This invention relates generally to modular wall assemblies, and more specifically, to a modular wall assembly compatible with clean room requirements.
Buildings and rooms within buildings built with modular wall stud assemblies are typically prefabricated and ready for assembly at a building site. Such buildings include in-plant offices, guard houses, food service buildings, control rooms, toll booths, parking lot booths, noise control buildings, clean rooms, and the like. These portable buildings and rooms should be of quality construction, strong and durable. The materials utilized to construct such buildings and rooms should be energy efficient, have good sound control and low maintenance. Other characteristics of such buildings and rooms are relatively easy assembly at the job site and easy disassembly for moving to a different location. Such characteristics are particularly important as in certain applications space requirements, for example, the number and sizes of rooms, are constantly changing. Such modular wall materials should also be economical.
A number of modular wall assemblies are well-known in the art. In these wall assemblies, steel or aluminum wall studs are configured with side recesses for receiving the side edges of pre-fabricated wall panels to form walls. However, these known wall assemblies have been found to be difficult to apply in a clean room configuration. These modular wall assemblies, when constructed, sometimes include gaps, crevices and other surfaces that may be incompatible with a clean room application, particularly a pharmaceutical clean room application. Some inserts have been developed which are inserted into the wall studs in order to smooth out areas where wall panels engage the sides of the studs. However, such inserts add expense, additional parts, and a layer of complexity to the wall assemblies.
In one aspect, a modular wall system is provided that comprises a plurality of wall panels, a horizontal main bracket having a length, and a plurality of wall panel brackets. Each wall panel bracket is configured for attachment to a corresponding one of the wall panels. Each wall panel bracket is configured to engage the horizontal main bracket so as to hang the corresponding wall panel while allowing movement of the wall panels in substantially horizontal directions.
In another aspect, a method of building a modular wall is provided. The method comprises hanging at least one main bracket substantially horizontally across a number of substantially vertical studs, configuring each of a plurality of wall panels with at least one wall panel bracket, and moving each wall panel to a desired horizontal position. The wall panel bracket is configured to engage the main bracket and retain a vertical position of the wall panels with respect to the main bracket.
As shown in
To provide the desired smooth surface, at least for the junction of the wall 104 and the flooring material 106, floor bracket 100 includes a center portion 110 having a radius. Extending from center portion 110 is a floor engaging member 112 and a wall panel engaging member 114. Floor engaging member 112 includes a flange 116 that includes a surface 120 configured to be substantially flush with a surface 122 of a sub-floor 124. Floor bracket 100 may be of a length similar to main bracket 10 (shown in
Wall panel engaging member 114 is similar to floor engaging member 112 in that wall panel engaging member 114 includes a flange 130 having a surface 131 configured to be substantially flush with a surface 132 of studs 20 is included. Flange 130 of wall panel engaging member 114 is configured with one or more openings 136 formed therein through which a fastening device 138, such as a lag bolt or other threaded device, is inserted for engagement with stud 20. Wall panel engaging member 114 further includes a substantially horizontal wall panel engaging surface 162 on which bottom 102 of wall panel 40 rests when wall panel 40 is installed.
A center support 170 extends substantially vertically from a back side 172 of a center area 174 of center portion 110. Center support 170 includes a foot 176 that engages surface 122 of sub-floor 124. Center support 170 and foot 176 provide additional strength to floor bracket 100 as can be ascertained from
In one embodiment, when floor bracket 100 and wall panels 40 have been installed, floor 106 is installed to extend in an arc such that an end 180 of flooring material 106 is adjacent bottom 102 of wall panels 40. In one embodiment, floor bracket 100 and more specifically center portion 110 is configured to be recessed, for example, about one-eighth inch so that flooring material 106 and wall panel 40 are substantially flush. As such, the configuration of floor bracket results in an edge 180 of floor 106 butting against bottom 102 of wall panel 40. The combination of floor bracket 100, flooring material 106, and wall panel 40 therefore provide a smooth, and easily cleanable surface at the transition from wall panel 40 to floor 106. To provide additional smoothness, caulk or bonding material (not shown) may be utilized at the junction of wall panel 40 and flooring material 106.
Extending from angle portion 230 and into the substantial right angle is a cove engaging member 240. Cove engaging member 240 includes a substantially rectangular slot 241 as member 240 is fabricated from two substantially perpendicular toothed members 242 having teeth 244 which face the opposing toothed member 242.
As illustrated, ceiling cove 250 is configured to provide a smooth transition from wall panel 40 to ceiling 222. In one embodiment, ceiling cove 250 is semi flexible and when installed provides a radius member 252 from wall panel 40 to ceiling 222. More specifically, ceiling cove 250 includes a ceiling bracket engaging member 254 having teeth 256 on each side which extends substantially perpendicularly from a back 258 of ceiling cove 250. Teeth 256 are configured to engage teeth 244 of ceiling bracket 200 as ceiling cove 250 is installed.
The engagement of teeth 256 with teeth 244 is a result of an insertion force applied by an installer to ceiling cove 250 and the force causes a flexure of ceiling cove 250. While semi-flexible, the force also causes ceiling cove 250 attain the desired radius shape. Specifically, a ceiling engaging portion 260 is pressed against ceiling 252 and a wall engaging portion 262 is set in place against wall panel 40. To increase smoothness and reduce an amount of surfaces where bacteria and germs and the like can exist, the transitions between ceiling cove 250 and ceiling 222 may be caulked or bonded, as can the transition between ceiling cove 250 and wall panels 40.
The above described embodiments allow for the construction of temporary walls that provide the desired characteristics of a clean room, for example, a clean room utilized in the production of pharmaceuticals. More specifically, the modular wall system described herein provides a substantially smooth wall surface, and substantially smooth transitions from the wall to both the floor and ceiling, which are typically desired in certain clean room applications. Furthermore, the modular wall system described herein allows for the simple construction of any size room having the above described properties which are desirable for use in clean rooms and which also provide a sturdy wall construction.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.