MODULAR WALL SECTIONS WITH ELECTRICAL, PLUMBING AND STRUCTURAL GROUND CONNECTORS

Information

  • Patent Application
  • 20210404183
  • Publication Number
    20210404183
  • Date Filed
    September 08, 2021
    3 years ago
  • Date Published
    December 30, 2021
    3 years ago
Abstract
Improvements in pre-fabricated modular wall sections to construct a building or house is disclosed. Adjacent side of the wall sections are tapered and dovetailed that lock-in-place. The dovetails are spaced to reduce the height that one section must be lifted to engage in an adjoining wall section. The footers/base plate will also have integrated earthquake or hurricane hold-downs in the footer/base plate that aligns and can be secured from the foundation to the wall sections. The connection of the wall section to the foundation to have counter flashing at the concrete insert and the wall-to-wall sections can be self-flashed. The wall sections can have GPS locators for positioning the wall sections. Plumbing and electrical conduit creating circuits that can be integrated into the walls and are connected sealed or bonded together.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


THE NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT

Not Applicable


INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable


BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates to improvements in building construction. More particularly, the present modular wall sections with electrical, plumbing and structural ground connectors are used to construct a building that is quickly assembled on a foundation.


Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98

The construction of buildings has progressed from caves to more modern construction, but the need to construct more efficiently and more rapidly continues to be a high priority. After a foundation is poured and set most methods of construction include cutting and securing 2×4 lumber at 16 inches on-center and then drilling holes in the lumber to accommodate electrical and plumbing connections. The plumbing and electrical wiring is then placed though the holes to make the connections. Both the cutting and nailing of the studs along with the wiring and plumbing is very labor intensive and adds a great deal of cost and time to time to construct a building or house. While some houses are custom built, the majority of houses are similar. There is a need to pre-fab some house walls so they can be quickly connected and secured to both accelerate the construction process and reduce the overall cost of the construction.


A number of patents and or publications have been made to address these issues. Exemplary examples of patents and or publication that try to address this/these problem(s) are identified and discussed below.


U.S. Pat. No. 5,634,315 issued on Jun. 3, 1997 to Kiyomi Toya and is titled Building Method of Construction. This patent discloses constructing a building by forming a foundation on a ground surface, positioning a plurality of upright supports to project upwardly from the foundation and securing cladding panels to said upright supports to extend upwardly from the foundation, positioning a plurality of preformed composite assemblies each having a pair of composite boards and forming a building by utilizing the plurality of preformed composite assemblies disposed adjacent to each other for forming the walls, the floor and the ceiling of the building. This is a typical construction method and does not include pre-fabricated wall section with installed plumbing and electrical conduit.


U.S. Pat. No. 6,256,960 issued on Jul. 10, 2001 to Frank J. Babcock et al., and is titled Modular Building Construction and Components Thereof. This patent discloses a modular building construction and components thereof. A foundation for a building includes anchor bolts extending around its periphery. A metal lower track is installed over the anchor bolts and secured thereto with nuts and rod couplers. Elongated connector rods are threaded onto the upper ends of the couplers. Pre-manufactured modular wall panels, integrally molded with a metal stud along a first lateral edge and a complementary recess along a second lateral edge, are successively installed in the track. A first panel is installed with an open side of the stud surrounding the connector rod. The second, adjacent panel is installed with its second lateral edge facing the stud. The two panels are slid together to surround and enclose the connector rod. In this patent electricity and plumbing is installed by removing the wall skin.


U.S. Pat. No. 7,062,885 issued on Jun. 20, 2006 to George H. Dickenson Jr. and is titled Foundation Wall, Construction Kit and Method. This patent discloses a kit is generally comprised of prefabricated modular components and hardware, which can be used for easily and efficiently constructing a foundation for a moderately sized building such as a house. In another aspect, the present invention kit can be seen as embodying a variety of optional modular components that can be used for constructing steps, landings, and/or decks. While this kit is for home construction, it is limited to exterior walls where there is no electrical or plumbing.


What is needed is a pre-fabricated wall section(s) that can be quickly joined together to build a building or house. The pre-fabricated wall sections should also include plumbing and electrical connections. The proposed modular wall sections with electrical, plumbing and structural ground connectors provide the solution.


BRIEF SUMMARY OF THE INVENTION

It is an object of the modular wall sections to have sides that are tapered and dovetailed. The dovetails are spaced per structural requirements to reduce the height that one section must be lifted to engage in an adjoining wall section. The taper provides a loose fit when the dovetail starts to enter the dovetail slot and a tight secure engagement as the dovetail tapers at the bottom.


It is another object of the modular wall section to provide nearly completely finished two-sided interior and exterior wall structures, this is due to the ability to install at the factory all electrical and mechanical pathways, final electrical devices including but not limited to plug receptacles, wall switches pre-wired circuit panels, transformers and all end of line electrical trim. The exterior and interior finishes can be completed as the labor-intensive field trade work of installing both high and low voltage electrical conduits and pathways will be eliminated, pulling and landing wires will also be virtually eliminated across the world's construction field sites.


It is another object of the modular wall section for plumbing and or electrical connections to use exothermic chemical reactions on the connections between adjoining wall sections for the electrical and or plumbing connection to be instantly, chemically fused and or welded together manually as they are set into place. An instant electrical connection and circuit is instantly and subsequently created by virtue of a push design. The system is designed to accommodate a continuous flow of electricity/electrons through a permanently bonded system, the electro mech connector includes access into the components housing for both welding leads as well as exothermic chemical reactions to bond the internal electrical wires with pre-loaded electrical two-part housing exothermic cylinders.


It is another object of the modular wall sections to have earthquake or hurricane hold-downs in the footer or bottom plate that aligns and can be secured from the foundation to the wall sections. These hold-downs can be spaced according to the building code of the area where the building or house is being constructed.


It is another object of the modular wall sections to have a lock-in-place feature whereby there is no secondary tools to fasten the wall sections together. The locks can be integrated in the side dovetails and be spring loaded or one-way engagement to quickly lock and secure the modular walls. The installation and locking of the modular walls can be performed without tools other than lifting hoists on unwieldy sections.


It is another object of the modular wall sections for the connection of the wall section to the foundation to have counter flashing at the concrete insert. This prevents water intrusion into the wall section or from under the modular wall. The counter flashing can extend slightly up the side of the modular wall and also provides flashing at the vertical intersection of each wall.


It is another object of the modular wall sections to include a global position sensor (GPS) or similar technology connected to the foundation sleeve so the location and position of each modular wall can be quickly located and placed without requiring an installer to refer to plans as they assembly the building.


It is still another object of the modular wall sections for the modular wall section to have integrated electrical wires (creating a circuit pathway) and/or plumbing piping or conduit. This will minimize the installation for secondary manual operations and the location for electrical and plumbing fixtures can be pre-located along a wall. The actuating in-wall electrical circuits mechanism may include an internal release that actuates the mechanism when the machine wall panel locks into place that automatically releases the actuation electrical connectors which create the electrical circuit.


It is still another object of the modular wall sections for the electrical and/or plumbing connections that join modular walls to be connected and sealed with bonding agents, push, spin lock or frictional lock to provide a secure sealed system/pathway for these utilities where the installer can quickly make connections between the modular walls.


Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)


FIG. 1 shows a perspective view of a modular wall sections with electrical, plumbing and structural ground connectors with the interior and exterior surfaces removed.



FIG. 2 shows a perspective view of both sides of the dovetail fittings at one end of each wall.



FIG. 3 shows a perspective view of a male side of the modular wall.



FIG. 4 shows a perspective view of a female side of the modular wall.



FIG. 5 shows a foundation flashing.



FIG. 6 shows an end detail view of the foundation flashing.



FIG. 7 shows a perspective view of anchoring the machine walls to the bottom flashing hold down.



FIG. 8 shows an exploded perspective view of the foundation, sill and footer with the insulating flashing.



FIG. 9 shows a perspective view of another preferred embodiment of an anchoring the machine walls to the bottom flashing hold down.



FIG. 10 shows a perspective view of another preferred embodiment of an anchoring the machine walls to the bottom flashing hold down.



FIG. 11 shows a perspective view of the one-way anchoring system on the bottom of a wall section.



FIG. 12 shows three alternative anchoring mechanism.



FIG. 13 a perspective view of the one-way anchoring system with both the male post and the female receiver connections.



FIG. 14 shows a perspective view of both wall connections for the electrical connections between two machine walls.



FIG. 15 shows a perspective view of the connected electrical connections between two machine walls.



FIG. 16 shows an inside room perspective view of the electrical connection.



FIG. 17 shows a sectional outside perspective view of the electrical connection.



FIG. 18 shows one-side of the connected electrical connection.



FIG. 19 shows a sectional perspective view of the plumbing connection.





DETAILED DESCRIPTION OF THE INVENTION

It will be readily understood that the components of the present invention, as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, as represented in the drawings, is not intended to limit the scope of the invention, but is merely representative of various embodiments of the invention. The illustrated embodiments of the invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout.












Item Numbers and Description


















 20 modular wall section(s)
 21 foundation



 22 installed wall
 30 header



 31 middle stud
 32 cut-out



 33 footer/bottom plate
 34 rod



 35 plug
 36 expanding wedge



 37 coupling rod
 38 one-way couple



 39 toothed rod
 40 male side stud



 41 male dovetail
 42 gap



 43 male sill
 44 lock



 46 male dovetail
 47 female dovetail



 48 ears
 49 fastener



 50 female side stud
 53 female sill



 54 sill receiver opening
 55 flashing



 56 base
 60 plumbing 61 side tube



 62 coupler
 63 end coupler



 64 plumbing tube
 70 bottom flashing



 71 hold-down tube
 72 flashing lip



 73 flashing bottom
 74 central opening



 75 anker
 76 post



 77 socket
 79 hole



 80 receiver
 81 expanding receiver



 84 hole
 85 flange



 86 ledges
 87 tube



 88 move
 89 in or out



 90 down
 91 install



 92 down
 93 tension



 94 expanded
 95 insert



 96 open
 97 extend



 98 lift spacing
 99 stud spacing



100 conduit
101 conductor(s)



102 turn
103 rotate



104 outlet conduit
105 switch conduit



110 break jaw box
111 fastener



112 first break jaw
113 second break jaw



114 third break jaw
115 first insulating divider



116 second insulating divider
120 male post



121 cylinder wall
122 flange



123 hole
124 teeth



125 lever
126 hinge



130 knife blade box
131 shaft



132 fastener
133 barrel



134 blade
135 insulator



136 key
137 spring.



140 “J” foundation anchor
141 threaded fastener



142 angled comb
143 comb retainer



144 straight comb
145 straight receiver



146 head
150 male/female box



151 female prong receiver
152 male prong post



153 conductor(s)
160 vent tube



161 exhaust pipe
162 insulator(s)



170 plumbing connection
171 hot



172 cold
173 male



174 female
175 seals










While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the technology. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters.



FIG. 1 shows a perspective view of a modular wall section(s) 20 with electrical, plumbing and structural ground connectors with the interior and exterior surfaces removed on a foundation 21. While this figure shows both the interior and the exterior wall surfaces removed, it is contemplated that the wall section can be installed with at least one outside substrate surface on the modular wall section(s) 20. When the outside substrate surface is installed, flashing of adjacent panels is needed or a secondary sealing operation is needed. An advantage for this type of installation is that the installer can perform all of the joining of the plumbing and electrical conduits from within the building or house.


The outside surface would be typically installed, but a finished interior surface that is covered with drywall or sheetrock could equally be covering one-side of the modular wall section(s) 20. The operation(s) to connect the electrical and plumbing lines together is then performed from the outside of the building or house. From the inside surface the drywall or sheetrock can be spackled textured and painted. An advantage of this type of installation is that the openings for the electrical junction boxes and plumbing can be pre-cut into the drywall or sheetrock.


In this preferred embodiment the modular wall section (s) 20 is 96 inches (or 48 inches) in width to accommodate a common width of drywall or sheetrock, but other widths are contemplated from 16 to 96 inches or larger or per industry standards. It should be understood that the width can also be shorter than 16 inches and longer than 96 inches depending upon the design requirements. This embodiment also shows the middle stud(s) 31 with stud spacing 99 at 16 inches on-center, but can also be 12 or 24 inches depending upon the design requirement(s).


The modular wall section (s) 20 can be constructed with 2×4 or 2×6 header 30, middle studs 31 and footer 33, or other dimensions, again as dictated by the design requirements. The stud members can be from wood, metal or other structurally capable material for the studs. Pre-formed concrete and structural steel wall panels are also embedded with interlocking mechanism shows and described herein. The outside vertical studs have a male side stud 40 with a male dovetail 41 and a female side stud 50 with a complementary female dovetail (not shown in this figure). The opposing dovetails allow the modular wall section(s) 20 to be quickly assembled by lifting a (second) new wall section onto a first secured wall section of the modular wall section(s) 20. It is contemplated that the modular walls can include a side vertical slip correction for a wall-to-wall connection system option. Minor labor and lift are required to set the wall system into place as the vertical channel openings are oriented in such a way as to allow for the required structural strength (Typically 16″ on center). The dovetails can be designed with an optional taper at the base of each connection to tighten the connection as it slides into place. Due to the potential lack of ceiling clearance in the system, the base mechanical lock system can also be utilized on the side edge of the system to eliminate the need to lift the panel system when necessary.


The side have dovetail connections that are tapered. The dovetails are spaced to have a gap 42 of between 3 and 18 inches on center to reduce the lift spacing 98 height that one section must be lifted to engage in an adjoining wall section(s), but can be greater than 18 inches or less than 3 inches, the distance between the dovetail connections can be adjusted to meet structural requirements and/or local building code requirements. The taper provides a loose fit when the dovetail starts to enter the dovetail slot and a tight secure engagement as the dovetail tapers at the bottom. The bottom of the modular wall section(s) 20 shows a bottom flashing 70 with hold-down tubes 71 for earthquake or hurricane protection. There can be a mechanical pressure actuating snap lock connection at the base of the wall system which allows for a quick lock in place installation process. The bottom flashing 70 or sill plate and hold-down tubes 71 will be shown and described in other figures herein.


The vertical studs are shown with a cut-out 32 where the plumbing tube 64 passes through the modular wall section(s) 20. While this example shows just a single plumbing tube 64 the modular wall section(s) 20 would have a hot water line a cold-water line and a line for electrical connections. In this figure only one plumbing tube 64 line is shown for clarity and simplicity. There is a first tube 60 and an end coupler 63 that connects to adjacent modular wall section(s) 20 A side tube 61 connects to the plumbing tube 64 for a rough plumbing connection for a sink, toilet, shower, hose bib or the like. An expandable couple 62 allows the plumbing tube 64 to be expanded or contracted to connect to other modular wall section(s) 20.


The electrical conduit(s) 104/105 and/or plumbing connections that join modular walls to be connected and sealed with bonding agents, push, spin lock or frictional lock to provide a secure sealed system where the installer can quickly make connections between the modular walls. This figure shows electrical conduits at both the outlet height 104 and at a switch height 105. The connections are contemplated to be a one-way locking or rotation system as a cam or tab that bends and flexes back into position after the wall section is fully inserted but may also include an access door or hole to release the lock to remove the wall section.



FIG. 2 shows a perspective view of both sides of the dovetail fittings at one end of each wall. On the right side of this figures is an installed wall 22, and on the left side of this figure is a machine wall 20 that is being installed. The installed wall 22 has a female dovetail 47, while the machine wall 20 being installed has a male dovetail 46. While this figure shows the walls being aligned in a linear arrangement the wall being installed could be placed at a 90-degree angle or at another angle where the machine wall 20 being installed has the male dovetail 46 set at a desired angle to mate with the female dovetail 47. The female dovetail 47 is recessed into the wall a mating while the male dovetail 46 is set outside of the flush end surface of the wall. Each male dovetail 46 and female dovetail 47 is a bracket having ears 48 and is secured to the respective side of the machine wall with faster (s) 49.


The wall being installed is simply lifted onto the installed machine wall 22 to engage the dovetail surfaces. While only one dovetail connection is shown, multiple dovetail connections can exist along the height of the wall edge to provide multiple securing locations based upon building code. It is also contemplated to include a lateral adjustment track is indicated in image 18. This allow the male stud to be adjustable, if necessary, to line the male and female studs up when needed.



FIG. 3 shows a perspective view of a male side of the modular wall and FIG. 4 shows a perspective view of a female side of the modular wall. In these figures you can see the opposing sides of the modular wall with the footer 33 in the bottom flashing 70. The hold-down tube 71 is shown extending out the bottom of the bottom flashing 70. The footer has a rod 34 that is secured or bonded into each hold-down tube 71 to secure the modular wall section into the bottom flashing 70. The rod can be threaded, studded or an expandable bold that grips the hold-down tube 71. A lip 72 of the bottom flashing 70 can be seen extending up one or more sides of the footer 33.


Middle stud(s) 31 are seen in these views inside of the male side stud 40 with the male dovetail 41. The cut-out 32 provides clearance for plumbing tube 64 and/or electrical tubes that can run through the modular wall(s). The end coupler 63 can extend 97 to connect plumbing and/or electrical to multiple modular walls. A detailed view of the electrical connection is shown in other embodiments herein.



FIG. 5 shows a foundation flashing and FIG. 6 shows an end detail view of the foundation flashing. It is contemplated that the bottom flashing 70 or sill plate can be cast or set into the foundation. The flashing bottom 73 is joined or sealed with the foundation. The bottom of the hold-down tube 71 can have one or more horizontally or vertically joined plates that further secure the bottom flashing 70 or sill plate into the foundation. One or more sides of the bottom flashing 70 can have flashing lip(s) 72 that can extend along the bottom of the footer that is not shown in this figure and can open 96 or flex to seal the bottom flashing 70 to the footer. The hold-down tube 71 has a central opening 74 that accepts and joins to the rod that extends from the bottom of the footer.


An advantage of counter flashing vertical legs that are built into the subsurface or foundation is for a waterproofing process at the base of the wall system, there is a vertical lip built into the subsurface locking channel that allows for a full counter flashed connection when the wall panel that is set in place.


Wall system has built in sensors for unmanned, autonomous or remotely controlled delivery systems, it allows for 2-point fulcrum setting capabilities (wall can be set initially manually). Each panel can have a GPS sensor and/or a RFID tag to identify the panel and where each panel is positioned, located and secured. This will eliminate assembly errors and will allow the building or house to quickly assembled with high precision.


While the panels are shown as solid wall panels it is contemplated that the wall panels can be fabricated and installed with openings for windows and/or doors. It is also contemplated that the window frames or window frame with glass can be installed or pre-installed on the machine walls 20.



FIG. 7 shows a perspective view of anchoring the machine walls to the bottom flashing hold down. In this embodiment the bottom flashing 70 has a socket 77 secured to the bottom. The socket 77 has a post 76 with a bent anker 75. These components are cemented or cast into the foundation. This provides a secure system in the foundation. The socket 77 is tapered, and the taper further secures the socket within the foundation of the building. The socket 77 has a central opening 74 that accepts an expanding wedge 36 that is secured to the bottom of the rod 34 that is on the footer (not shown).


When the machine walls are being assembled, the expanding wedge 36 is inserted 95 through the central opening 74 and is expanded 94 to pull and set the machine walls in the foundation. The expanding wedge 36 can be expanded by creating tension 93 as a plug 35 is withdrawn into the expanding wedge 36. It is also contemplated that the expanding wedge 36 can be automatically expanded with internal springs when the plug contacts the bottom of the socket. This does not require any tools for operation and the springs will both pull the expanding wedge 36 into the socket 77 and any downward force on the rod 34 will further secure the expanding wedge 36 within the socket 77. It is contemplated that the machine walls can be assembled with robots or automation.



FIG. 8 shows an exploded perspective view of the foundation 21, and footer 33 with the insulating flashing 55. In this figure three installed walls 22 are shown, and a machine wall 20 is being brought down 92. The vertical studs and middle stud 31 are secured to the footer/bottom plate 33. It is also contemplated that the wall can be a solid construction without internal studs. The footer/bottom plate 33 is secured to a male sill 43 box. The male sill 43 box has a bottom lock 44. The male sill 43 box is pushed down 92 into a female sill 53 box that has a sill receiver opening 54 for the male sill 43 box. In the bottom of the female sill 53 box is a retainer that locks onto the lock 44 in the male sill 43 box. When the two parts are engaged together the female sill 53 box has a flashing 55 that prevents water intrusion into the machine wall frame. The flashing 55 can also be configured for finishing materials such as, but not limited to, stucco, block, wood siding or shingles.



FIG. 9 shows a perspective view of another preferred embodiment of an anchoring the machine walls to the bottom flashing hold down. In this embodiment there is a coupling rod 37 with a one-way coupling 38 that snaps into a receiver 80. The expanding receiver 81 uses spring loaded balls, pins or tapered latches or locks onto the one-way coupling 38 when the coupling rod 37 is pressed down 92. This locks the machine wall into the foundation without the need for secondary operations like threading a nut onto a rod or nailing the footer into a sill or foundation.



FIG. 10 shows a perspective view of another preferred embodiment of an anchoring the machine walls to the bottom flashing hold down. This embodiment uses angled teeth on a toothed rod 39. The toothed rod 39 is pressed or driven down 92 into a hole in the foundation. The teeth grip into the hole 79 and adhesives may also be added into the hole 79 or onto the teeth to bond the toothed rod 39 into the hole 79.



FIG. 11 shows a perspective view of the one-way anchoring system on the bottom of a wall section with the one-way anchoring system with both the male post 120 and the female receiver 80 connections. When the foundation (or floor) is poured or set the receiver(s) 80 are set, cast or poured. A flange 85 base or foundation template can be used to locate and retain the receiver(s) 80 in place in the base 56 or foundation. The flange 85 can remain or be removed and reused. The flange 85 base creates a pre-set distance between concrete embed inserts for a high level of accuracy of required to space the concrete embed inserts for installation of the wall panel system. Each receiver 80 has hole 84 in a tube 87 that accepts a male post 120 that extends out the bottom of the machine wall. On one (or more) side of the inside of the tube 87 has a plurality of ledges 86 or teeth. The ledges 86 or teeth are configured to engage with teeth 124 in the male post 120.


The male post 120 extends through a hole from the bottom of the footer 33 on the machine wall section(s). A flange 122 holds the footer 33 into the receiver 80. A hole 123 in the flange 122 is the interior of the cylindrical wall 121 of the tube that forms the male post 120. The tube receiver can also be square, rectangular and composed of other practical shapes. The male post 120 has locking teeth 124 that engage in the ledges 86 within the tube 87. The teeth 124 exist on a hinge 126 that allows the teeth 124 to flex and move 88 in and out 89 as the teeth ratch into the ledges 86. While a particular number of teeth 124 and ledges 86 are shown, a different number of teeth 124 and ledges 86 can be used along with locating the teeth 124 and ledges in multiple locations or locating the ledges 86 around the interior of the tube 87. The top of the flange 122 can be “struck” or pressure applied to drive and lock the machine wall onto the receiver 80. The locking teeth 124 components is further shown with a lever 125 that can be rotated or moved 88 to release the teeth 124 from the ledges 86 so the machine wall can be dis-assembled, repositioned or moved.



FIG. 12 shows three alternative anchoring mechanism. All three of these embodiment use “J” style foundation anchors. The first embodiment on the left of this figure uses a threaded fastener 141 to pull and secure the wall section to the foundation on the footer 33 or bottom plate. The middle embodiment uses angled comb 142 teeth. A middle portion of the receiving housing has been removed to show the comb retainer 143. The angled teeth allow for infinite positioning and retention. The right embodiment uses a straight comb 145 of teeth. A middle portion of the receiving housing has been removed to show the straight receiver where finite steps for retention are used to secure the modular wall.



FIG. 13 shows a perspective view of the one-way anchoring system with both the male post 120 and the female receiver 80 connections. When the foundation (or floor) is poured or set the receiver(s) 80 are set, cast or poured. A flange 85 base or foundation template can be used to locate and retain the receiver(s) 80 in place in the base 56 or foundation. The flange 85 can remain or be removed and reused. The flange 85 base creates a pre-set distance between concrete embed inserts for a high level of accuracy of required to space the concrete embed inserts for installation of the wall panel system. Each receiver 80 has hole 84 in a tube 87 that accepts a male post 120 that extends out the bottom of the machine wall. On one (or more) side of the inside of the tube 87 has a plurality of ledges 86 or teeth. The ledges 86 or teeth are configured to engage with teeth 124 in the male post 120.


The male post 120 extends through a hole from the bottom of the footer 33 on the machine wall section(s). A flange 122 holds the footer 33 into the receiver 80. A hole 123 in the flange 122 is the interior of the cylindrical wall 121 of the tube that forms the male post 120. The tube receiver can also be square, rectangular and composed of other practical shapes. The male post 120 has locking teeth 124 that engage in the ledges 86 within the tube 87. The teeth 124 exist on a hinge 126 that allows the teeth 124 to flex and move 88 in and out 89 as the teeth ratch into the ledges 86. While a particular number of teeth 124 and ledges 86 are shown, a different number of teeth 124 and ledges 86 can be used along with locating the teeth 124 and ledges in multiple locations or locating the ledges 86 around the interior of the tube 87. The top of the flange 122 can be “struck” or pressure applied to drive and lock the machine wall onto the receiver 80. The locking teeth 124 components is further shown with a lever 125 that can be rotated or moved 88 to release the teeth 124 from the ledges 86 so the machine wall can be dis-assembled, repositioned or moved.



FIG. 14 shows a perspective view of both wall connections for the electrical connections between two machine walls and FIG. 15 shows a perspective view of the connected electrical connections between two machine walls. A time-consuming task with erecting a house is pulling electrical wiring through the wall studs. In the machine walls, electrical conduit 100 with internal conductors 101 are pre-installed within the machine walls. Each connection box is secured with fasteners 111 or 132. When the walls are installed each side of the wall sections have mating electrical connections that provide power through the wall sections. The installed wall section has a break jaw box 110 with the three electrical connections for a first break jaw 112, a second break jaw 113 and a third break jaw 114 that connect to the hot, neutral and ground electrical wiring. A first insulating divider 115 and a second insulating divider 166 ensure electrical isolation between the conductors.


With the knife blade box 130 the conductors 101 enter a rotatable barrel 133 having an insulator 135 where each conductor 101 connects to a separate blade(s) 134. The barrel 133 rotated 103 to move the blade(s) 134 from a vertical position to a horizontal position. A spring 137 biases the rotation of the blades 134 to maintain the position of the blades 134. In the horizontal position the blades (134) engage into their respective break jaw 112-114. A key 136 or shaft 131 is inserted into the barrel 133 to turn 102 the shaft 131 and or barrel 133 with a key to engage (or disengage) the electrical connection between adjacent machine walls.



FIG. 16 shows an inside room perspective view of the electrical connection and FIG. 17 shows a sectional outside perspective view of the electrical connection. Some of the housing components (sides) have been removed for clarity. This connection has eight conductors 101, but as few as one to more than eight conductors 101 are contemplated. The conductors can further be different size to accommodate different power load from running an HVAC unit to data, phone, communication or TV. As previously shown in FIG. 1 there can be one, two or more conduits 100 for outlet height, switch height or others.


This embodiment shows male/female box(s) 150 two rows of connectors with one column of four of male prong posts 152 on one side and one column of four female prong receivers 151. Each wall adjoining section has its own set of male/female box(s) 150 that are configured to mate when the wall sections are vertically slid into position. The male prong posts 152 engage into the female prong receivers 151 to make electrical connection. Insulators 162 are placed between the connectors to isolate power between different conductors 101.


As the male prong post(s) 152 in the electrical housing is guided into place, it makes positive contact to the female prong receiver(s) 151. Electrical components are assured due to the track built into the housing, additionally once it locks into place, it cannot be removed due to one way locking mechanisms, thus creating a permanent installation.


In some contemplated embodiments the male prong posts 152 and female prong receivers 151 are fused together with pre solder packets for preheat and fusion and contact points using an exothermic reactive two part reactive design includes pre-loaded high temperature reactive copper oxide pack located in the base of the heat reaction cylinder and an opposing pre-loaded pack of aluminum power with priming contact igniter on the opposing electrical contact prong (or blade), when they come into contact, the two parts ignite and the exothermic reaction occurs, which fuses the electrical prongs (or blades) together through the exothermic welding reactive process (which creates electrical connections mainly between copper to copper or copper to steel) the heat generated from this reaction is vented through the housing tubes of the assemblies. The electrical housing 150 features sections that are reinforced as needed for high temperature resistant with various materials including but not limited to graphite to withstand the effect of both high temperatures generated from welding but also from generated exothermic reactions.


Heat syncs have been integrated into the design & electrical connection housings 150 to offset the height temperatures and melting characteristics to protect the wire and housing assemblies, they dissipate heat from either the welding, exothermic or chemical bonding process prior to heating the plastic housing surrounding the associated commercial wire feeding into the housing systems. Heat vent tubes 160 provide a path to vent the exhaust gases out of the male/female box(s) 150 and out an exhaust pipe 161 that is later removed from the wall, thereby leaving only a small hole in the wall that is filled when the joint between the wall is plastered. While this is shown on the electrical connections it can also apply to water supply plumbing and the water sewer lines and gas lines.



FIG. 18 shows one-side of the connected electrical connection of the two male/female boxes 150. Within the male/female boxes 150 are the connected male prong post (152) within the female prong receiver(s) 151 thereby providing (up to) 8 electrical connections. The load carrying capacity of the conductors could all be the same size (gauge) or different depending upon the circuit needs. In this figure the vent tubes 160 are shown as a connecting manifold to the conductors for venting exothermic heat when the conductors are electrically fused together. The conduit 100 on the far side of this figure connect through the male/female box to the conductors 153 on the near side of this figure connect to conductors within a conduit (not shown).



FIG. 19 shows a sectional perspective view of the plumbing connection 170. While this plumbing connection shows two water supply lines hot 171 and cold 172 there may be only one line or more than two lines. The lines are shown as side-by-side, but could also be stacked. The lines are configured to align and connected as the wall sections are vertically slid down so the male 173 aligns into the female 174 plumbing connections. Gaskets or seals 175 can be used to prevent leaks, but there the previously discussed exothermic joining method could also be utilized. While a plumbing connection is shown and described the connection could be equally applied to sewer and gas connections. The connections could also be applied at the bottom or top of the wall sections to connect above and or below the wall section.


Thus, specific embodiments of modular walls used to construct a building have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims.


SEQUENCE LISTING

Not Applicable.

Claims
  • 1. A present modular wall sections with electrical, plumbing and structural ground connectors comprising: a wall section having a footer/bottom plate;said footer/bottom plate includes at least one vertical anchoring mechanism;said wall section having a first side with a vertical wall stud having a male dovetail or hook connection and a second side with a second vertical wall stud having a complementary female dovetail or hook connections at opposing outside surfaces;said first side further having at least one plumbing connection and at least one electrical connection having a blade or prong, andsaid second side having a mating for said at least one plumbing connection and at least one electrical connection receiving blade or prong thereby providing a pass through of plumbing and electricity through said wall section.
  • 2. The modular wall sections according to claim 1, wherein said at least one plumbing connection or said at least one electrical connection joins to a second plumbing connection or a second electrical connection with a bonding agent, an exothermic reaction, a push, a one-way lock, a spin lock or a frictional lock.
  • 3. The modular wall sections according to claim 1, wherein said at least one connection blade or prong is mounted to a housing whereby said plurality of connection blades or prongs are configured to mate with at least a second modular wall section.
  • 4. The modular wall sections according to claim 1, further includes a bottom flashing that is secured to a foundation and said footer/bottom plate includes a retaining mechanism that secures said footer/bottom plate adjacent to a bottom flashing.
  • 5. The modular wall sections according to claim 1, wherein said at least one vertical anchoring mechanism is at least one female or at least one male engaging anchoring mechanism.
  • 6. A present modular wall sections with electrical and structural ground connectors comprising: a wall section having a footer/bottom plate;said footer/bottom plate includes at least one vertical anchoring mechanism;said wall section having a first side with a vertical wall stud having a male dovetail or hook connection and a second side with a second vertical wall stud having a complementary female dovetail or hook connections at opposing outside surfaces;said first side further having at least one electrical connection having a blade or prong, andsaid second side having a mating for said at least one electrical connection receiving blade or prong thereby providing a pass through of electricity through said wall section.
  • 7. The modular wall sections according to claim 6, wherein said at least one electrical connection joins to a second electrical connection with a bonding agent, an exothermic reaction, a push, a one-way lock, a spin lock or a frictional lock.
  • 8. The modular wall sections according to claim 6, wherein said at least one connection blade or prong is mounted to a housing whereby said plurality of connection blades or prongs are configured to mate with at least a second modular wall section.
  • 9. The modular wall sections according to claim 6, further includes a bottom flashing that is secured to a foundation and said footer/bottom plate includes a retaining mechanism that secures said footer/bottom plate adjacent to a bottom flashing.
  • 10. The modular wall sections according to claim 6, wherein said at least one vertical anchoring mechanism is at least one female or at least one male engaging anchoring mechanism.
  • 11. A present modular wall sections with plumbing and structural ground connectors comprising: a wall section having a footer/bottom plate;said footer/bottom plate includes at least one vertical anchoring mechanism;said wall section having a first side with a vertical wall stud having a male dovetail or hook connection and a second side with a second vertical wall stud having a complementary female dovetail or hook connections at opposing outside surfaces;said first side further having at least one plumbing connection, andsaid second side having a mating for said at least one plumbing connection thereby providing a pass through of plumbing through said wall section.
  • 12. The modular wall sections according to claim 11, wherein said at least one plumbing connection joins to a second plumbing connection with a bonding agent, an exothermic reaction, a push, a one-way lock, a spin lock or a frictional lock.
  • 13. The modular wall sections according to claim 11, further includes a bottom flashing that is secured to a foundation and said footer/bottom plate includes a retaining mechanism that secures said footer/bottom plate adjacent to a bottom flashing.
  • 14. at least one vertical anchoring mechanism is at least one female or at least one male engaging anchoring mechanism.
  • 15. The modular wall sections according to claim 11, wherein said at least one plumbing connection includes two plumbing connections for a cold and a separate hot water supply.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of PCT application PCT/US21/26490 filed Apr. 8, 2021 that claims priority to Utility application Ser. No. 17/168,890 filed Feb. 5, 2021 that claims priority to Provisional Application Ser. No. 62/971,366 filed Feb. 7, 2020 and Provisional Application Ser. No. 62/980,420 filed Feb. 23, 2020 the entire contents of which is hereby expressly incorporated by reference herein.

Provisional Applications (2)
Number Date Country
62980420 Feb 2020 US
62971366 Feb 2020 US
Continuation in Parts (2)
Number Date Country
Parent PCT/US21/26490 Apr 2021 US
Child 17469121 US
Parent 17168890 Feb 2021 US
Child PCT/US21/26490 US