Due to their design and intended use, a number of vehicles contain a significant amount of empty space (e.g., pick-up trucks, cargo vans, minivans, trailers, 18-wheelers). This empty space creates a weight imbalance that tends to reduce a driver's control on snow and ice. In an attempt to increase traction, many owners of lightweight vehicles place cinder blocks, bricks, sand bags, logs or other heavy items in the cargo space of their vehicles. Not only does this practice reduce the useful area within the vehicle, it also creates a serious risk of injury or death if the items become flying projectiles during an accident or sudden stop. A somewhat safer weighting device is a large rectangular water bladder that may be filled with a garden hose and placed in a trunk of a car or bed of a pick-up truck. However, these bladders contain between 12.5 and 50 gallons of water and weigh between 100 and 400 pounds when full. A puncture of the bladder can therefore release large quantities of water within a trunk or car interior, and removal of an intact bladder may be difficult or impossible when the water within it is frozen. Further, these water bladders have convex top surfaces that are unsuitable for the stable transport of most items.
The present instrumentalities overcome the problems outlined above by providing modular weight systems for automobiles. The modular weight systems disclosed herein include a plurality of tiles that may be placed in an automobile cargo space. The tiles are configured to be joined together in a releasably mateable fashion so that the weight systems do not obstruct the cargo space or become dislodged during movement.
In an embodiment, a modular weight system for an automobile includes a first tile and a second tile, the first tile and the second tile configured to releasably mate to one another to form the modular weight system. The first tile and the second tile each have a surface area (in inches) to weight (in pounds) ratio of less than 30:1.
In an embodiment, a modular weight system for an automobile includes a first tile and a second tile, the first tile and the second tile configured to releasably mate to one another to form the modular weight system. The first tile and the second tile each weigh at least twenty pounds and have a surface area (in inches) to weight (in pounds) ratio of less than 30:1.
In an embodiment, a method of using a modular weight system to improve automobile traction includes providing a first tile and a second tile, the first tile and the second tile configured to releasably mate to one another to form the modular weight system. The first tile and the second tile each have a surface area (in inches) to weight (in pounds) ratio of less than 30:1. The modular weight system is placed in a cargo space of an automobile.
As used herein, the term “automobile” refers to a device for the ground transportation of passengers or cargo, where the device may or may not be independently powered. For example, the term “automobile” may refer to various types of cars, buses, pick-up trucks, flatbed trucks, trailers, 18-wheelers, cargo vans, minivans, SUV's and the like.
As used herein, “mating” of tiles may be accomplished when two or more tiles are sized and shaped to join or fit together in an interconnected and interlocking manner. Interlocking of mated tiles provides a substantially snug fit, such that motion of each tile is constrained relative to the tile(s) with which it is mated, and little or no space exists between the edges of mated tiles. For example, two or more tiles may be mated using interlocking or interdigitated tabs.
Reference will now be made to the attached drawings, where like numbers represent similar elements in multiple figures. Numbering without parentheses is used to denote a genus (e.g., modular weight system 100), whereas numbering with parentheses denotes a species within a genus (e.g., modular weight system 100(2)). Multiple elements within a figure may not be labeled for the sake of clarity.
In an alternate embodiment, when it is unnecessary to accommodate wheel wells of an automobile, tiles 102(3) may be aligned with cutout portions 106. In one example, tiles 102(3) may contain interlocking tabs for mating of tiles 102(3) with tiles 102(2). Use of tiles 102(3) converts system 100(1) into a rectangular weight system similar to system 100(2) of
Although
In general, tiles 102 have substantially flat top and bottom surfaces, which provide for the stable transport of most items, and the tiles are generally fabricated from chemically inert and durable material(s). Tiles 102 may, for example, be fabricated from metal, rubber, plastic (e.g., polyurethane) or a combination thereof (e.g., silicon rubber coated metal). Rubber or plastic tiles 102 may be fabricated using well known extrusion and injection molding procedures, whereas metal tiles 102 may be created using known metal working or melt casting techniques.
In an embodiment, use of materials which are resistant to ultraviolet radiation (UV) may decrease a rate of decomposition of a modular weight system that experiences extended sun exposure (e.g., in an open pick-up truck). UV resistant material may be used to form a monolithic tile 102, or it may be used as a coating disposed around tile 102.
In an embodiment, a tile 102 may be fabricated, at least in part, from a magnetic material, such as stainless steel, ceramic or iron oxide, Fe3O4. Magnetic attraction between the tile and body of the automobile may help to immobilize the tile(s) during automobile movement. For example, a surface of tile 102 intended to contact the automobile may be fabricated of stainless steel, and other surfaces, e.g., top and/or side surfaces, may be coated with a plastic, rubber or UV coating. In another embodiment, the magnetic field associated with a magnetic material may be sufficient to penetrate a coating that covers the entirety of tile 102.
The weight of each tile 102 is, for example, between 20-200 pounds, preferably between 40-100 pounds, and most preferably between 50-80 pounds. For personal vehicles, it is desirable that tiles 102 each weigh an amount that an average, healthy adult can lift without strain or injury. For commercial vehicles, heavier tiles may be used and, if necessary, the tiles may be placed in a cargo space using machinery (e.g., a fork lift). Modular weight systems 100 typically weigh between 40-2000 pounds, preferably between 100-1000 pounds, and most preferably between 200-800 pounds.
Generally, each tile 102 has a width of about 24-75 inches, a length of about 24-75 inches, and a height or thickness of about 1-4 inches. Tiles 102 typically have a ratio of surface area (in inches) to weight (in pounds) that is less than 30:1, preferably between 2.5:1 to 25:1, more preferably between 3.5:1 to 15:1, and most preferably between 4.5:1 to 10:1.
The weight of each tile 102 may be controlled by appropriate selection of the fabrication material(s). In an embodiment, tile 102 may be formed as a monolithic mass where the physical weight of the fabrication material may be sufficient to improve automobile traction. In another embodiment, tile 102 may be filled or doped with a heavy filler material, such as sand, stone or shot. When the filler material is stone or shot, for example, the material may have a diameter between 0.1 and 1 inch, preferably between 0.1 and 0.5 inches. Additionally, a coating may be disposed around a monolithic tile, a filled tile, or a doped tile to maintain integrity and/or increase durability of the tile. For example, tile 102 may comprise a monolithic steel plate coated with rubber.
In another example, filler material 304 may be distributed throughout the fabrication material.
In an embodiment, top portion 602 and bottom portion 604 may be similarly shaped so that there are no overhanging parts when portions 602 and 604 are aligned and bonded. In another embodiment (shown in
In one example, one or more overhanging parts 606 of tile 102(8) may be bonded to one or more complementary overhanging parts 606′ of tile 102(8)′. Bonding of the overhanging parts 606, 606′ may be permanent, semi-permanent or temporary. For example, temporary bonding may be accomplished using Velcro®, magnets, reusable adhesives and/or other means known in the art.
Changes may be made in the above systems and methods without departing from the scope hereof. It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present systems and methods, which, as a matter of language, might be said to fall there between.
This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/885,088, filed Jan. 16, 2007, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1581345 | Healy | Apr 1926 | A |
3992835 | Saveker | Nov 1976 | A |
4339142 | Tanner et al. | Jul 1982 | A |
4902038 | Grover | Feb 1990 | A |
4971356 | Cook | Nov 1990 | A |
5028068 | Donovan | Jul 1991 | A |
5070415 | Matsumoto | Dec 1991 | A |
5080418 | Semple et al. | Jan 1992 | A |
5172953 | Chamberlain | Dec 1992 | A |
5330227 | Anderson | Jul 1994 | A |
5494315 | Heltenburg | Feb 1996 | A |
5511848 | Mobley | Apr 1996 | A |
6065632 | Moore, Jr. | May 2000 | A |
6079741 | Maver | Jun 2000 | A |
6193260 | Homan et al. | Feb 2001 | B1 |
6283527 | Desmarais | Sep 2001 | B1 |
6431629 | Emery | Aug 2002 | B1 |
6716504 | Song | Apr 2004 | B2 |
7159902 | Carty | Jan 2007 | B2 |
7264273 | Ryan et al. | Sep 2007 | B2 |
7281737 | Ellis | Oct 2007 | B2 |
7607692 | Adams et al. | Oct 2009 | B2 |
7616224 | Kaneko | Nov 2009 | B2 |
20030047928 | Gosselin | Mar 2003 | A1 |
20040247884 | Keeney et al. | Dec 2004 | A1 |
20050056655 | Gary | Mar 2005 | A1 |
20060222868 | Mori | Oct 2006 | A1 |
20060270806 | Hale | Nov 2006 | A1 |
20070046011 | Bovy | Mar 2007 | A1 |
20080197614 | Connors et al. | Aug 2008 | A1 |
20080197615 | Connolly | Aug 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080197615 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60885088 | Jan 2007 | US |