within another pair of face-mounted panels 130c. As shown, the pair of face-mounted panels 130c can surround and support the center-mounted panel 140c, which in turn can surround and support the pair of face-mounted panels 130e. In yet further implementations, the nested wall modules can include a center-mounted panel nested within a pair of face-mounted panels, which in turn are nested within another center-mounted panel. In still further implementations, the nested wall modules can include three, four, five, or more layers of nesting.
In addition to multiple layers of nesting, one or more implementations of the present invention can also include multiple panels nested within a single panel. For example, the nested wall module 120d includes a plurality of center-mounted panels 140d nested within a single pair of face-mounted panels 130d. Thus, one will appreciate that implementations of the present invention can provide nested wall modules with great aesthetic and functional versatility.
Additionally, as shown by
The wall modules 110a-b, 120a-d can further include a support frame. The support frame can provide structural support to the face-mounted panels 130a-e and/or to the center-mounted panels 140a-d. In particular, the support frame can support the outer-most panels or tiles of the wall module 110a-b, 120a-d. The support frame of each wall module 110a-b, 120a-d can comprise a pair of upright supports 150, and one or more cross members extending therebetween. The distance between the upright supports 150 and can define, at least in part, a width of the wall modules 110a-b, 120a d.
As shown by
For example,
One will appreciate that the center-mounted panel of wall modules in which a center-mounted panel 140 is the outermost panel (such as wall modules 110b and 120a), can include a support frame similar to that shown in
Referring now to
As shown by
The ability to clip the panel 131a, 131b to a support frame of a wall module 110a can allow a user to selectively remove, move, or reconfigure the position a panel within a given modular wall system. In alternative implementations, the panels 131a, 131b may not include clips 135. In such implementations, a user can fasten the panels 131a, 131b directly to the cross-members 160c, 160d via screws or other fasteners. One will appreciate that such implementations can allow a user to retro fit a given wall module with a nested wall module.
One will appreciate that the face-mounted panels of wall modules in which a pair of face-mounted panels 130 is the outermost panel (such as wall modules 110a and 120b-d), can include a support frame similar to that shown in
As shown by
Referring now to
A nesting frame assembly 180 can couple the center-mounted panel 140a within the hole 190 and to the face-mounted panels 131c, 131d. In particular, the each of the face-mounted panels 131c, 131d can attach to the nesting frame assembly 180. The center-mounted panel 140a can in turn couple to the nesting frame assembly 180, such that the center-mounted panel 140a is entirely supported by the face-mounted panels 131c, 131d via the nesting frame assembly 180.
More specifically, referring to
The nesting brackets 240a-d can then couple the first and the second face-mounted panels 131c, 131d and the center-mounted panel 140a together. In particular, each nesting bracket 240a-d can include a panel channel 220 sized and configured to hold an edge of the center-mounted panel 140a. In one or more implementations, the panel channel 220 can also accommodate a glass wipe 230, which can protect and secure the center-mounted panel 140 within the panel channel 220.
The nesting brackets 240a-d can further include one or more engagement protrusions 270, similar to the engagement protrusions 137 described above. One or more connectors 200 secured to the face-mounted panels 130 can in turn attach to the engagement protrusions 270 to couple the face-mounted panels 130 to the nesting brackets 240a-d. The connectors 200 can couple the face-mounted panels 130 to the nesting frame assembly 180 (e.g., the connectors 200 can snap into or about an engagement protrusions 137.
In at least one implementation, the nesting brackets 240a-d can have mitered ends 261, which can form a desired angle between the nesting brackets 240a-d when the corner cinch assembly 250 couples one nesting bracket 240a-d to another nesting bracket 240a-d. For instance, the nesting brackets 240a and 240b can have 45° mitered ends 261. Accordingly, when the corner cinch assembly 250 couples the nesting bracket 240a to the nesting bracket 240b, the coupled nesting brackets 240a, 240b form a 90° angle therebetween.
The nesting brackets 240a-d also can have mitered ends 261 that can result in non-transversely aligned coupled nesting brackets 240a-d. For instance, the nesting brackets 240a and 240b can have mitered ends 261 that have 35° angles. Accordingly, when the corner cinch assembly 250 couples the nesting brackets 240a and 240b the coupled nesting brackets 240a, 240b can form a 70° angle therebetween. Hence, the manufacturer or assembler can couple the nesting brackets 240a-d one to another at substantially any desired angle, for example, by choosing a desired angle for the mitered ends 261 of the nesting brackets 240a-d.
Furthermore, as described above, the nesting frame assembly 180 can include multiple nesting brackets 240a-d. For instance, the nesting frame assembly 180 can include four nesting brackets 240a, 240b, 240c, 240d as shown in
Thus, the nesting frame assembly 180 can have various shapes, which may include nonlinear segments. For example, one or more nesting brackets may have nonlinear configuration (e.g., arcuate, bent, irregular shaped, etc). Accordingly, the nesting frame assembly 180 can have a circular, elliptical, irregular, as well as any other desired shape. Similarly, the nested face-mounted panels 130 and/or center-mounted panels 140a also can have substantially any desired shape, which may correspond with the shape of the nesting frame assembly 180.
Referring now to
The undercut 320 can comprise a generally u-shaped channel. The undercut 320 can extend away from a front surface or face 380 of the nesting bracket 240. In one or more implementations, the panel channel 220 is in the middle of the nesting bracket 240 between opposing ends 381a, 381b as shown by
Furthermore, while the FIGS. illustrate that the nesting brackets 240 have a single panel channel 220, the present invention is not so limited. In alternative implementation, the nesting bracket 240 can include two, three, or more panel channels 220, and thus, hold more than one the center-mounted panel 140a. For example, in one or more implementations the nesting bracket 240 includes two panel channels 200, which each hold a center-mounted panel 140a. A gap between the center-mounted panels 140a can act as insulation or a sound barrier.
In one or more implementations, the panel channel 220 can have a width 330, which can accommodate the center-mounted panels 140a and/or the glass wipe 230. For example, the panel channel 220 can have the width 330 the same as an outer width of the glass wipe 230. Accordingly, the panel channel 220 can secure the glass wipe 230 and the center-mounted panel 140a to the nesting bracket 240. Alternatively, the panel channel 220 can have the width 330 that may be larger or smaller than the width of the glass wipe 230. For instance, the panel channel 220 can have the width 330 that is slightly smaller than the width of the glass wipe 230. Thus, the glass wipe 230 and/or the center-mounted panel 140a can have an interference fit within the panel channel 220. For example, when the panel channel 220 has a width 330 that is slightly smaller than the width of the glass wipe 230, the glass wipe 320 can apply pressure and squeeze about the center-mounted panel 140a to hold the center-mounted panel 140a within the panel channel 220.
The panel channel 220 also can have a depth 340, which can accommodate the glass wipe 230 and a portion of the center-mounted panel 140a therein. In one or more implementations the depth 340 of the panel channel can be between about ⅛ an inch and about 1 inch. In alternative implementations, the depth 340 of the panel channel 220 can be greater or smaller.
The glass wipe 230 can comprise an elastomeric material, such as natural or synthetic rubber or another resilient material. Accordingly, the glass wipe 230 can provide shock absorption to the center-mounted panel 140a, which may reduce accidental breakage of the center-mounted panel 140a in response to impact. The glass wipe 230 also can deform about the center-mounted panel 140a, which may improve coupling of the center-mounted panel 140a to the nesting bracket 240.
Additionally or alternatively, the glass wipe 230 can form a seal between the center-mounted panel 140a and the nesting frame assembly 180, which may provide improved sound dampening as well as thermal insulation properties of the wall modules. Such improved sound dampening properties for the nested wall modules 120 may result in reduced amount of noise that may be heard by occupants of the individual space created by the modular wall system 100. Similarly, improved thermal insulation of the nested center-mounted panel 140a can allow the occupants of one or more individual spaces defined by the modular wall system 100 to better control temperature within such individual spaces.
As mentioned previously, the nesting brackets 240 also can incorporate one or more engagement protrusions 270. In particular, as illustrated by
As shown by
In one or more implementations, the engagement protrusion 270 can comprise a barb or an arrow-shaped head. The panels 131c, 131d can in turn include clips or connectors 200a, 200b including one or more flexible arms 400, 400a, 400b that clip or snap about the head of engagement protrusion 270 to secure the panels 131c, 131d to the nesting bracket 240. In particular, the flexible arms or prongs 400, 400a, 400b of the connectors 200a, 200b can surround at least a portion of the head of the engagement protrusion 270.
The ability to clip the panels 131b, 131c to the nesting bracket 240 can allow a user to selectively remove, move, or reconfigure the position a panel within a given modular wall system. In alternative implementations, the panels 131c, 131d may not include connectors 200a, 200b. In such implementations, a user can fasten the panels 131c, 131d directly to the nesting bracket 240 via screws or other fasteners. One will appreciate that such implementations can allow a user to retro fit a given wall module with a nested wall module.
As shown by
Mechanical or other fasteners can couple the connectors 200a, 200b to the face-mounted panels 131c, 131d (e.g., screws, bolts, glue, Velcro, welding, such as ultrasonic welding, etc.). Alternatively, a dowel can extend from the back surface of the connector 200a, 200b into a corresponding hole within the face-mounted panels 131c, 131d. Such dowels can provide location and orientation for the connectors 200a, 200b on the face-mounted panels 131c, 131d and vice versa. Therefore, by locating the connectors 200a, 200b at predetermined locations on the face-mounted panels 131c, 131d, the assembler can ensure that the connectors 200a, 200b properly align with engagement protrusions or barbs 270 of the nesting bracket 240.
The nesting bracket 240 also can include one or more standoffs 370. The standoffs 370 can protrude outward from the face 380 of the nesting brackets 240. In one or more implementations, the standoffs 370 can locate the nesting brackets 240, and consequently the nesting frame assembly 180, with respect to the connectors 200a, 200b. Additionally or alternatively, the standoffs 370 can rest on at least a portion of the connectors 200a, 200b, thereby providing additional support to the nesting brackets 240. For example, by supporting the nesting brackets 240 oriented horizontally.
Additionally, he nesting brackets 240 can include one or more cinch channels 260 (e.g., such as cinch channels 260a, 260b shown in
In particular, the cinch channel 260a, 260b can have a T-slot shape, such that the installer can secure the corner cinch assemblies 250 within the cinch channel 260a, 260b. Additionally or alternatively, the installer can couple one nesting bracket 240 to another nesting bracket 240 using fasteners, straps, and/or other mechanical connections. Moreover, the installer also can weld the nesting brackets 240 together, thereby forming a desired coupling therebetween.
In addition to nesting a center-mounted panel within face-mounted panels, the nesting frame assembly 180 can also nest face-mounted panels within a center-mounted panel. For example, For instance,
The nesting frame assembly 180 can couple the face-mounted panels 131e, 131fwithin the hole of the center-mounted panel 140b. In particular, the each of the face-mounted panels 131e, 131f can attach to the nesting frame assembly 180. The center-mounted panel 140b can in turn couple to the nesting frame assembly 180, such that the face-mounted panels 131e, 131f are entirely supported by the center-mounted panel 140e via the nesting frame assembly 180.
In at least one implementation, nesting brackets 240a-d of the nesting frame assembly 180 can couple the center-mounted panel 140b to the face-mounted panels 131e, 131f. In particular, panel channels 220 in the nesting brackets 240a-d can hold and secure the center-mounted panel 140b in a similar manner as described above. Also, connectors 200 secured to the face-mounted panels 131e, 131f can couple to engagement protrusions or barbs 270 on the nesting brackets 240a-d in a similar manner as described above. Thus, the assembler can use one or more of the same elements for nesting the face-mounted panels 131e, 131f within a center-mounted panel 140b as for the configuration described above (i.e., nesting a center-mounted panel 140a within face-mounted panels 130a).
In particular, the irrespective of whether the face-mounted panels nest within a center-mounted panel or the center-mounted panel nests within the face-mounted panels, the assembler can use the same nesting frame assembly 180 (nesting brackets 240 etc.). Accordingly, the manufacturer may reduce production cost associated with making the nesting frame assembly 180 for various nesting configurations. In particular, the manufacturer need only flip the nesting brackets 240 to change the configuration.
Accordingly, as shown by
In one or more implementations, as described above, the assembler can use the same corner cinch assembly 250 for various nesting combinations of the face-mounted panels and center-mounted panels. For example,
An assembler can attach the cinch couplings or castings 310a, 310b, 310c, 310d to the cinch plates 300a, 300b, 290 via a plurality of fasteners, such as screws 313. For example, an assembler can attach a cinch casting 310a to and end of inline cinch plate 300a. In particular, the cinch couplings 310a, 310b, 310c, 310d can each comprise a plurality of mounting holes for receiving the screws 313. The assembler can also attach cinch casting 310b to the corner cinch plate 290.
The assembler can then use connecting hardware, such as cinch screw 311, to cinch together the cinch plates 310b, 290 to pull the nesting brackets 240 (to which the inline and/or corner cinch plates are attached via the additional holes in the plates) into the proper position. In particular, the manufacturer can thread the cinch screw 311 through a mounting shaft in the particular cinch casting 310a and into a mounting shaft of the adjacent cinch casting 310b. The mounting shafts of the cinch couplings or castings 310a, 310b, 310c, 310d can be oriented at approximately 90 degrees relative to the mounting holes for receiving the screws 313.
Thus, coupling the cinch couplings 310a and 310b, for example, can force the cinch plate cinch plate 300a and the corner cinch plate 290 closer together. Similarly, coupling the cinch couplings 310c and 310d can force the cinch plate 300b and the corner cinch plate 290 closer together. Hence, the corner cinch assemblies 250 can force the mitered ends 270 of the nesting brackets 240 closer together, by tightening the cinch screw 311 that couple the cinch couplings 310a, 310b, 310c, 310d together.
Moreover, the assembler can couple the cinch couplings cinch couplings 310 to an inside portion of the corner cinch plate 290 (
As described above, however, the assembler can use other mechanical couplers to connect, couple, and secure the nesting brackets 240 together, thereby forming the nesting frame assembly 180. For example, the nesting brackets 240 can incorporate screw channels that can receive threaded fasteners (e.g., self-tapping screws). Thus, the assembler can screw the nesting brackets 240 one to another, thereby coupling the nesting brackets 240 to form the nesting frame assembly 180.
Moreover, as described above, the nesting frame assembly 180 can have various shapes, formed by multiple nesting brackets 240, which can couple one to another at various angles. Accordingly, the corner cinch plate 290 also can have various angles, which can accommodate coupling the nesting brackets 240 at respective angles. For instance, the corner cinch plate 290 can have a 90° angle, which can facilitate securing the nesting brackets 240 at a 90° angle (e.g., to form a rectangular nesting frame assembly 180). Alternatively, the corner cinch plate 290 can have any other angle that can correspond to the angle formed between nesting brackets 240.
In any event, implementations of the present invention can allow for the nesting of face- and center-mounted panels into wall modules. For instance, the nested wall modules can include one or more center-mounted panels nested within face-mounted panels. In at least one implementation, the nested wall module can include face-mounted panels that have one or more center-mounted panels nested therein. Similarly, the nested wall module can include one or more center-mounted panels having a pair of face-mounted panels nested therein. In one or more implementations, the nested wall module also can have a plurality of alternating face-mounted and center-mounted panels nested one within the other. Furthermore, the nested wall module can incorporate multiple and alternating face-mounted and center-mounted panels nested one within the other. One will also appreciate in light of the disclosure herein that the hardware and systems of the present invention can allow an installer to quickly and easily retrofit an existing non-nested wall module with a nested wall module.
One will appreciate that the implementations shown in
The corner center-mounted panel 140f can reside within the openings 190a, 190b. As shown, the corner center-mounted panel 140f can be devoid of hardware or frame components extending along the corner of the corner center-mounted panel 140f. The pairs of face-mounted panels 130f, 130g can surround and support the corner center-mounted panel 140f nested therein.
In particular, a nesting frame assembly 180a can couple the corner center-mounted panel 140f within the pairs of face-mounted panels 130f, 130g. In particular, a plurality of nesting brackets 240e can seamlessly couple the corner center-mounted panel 140f within the pairs of face-mounted panels 130f, 130. As with the other illustrated implementations of nested wall modules, the nested component (i.e., corner center-mounted panel 140f) may couple directly to the pairs of face-mounted panels 130f, 130g, and not to the frame components (see
While
For instance,
In particular, each side of the opening 190c can include a front nesting bracket 240f and a back nesting bracket 240g. A finishing cap 401 can extend between the front nesting bracket 240f and the back nesting bracket 240g. In particular, the finishing cap 401 can include one or more protrusions sized and configured to mate with a panel channel (see
In one or more implementations, the nested wall module 120g may not include the backset panel 140g. In such implementations, the nested wall module 120g can nest a passthrough. In other words, no objects except the finishing cap 401 can be positioned within the opening 180b. Thus, the opening 180b can extend completely through the nested wall module 120g from the front side to the back side.
In still further implementation, the nested wall module 120g can include a backset panel 140g and a front set panel. The front set panel can couple to the front nesting brackets 240f, just as the backset panel 140g couples to the back nesting brackets 240g. The space between the frontset panel and backset panel 140g can function as a display case or other functional space.
Referring now to the nested wall module 120h, as shown the nested wall module 120h comprises a nested passthrough 403. In particular, the passthrough 403 is nested within a pair of face-mounted panels 130i. In particular, a nesting frame assembly including a plurality of nesting brackets 240h, 240i can define a passthrough that extends through the nested wall module 120h.
In particular, each side of the passthrough 403 can include a front nesting bracket 240h and a back nesting bracket 240i A finishing cap 401a can extend between the front nesting bracket 240h and the back nesting bracket 240i. In particular, the finishing cap 401a can include one or more protrusions sized and configured to mate with a panel channel (see
As shown in
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. For example, in still further implementations, fold out shelves, hinged work spaces, or other functional components can couple to the nesting frame assembly. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a 35 U.S.C. §371 National Stage of PCT/US12/41906, filed on Jun. 11, 2012, entitled “Modular Wall Nesting System,” which claims priority to U.S. Provisional Patent Application No. 61/495,974, filed on Jun. 11, 2011. The entire content of each of the afore-mentioned patent applications is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US12/41906 | 6/11/2012 | WO | 00 | 8/15/2012 |
Number | Date | Country | |
---|---|---|---|
61495974 | Jun 2011 | US |