Modular windows, including modular windows for aircraft.
Modular windows are used in aircraft to provide natural lighting to the interior thereof. Incorporated herein by reference is U.S. Pat. No. 4,679,610 (Spraggins 1986). The function of window shades is to control the amount of light entering the interior of the aircraft. Typical prior art modular aircraft windows include clear, transparent Lexan® plastic outer lens, a frame, a shade assembly including a shade moveable between and opened and closed position, the shade being substantially opaque. A reveal, clear inner lens and an inboard overlay panel may also be incorporated in typical prior art modular aircraft windows.
As used herein, the terms “SPD film” or “light valve film” mean at least one film or sheet comprising a suspension of particles used or intended for use by itself or as part of a light valve. The light valve film or SPD film comprises either (a) a suspension of particles dispersed throughout a continuous liquid phase enclosed within one or more rigid or flexible solid films or sheets, or (b) a discontinuous phase of a liquid comprising dispersed particles, the discontinuous phase being dispersed throughout a continuous phase of a rigid or flexible solid film or sheet. The light valve film or SPD film may also comprise one or more other layers such as, without limitation, a film coating or non-opaque sheet, or combination thereof, which may provide the light valve film or SPD film with (1) scratch resistance (2) protection from ultraviolet radiation (3) reflection of infrared energy, and/or (4) electrical conductivity for transmitting an applied electric or magnetic field to the activatable material.
U.S. Pat. No. 5,409,734 exemplifies a type of light valve film that is formed by phase separation from a homogeneous solution. Light valve films made by cross-linking emulsions are also known.
One SPD film suitable for use disclosed herein is manufactured by Research Frontiers, Woodbury, N.Y.; and available from Inspect Tech, Ft. Lauderdale, Fla.
The device is a modular window for use in a vehicle, such as an airborne vehicle, is provided. The modular window includes a suspended particle device (“SPD”) film, the SPD film making up one of the lenses of the modular window. The window typically includes an opaque shade movable between an open and closed position, in spaced apart relation to the reveal mounted SPD lens. The opaque shade can move between an open and closed position with the opaque shade. In an opened position, the light passing through the modular window unit is controlled by controlling the opacity of the SPD lens. When the opaque shade is in a closed position, the opaque shade substantially prevents any light from passing through the modular window unit regardless of the opacity of the SPD lens.
The device disclosed includes a modular window with an SPD lens, the window having a separate opaque shade that can be moved between an opened and closed position, the use of a reveal typically to hold and position the SPD lens, and an optional inner lens creating a modular assembly for installation to an aircraft interior to control the amount of light coming into the aircraft.
A modular window for a vehicle, the modular window comprising a shade panel, a shade assembly having an opaque shade member and a lower shade rail, an electric motor, a reveal having an outer perimeter walls defining an outer lens opening, an SPD outer lens dimensioned for engagement with the opening of the reveal; and a drive assembly for engaging the motor and the shade assembly for moving the shade member between an open and closed position.
A method is disclosed for using a concave, modular window unit having an electric motor driven opaque shade and an SPD lens, the shade and lens in spaced, overlapping relation, means, known in the art, for selectively controlling the opacity of the SPD lens, means, known in the art, for controlling the electric motor, the method comprising the steps of: installing the modular window between the aircraft interior and exterior, with the opaque shade typically closer to the aircraft interior; selecting an opacity level for the SPD lens; and selecting a position between or including an open and closed position for the opaque shade.
The outer lens 16, typically including Suspended Particle Device (SPD) or member will respond to the application of an electric potential (provided, for example, from an aircraft electrical system), by selectively changing its opacity in known ways, for example, responsive to a control module 56. The SPD outer lens is electrically actuated and controllable to control the amount of light coming therethrough, responsive to an electric signal traveling through an SPD lens switch 24 (see
Shade assembly 12 typically includes a lower shade rail 34 and an opaque shade 28, which may be the hexagonal shade Duette® material disclosed in the '610 patent attached hereto and incorporated herein by reference or any other material or structure, for example, a “Roman Shade.” Moreover, shade assembly 12 typically engages an electric motor 30 and drive assembly 32 for moving the shade between an opened and closed position (closed position illustrated in
Applicants' novel use of a combination of an opaque shade 28, typically in a shade assembly 12, and an SPD outer lens 16, typically mounted in a reveal 14, provides the cabin occupant the option of substantially complete opacity provided by the maximum light blockage accomplished by lowering the opaque shade (see
Typically, an SPD lens alone, such as SPD outer lens 16, will, even in the maximum opaque position, not provide substantially complete light blockage, especially in bright sunlight. Thus, the user of Applicants' device may selectively raise or lower the opaque shade 28 of shade assembly 12 to accomplish complete opacity (for the part of the outer lens covered by the shade) and thus achieve control of the light received in the interior of the cabin from the outer lens.
Shade assembly 12 may include a shade member 28 with a lower edge attached to a shade rail 34, and an upper edge attached to an upper shade rail 46. The upper shade rail may be engaged with or support a drive assembly 32 engaging an electric motor 30, the drive assembly driving a drive belt 36 (such as a toothed belt) through a drive sprocket 38. A driven sprocket 40 is provided and the lower shade rail, being attached to the drive belt, will move up and down as the motor energizes the drive sprocket and moves the belt up and down in ways known in the art. A driven sprocket 40 is mounted either to the reveal, as in the frameless, monocoque embodiment illustrated in
As seen in
Typical of the prior art provide a frame, seen in
In a preferred embodiment, the upper shade rail 46 is provided for mounting the drive and control components thereto, which upper shade rail also engages the upper edge of shade 28. In this embodiment, the shade rail serves the mounting and locating function for the shade itself and it in turn is engaged to or with the reveal, typically a box insert 15.
A frame 42 typically rectangular may be provided, typically made up of four members, such as the upper member, lower member, and two side members illustrated in
In an alternate preferred embodiment, inner lens 18 may be comprised of an SPD film member and would, in a preferred embodiment, be “sandwiched” as is the outer film member 16A. In yet another embodiment, both the inner and outer lens may include SPD film. In yet another embodiment, the opaque shade and related structure is omitted and the inner and/or outer lens includes SPD film.
In practice, a modular unit 10 is installed in an aircraft interior in ways known in the trade, typically adjacent the passenger compartment or seat, with shade panel 52 on the inside, and with reveal 14 at, near or adjacent an outer window of the aircraft fuselage (not shown). Opaque shade 28 is on the interior side and is typically rectangular and large enough to overlap the SPD lens 16 (when the opaque shade is lowered or closed), which is typically on the outside of the unit and may be round, oval or rectangular. The inner lens may be the same shape as the outer lens or different and may be larger. The opaque shade is typically larger than the longest dimension of the largest of the two lenses (when the shade is in the closed position). Furthermore, the modular window is installed and used by the passenger or flight attendant by operating the switches and selectively determining an opacity for the SPD lens, utilizing one switch 24A for obtaining a darker (greater opacity) lens or a second switch 24A for obtaining a lighter (less opacity) outer lens. The passenger or flight attendant may also selectively control an opacity level for the entire modular unit by raising and lowering the opaque shade using switches 22A and 22B to raise and l9ower the opaque shade.
In all of the embodiments set forth herein and as seen in
The use of the novel SPD lens with this electronic control mechanism may be used in the embodiment illustrated herein; that is, one having an electric drive. However, an embodiment of the shade enclosed herein may be used with a window that has an electric drive moving the shade between an opened and closed position as well as manual override to move the shade when the electricity is down. Electronically driven aircraft window shades with manual override are known in the art. See, for example, U.S. Pat. No. 6,230,784, entitled “Electrically Operated Aircraft Window With Sliding Takeup Spool,” filed Sep. 24, 1998, and incorporated herein by reference.
Further, a manual version (no electric drive) of the window shade operating mechanism may also be used with the SPD lens as set forth herein. Manually operated window shade mechanisms are known in the art. See, for example, U.S. Pat. Nos. 4,679,610; 5,082,053; 4,998,576; 5,662,152; and 6,481,486, all of the foregoing being incorporated herein by reference. A drive assembly may be either engaged with an electric motor (as illustrated herein) or a means for manual movement, such as a handle found in the foregoing patents.
The reveal and/or the shade panel may be made from multiply prepreg fiberglass skin with 3 to 4 layers of 181 fiberglass (approx. 3/32 inch thick) molded as necessary.
Although the invention has been described in connection with the preferred embodiment, it is not intended to limit the invention's particular form set forth, but on the contrary, it is intended to cover such alterations, modifications, and equivalences that may be included in the spirit and scope of the invention as defined by the appended claims.
This application is a continuation of prior U.S. application Ser. No. 13/361,939, filed Jan. 30, 2012, which claimed priority from U.S. application Ser. No. 12/420,151, filed Apr. 8, 2009, which claimed priority from U.S. Provisional Application Ser. No. 61/131,311, filed Jun. 6, 2008.
Number | Date | Country | |
---|---|---|---|
61131311 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13361939 | Jan 2012 | US |
Child | 13848806 | US | |
Parent | 12420151 | Apr 2009 | US |
Child | 13361939 | US |