1. The Field of the Invention
This disclosure relates to systems, methods, and apparatus for connecting one or more extension divider walls or wall modules to structural components of a building.
2. Background and Relevant Art
Commonly, builders or architects divide the interior space of residential and commercial buildings into smaller areas. For example, a builder can divide the floor plan in a commercial building into discrete working areas, such as reception areas, offices, conference rooms, etc. To divide the floor space, the builder typically installs divider walls, which define (and separate) the discrete working areas within the building. Such divider walls can be permanent, semi-permanent, or temporary. For instance, the builder or occupants of the building can disassemble and rearrange semi-permanent and/or temporary divider walls to reconfigure the working areas in the building.
In some instances, the building can include permanent or structural divider walls. For example, a concrete wall that may carry structural load also can at least partially divide or segment the interior space of the building into smaller, individual spaces. The builder or designer may choose to cover or conceal such structural wall for aesthetical reason as well as to accommodate various utility lines.
Moreover, the builder or designer can choose to add divider walls and wall segments to the divider formed by the structural wall, to further subdivide the interior space of the building. Such extension walls can have rigid connections with the structural divider wall. Accordingly, during a seismic event, the extension walls can move together with the structural wall and/or together with other structural portions of the building (e.g., floor and/or ceiling), which in some cases may damage the extension walls.
Accordingly, there are a number of disadvantages in connecting divider walls to structural components of a building that can be addressed.
Implementations of the present disclosure provide systems, methods, and apparatus for providing a divider wall by connecting one or more wall modules (i.e., extension divider walls) to a structural component of a building. Particularly, at least one implementation includes one or more connections or connection elements that can allow the extension divider wall to couple with a structural wall of a building. For instance, the extension divider wall can comprise a frame configured to be connected to the structural wall. The frame can include one or more supports (e.g., vertical and horizontal supports) and/or connection elements. In some embodiments, the extension divider wall can extend away from an end of the structural wall. Accordingly, the structural wall, together with one or more extension divider walls, can form a divider wall installation and can divide the floor space of a building into one or more individual spaces.
Additional features and advantages of exemplary implementations of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the disclosure can be obtained, a more particular description of the disclosure briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. For better understanding, the like elements have been designated by like reference numbers throughout the various accompanying figures. Understanding that these drawings depict only typical embodiments of the disclosure and are not therefore to be considered to be limiting of its scope, the disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Before describing the present disclosure in detail, it is to be understood that this disclosure is not limited to parameters of the particularly exemplified products, processes, kits, and/or methods, which may, of course, vary. It is also to be understood that the terminology used herein is only for the purpose of describing particular embodiments of the present disclosure, and is not intended to limit the scope of the disclosure in any manner.
Additionally, the terms “including,” “having,” “involving,” “containing,” “characterized by,” and variants thereof (e.g., “includes,” “has,” and “involves,” “contains,” etc.) as used herein, including the claims, shall be inclusive and/or open ended, shall have the same meaning as the word “comprising” and variants thereof (e.g., “comprise” and “comprises”), and does not exclude additional, unrecited elements or method steps, illustratively.
It will be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a “vertical support” includes one, two, or more vertical supports.
As used in the specification and appended claims, directional terms, such as “top,” “bottom,” “left,” “right,” “up,” “down,” “upper,” “lower,” “proximal,” “distal,” and the like are used herein solely to indicate relative directions and are not otherwise intended to limit the scope of the disclosure or claims. Similarly, terms such a “horizontal,” “vertical,” “lateral,” and the like are used herein solely to indicate relative orientation and are not otherwise intended to limit the scope of the disclosure or claims.
Where possible, like numbering of elements have been used in various figures. Furthermore, multiple instances of an element and or sub-elements of a parent element may each include separate letters appended to the element number. For example two instances of a particular element “120” may be labeled as “120a” and “120b”. In that case, the element label may be used without an appended letter (e.g., “120”) to generally refer to instances of the element or any one of the elements. Element labels including an appended letter (e.g., “120a”) can be used to refer to a specific instance of the element or to distinguish or draw attention to multiple uses of the element. Furthermore, an element label with an appended letter can be used to designate an alternative design, structure, function, implementation, and/or embodiment of an element or feature without an appended letter. Likewise, an element label with an appended letter can be used to indicate a sub-element of a parent element.
Various aspects of the present devices and systems may be illustrated by describing components that are coupled, attached, and/or joined together. As used herein, the terms “coupled”, “attached”, and/or “joined” are used to indicate either a direct connection between two components or, where appropriate, an indirect connection to one another through intervening or intermediate components. In contrast, when a component is referred to as being “directly coupled”, “directly attached”, and/or “directly joined” to another component, there are no intervening elements present. Furthermore, as used herein, the terms “connection,” “connected,” and the like do not necessarily imply direct contact between the two or more elements.
Various aspects of the present disclosure may be illustrated with reference to one or more exemplary embodiments. As used herein, the term “exemplary” means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments disclosed herein.
It will also be appreciated that where a range a values (e.g., less than, greater than, at least, or up to a certain value, or between two recited values) is disclosed or recited, any specific value or range of values falling within the disclosed range of values is likewise disclosed and contemplated herein.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present disclosure pertains. While a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present disclosure, only example materials and methods are described herein.
Implementations of the present disclosure provide systems, methods, and apparatus for providing a divider wall by connecting one or more wall modules (i.e., extension divider walls) to a structural component of a building. Particularly, at least one implementation includes one or more connections or connection elements that can allow the extension divider wall to couple with a structural wall of a building. For instance, the extension divider wall can comprise a frame configured to be connected to the structural wall. The frame can include one or more supports (e.g., vertical and horizontal supports) and/or connection elements. In some embodiments, the extension divider wall can extend away from an end of the structural wall. Accordingly, the structural wall, together with one or more extension divider walls, can form a divider wall installation and can divide the floor space of a building into one or more individual spaces.
In accordance with at least one implementation, a divider wall installation can include a wall module connected to a structural wall. In at least one implementation, the wall module can include a frame. The frame can include one or more vertical supports and one or more horizontal supports. One will appreciate that reference to “horizontal” and “vertical” is illustrative only and that alternative orientations are also contemplated herein. In at least one implementation, one or more vertical supports can be coupled to the structural wall to connect the frame thereto. In at least one implementation, the one or more horizontal supports can be coupled to the structural wall to connect the frame thereto. For instance, the frame can include one or more cross-members coupled to the structural wall. Specifically, the cross-members can connect to one or more major sides or faces of the structural wall (e.g., along the length thereof) and can connect to one or more vertical supports (e.g., at an end thereof).
In some implementations, one or more horizontal supports can extend between and/or connect opposing vertical supports (e.g., providing or enhancing structural rigidity to the frame). For instance, the frame can include one or more horizontal connectors disposed between two vertical supports of the frame. In some implementations, the horizontal supports can include one or more torsion bars connected to the vertical supports. The torsion bar(s) can increase rigidity of the frame and provide additional structural support thereto. Particularly, the torsion bar can restrain one vertical support from rotating or twisting relative to another vertical support, and vice versa. Additionally or alternatively, the one or more horizontal supports can include one or more stringers configured to receive one or more panels such that the one or more panels are secured to the frame.
In some implementations, the extension divider wall can include one or more panels secured to the frame. The panel(s) can conceal at least a portion of the frame (including one or more elements thereof) as well as any number of internal elements or components (e.g., utility lines, cables, plumbing, etc.) that may be secured to the frame or disposed within the frame (e.g., within the space formed between opposing panels) from at least one vantage point. For instance, in at least one implementation, the one or more panels can conceal at least a portion of the one or more horizontal supports and/or vertical supports from a front and/or side facing view. Similarly, the one or more panels can conceal at least a portion of the structural wall (e.g., from a front and/or side facing view). In certain implementations, the panel(s) can span across one or more sides of the frame and/or across one or more sides of the structural wall (e.g., including any gap therebetween). In one or more implementations, the panel(s) can also conceal at least a portion of the end of the frame and/or structural wall.
In one or more implementations, the panel(s) can conceal at least a portion of opposing sides of the frame and/or structural wall. For instance, a plurality of panels can be secured to the frame on both sides of the structural wall. Similarly, a plurality of panels can be secured to the frame on both sides of the frame. In at least one implementation, a plurality of panels can be secured to the frame on both sides of the structural wall and the frame. One will appreciate that an installer may have need to cover one or more sides of the frame and/or structural wall depending on the configuration of the space in the building. Accordingly, the extension divider wall can be configured to accommodate a variety of design schemes.
Thus, an installer can secure a single or multiple panels to the frame in a manner that conceals or covers at least a portion of the divider wall installation. For instance, an installer can secure a single or multiple panels to the frame in a manner that conceals or covers one side, face, and/or end of the extension divider wall and/or the structural wall. Alternatively, the panels can conceal or cover multiple sides (illustratively, a first major side or face, a second major side or face, and/or an end) of the extension divider wall and/or the structural wall. Furthermore, in some instances, the panel(s) can be connected to the structural wall.
In some implementations, one or more vertical brackets can connect to the structural wall (e.g., to the major side and/or to the opposing major sides of the structural wall). In at least one implementation, the one or more vertical brackets can provide a vertical support on the structural wall opposite the frame. In one or more implementations, a vertical support can be connected to the structural wall on a first end thereof (e.g., the end from which the wall module extends) and a vertical bracket can be connected to the structural wall at a distance from the first end (e.g., on a second end thereof, opposite the first end). In some implementations, the vertical support can be separated from the first end of the structural wall by a distance. One or more horizontal supports can connect and/or extend between the vertical brackets and one or more vertical supports of the frame. Accordingly, the frame of the extension divider wall can be coupled to the structural wall by means of the one or more vertical brackets and/or vertical supports connected thereto.
In some implementations, the frame can be secured to a floor of the building with one or more floor brackets. As used herein, a floor can include a structural support surface or structural floor, including a sub-floor or ground level, as well as an elevated or suspended floor. Accordingly, in some embodiments, the frame can rest upon and/or be connected to a structural floor and/or a suspended floor of the building.
Various implementations of the present disclosure involve connections. For instance, components, elements, members, and/or features described herein can be connected, coupled, and/or attached to one another by various means and/or mechanisms. In at least one implementation, one or more fasteners can be used to accomplish and/or effectuate such connections. Such fasteners are known in the art and can include such means as screws, bolts, nuts, washers, lock-washers, nails, rivets, clamps, clasps, clips, grips, straps, ties, latches, brackets, interlocking members, adhesives, and any other suitable fastener.
Additional or alternative implementations can include flexible connections that can allow at least a portion of the extension divider wall to move relative to the building's structural components (e.g., relative to the structural divider wall, ceiling, floor, etc.). Consequently, in the event that the structural components of the building move relative to each other, such as during a seismic event, the flexible connections can minimize, reduce, or eliminate damage to the extension divider walls or the structures to which the extension walls are secured.
Also, the extension divider walls can include modular walls and wall modules that can removably connect to the structural divider wall, as described below in further detail. Likewise, the panels can removably connect to the divider wall (i.e., to the portion of the divider wall formed by the structural wall and/or to the portion of the divider wall formed by the modular wall). Moreover, in at least one implementation, a panel can span across at least a portion of the structural wall and a across at least a portion of the divider wall (e.g., with no gap therebetween).
Turning now to the figures,
In some implementations, as noted above, the frame 110 can connect to the structural wall 100. For instance, vertical support 120b can be connected to the first end 102 of structural wall 100. In an alternative implementation, vertical support 120b can be separated from the first end 102 of structural wall 100 by a distance. One or more cross-members 160 can connect or be fastened to the structural wall 100 as well as to one or more of the vertical supports 120 (e.g. to the vertical support 120b), thereby coupling the frame 110 to the structural wall 100. Specifically, the cross-members 160 can connect to one or more major sides or faces of the structural wall 100 along the length thereof and can connect to the vertical support 120b at an end thereof.
In one example, the cross-members 160 can have an approximately horizontal orientation. It should be appreciated, however, that the installer can connect the cross-members 160 to the structural wall 100 in any number of suitable positions and/or orientations, which can vary from one implementation to another. Moreover, the installer can secure multiple cross-members 160 on a single side or on opposing sides of the structural wall 100, and the cross-members 160 can connect to one or more of the vertical supports 120, such as to the vertical support 120b.
In one exemplary implementation, one or more vertical brackets, such as a bracket 170, can connect to the structural wall 100 (e.g., to the major side and/or to the opposing major sides of the structural wall 100). Consequently, the installer can secure one or more stringers 150b to the vertical bracket 170 at a first end of the stringer 150b and to the vertical support 120b at a second, opposing end of the stringer 150b. As such, the stringers 150b also can couple the frame 110 to the structural wall 100. It should be appreciated that the stringers 150b can be similar to or the same as the stringers 150a.
The vertical bracket 170 can have any number of suitable configurations that can allow the installer to secure one or more stringers 150b thereto. Moreover, the vertical bracket 170 can connect to one or more of the face(s) and/or to any other side of the structural wall 100, as may be suitable for a particular installation. In one implementation, as illustrated in
Furthermore, the installer can connect or otherwise secure the stringers 150b to the vertical wall 174 of the vertical bracket 170. Accordingly, the stringers 150b can connect the frame 110 to the structural wall 100 through the connection of one or more stringers 150b to the vertical bracket 170 and through the connection of the vertical bracket 170 to the structural wall 100. In one or more implementations, however, the stringers 150b can be otherwise integrated with the vertical bracket 170 or can otherwise connect directly to the structural wall 100.
Similarly, the stringers 150a can connect to the vertical supports 120. For instance, the stringers 150a can connect to the vertical support 120a at one or more similar or the same locations as the stringers 150b. In other words, the stringers 150a can align with the stringers 150b, such that the stringers 150a are positioned approximately at the same heights as the stringers 150b (from the same reference point) and in approximately the same orientation (i.e., parallel to each other). Accordingly, connectors positioned on the respective stringers 150a, 150b can connect a single panel 210 that can span from the frame 110 onto the structural wall 100. In other implementations, the stringers 150a, 150b can be positioned at different heights.
In additional or alternative implementations, the stringers 150a, 150b can connect multiple panels 210 (see e.g.,
In some implementations, the horizontal supports 130 also can include one or more torsion bars, such as a torsion bar 180 connected to the vertical supports 120a, 120b. The torsion bar 180 can increase rigidity of the frame 110 and provide additional structural support thereto. Particularly, the torsion bar 180 can restrain the vertical support 120a from rotating or twisting relative to vertical support 120b and vice versa.
In some instances, the building may include a suspended floor, which can be set above a structural floor. For instance, one example can have a suspended floor 190 positioned at a distance above a structural floor 200. The structural floor 200 can be a concrete floor or another subfloor of a building. Furthermore, implementations of the present disclosure can include one or more wall modules 220 and/or frames 110 that can be set on the structural floor 200 and/or on the suspended floor 190. For instance, wall module 220 (or frame 110 thereof) can be set or secured to structural floor 200 by means of one or more floor brackets 240, such as floor bracket 240a secured to vertical support 120a of frame 110 and/or floor bracket 240b secured to vertical support 120b of frame 110.
As illustrated in
It should be appreciated that in additional or alternative implementations the installer can position the frame 110 on the suspended floor 190 in a manner that forms a single divider wall installation 230 together with the structural wall 100. In other words, in at least one implementation, the panels 210 connected to the structural wall 100 and to the frame 110 can abut the suspended floor 190 and span upward on the frame 110 and the structural wall 100 (e.g., to the top(s) thereof). Alternatively or additionally, the panels can extend below the suspended floor 190 along the structural wall 100 and/or along the frame 110. In any event, the wall module 220 that includes the frame 110 and the structural wall 100 together can form a single or substantially uniform divider wall 230 that can at least partially define an individual space in the building.
As described above, one or more panels can connect to the frame 110 and/or to the structural wall 100. Moreover, the panels can span across one or more sides of the frame 110 and/or across one or more sides of the structural wall 100 as well as any gap therebetween.
Furthermore, in at least one implementation, the panels 210 can at least partially conceal or at least partially cover at least a portion of the frame 110 and/or structural wall 100. For instance, a first panel 210 may span at least a portion of a face or other portion of the frame 110 and at least a portion of a face or other portion of the structural wall 100 such that an onlooker may not distinguish the structural wall 100 from the wall module 220 (e.g., a single, large, continuous panel that spans and/or covers a portion or substantially all of the viewable surface of a major side or face of the structural wall 100 and the frame 110; from the top thereof to the bottom thereof and/or from a first side thereof to an opposite side thereof). Alternatively, a panel 210 may otherwise span at least a portion of a face and/or surface portion, or other portion of the frame 110 and the structural wall 100 (e.g., a single, large, continuous panel that spans and/or covers substantially all of a portion (for example, a top portion or a bottom portion) of the viewable surface of a major side or face of the structural wall 100 and the frame 110).
Moreover, a panel 210 may span at least a portion of a face or other portion of the frame 110 and/or the structural wall 100 such that an onlooker can distinguish the structural wall 100 from the wall module 220 (e.g., a panel that spans and/or covers a surface of a major side or face of the structural wall 100 or the frame 110, but does not span both structures). For instance, a panel 210 may at least partially conceal or cover a top portion, a bottom portion, and/or substantially all of the viewable surface (e.g. floor-to-ceiling) of a major side or face of the structural wall 100 or the frame 110). In such a configuration, the structural wall 100 and the wall module 220 may appear to certain onlookers to comprise a plurality of wall modules 220 of an assembled modular wall.
In some implementations, the panel(s) 210 can be configured to appear as an extension of a structural wall 100 on one or more sides or faces of the structural wall 100. In addition (or in the alternative), the panel(s) 210 can be configured to make the structural wall 100 (or a portion thereof) indistinguishable from the wall module 220, frame 110, or a portion thereof. For example, the frame 110 of the wall module 220 can be connected to a first side of the structural wall 100 (see e.g.,
In any case, the panels 210 can envelop or wrap around the frame 110 and structural wall 100, such as to conceal the structural wall 100 and the frame 110 from viewers. Accordingly, the builder or designer can convert or repurpose the structural wall 100, which may be otherwise aesthetically unappealing, as a divider wall that can include any number of decorative and/or structural panels 210, which can enhance the overall aesthetic of the wall. Furthermore, as noted above, by connecting the panels 210 and/or the wall module 220 to the structural wall 100, the installer can utilize the structural wall 100 as a portion of a divider wall. Furthermore, connection between the structural wall 100 and the wall module 220 can be seamless, such that an onlooker may not distinguish the structural wall 100 from the wall module 220 (e.g., after an installer connects the panels 210 to the frame 110 and/or to the structural wall 100, as described below).
In an alternative implementation, the wall module 220 can be configured as an extension of the structural wall 100 on one or more sides or faces of the structural wall 100. For example, the installer can connect or couple the frame 110 of the wall module 220 to one or more sides of the structural wall 100 such that an onlooker can distinguish the structural wall 100 from the wall module 220 (e.g., after an installer connects the panels to the frame 110 so as to cover the frame 110 but not the structural wall 100, as described below). Thus, in at least one implementation, the structural wall 100 and the wall module 220 may appear to certain onlookers to comprise a plurality of wall modules 220 of an assembled modular wall.
In some implementations, one or more sides of the frame 110 and/or structural wall 100 (or respective portion(s) thereof) can be covered and/or concealed by one or more panels 210. For instance, as illustrated in
Similarly, panels 210 can cover and/or conceal a first side of the frame 110 and/or structural wall 100; but not a second side of the frame 110 and/or structural wall 100 (see e.g.,
Implementations of the present disclosure can also include assemblies and/or kits (e.g., configured to be assembled into a wall module). Accordingly, at least one implementation can include a plurality of modular wall or wall module elements and/or components configure to, operable to, adapted for, and/or capable of being assembled into a wall module 220. Those skilled in the art will appreciate that the combination of such modular wall or wall module elements and/or components into kits is often preceded by designing a specific divider wall, comprising a structural wall 100 and wall module 220. Accordingly, such kits can be designed and/or configured to be assembled into a wall module 100 configured to be connected to a structural wall 220.
While various aspects, implementations, and embodiments have been disclosed herein, other aspects, implementations, and embodiments are contemplated. The various aspects, implementations, and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting. It is noted that products, processes, kits, and methods according to certain implementations of the present disclosure may include, incorporate, or otherwise comprise properties, features, components, members, and/or elements described in other implementations described and/or disclosed herein. Thus, reference to a specific feature in relation to one implementation should not be construed as being limited to applications only within said implementation. In addition, various implementations can be combined to form additional implementations without departing from the scope of the invention or this disclosure.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described implementations are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. While certain implementations and details have been included herein and in the attached invention disclosure for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the products, processes, kits, and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. Various modifications that fall within the scope of the appended claims will be apparent to one skilled in the art.
The present invention is a 35 U.S.C. § 371 U.S. National Stage of PCT Application No. PCT/US2014/064856 entitled MODULAR WRAP-AROUND WALL filed Nov. 10, 2014, which claims the benefit of priority to U.S. Provisional Application No. 61/906,656, entitled MODULAR WRAP-AROUND WALL, filed Nov. 20, 2013. The entire content of each of the aforementioned patent applications is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/064856 | 11/10/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/077075 | 5/28/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4631881 | Charman | Dec 1986 | A |
5065559 | Zegel | Nov 1991 | A |
5175969 | Knauf | Jan 1993 | A |
5341615 | Hodges | Aug 1994 | A |
5406760 | Edwards | Apr 1995 | A |
5638650 | Edwards | Jun 1997 | A |
5943834 | Jeffers | Aug 1999 | A |
6223485 | Beck | May 2001 | B1 |
6276102 | Shipman | Aug 2001 | B1 |
6425219 | Barmak | Jul 2002 | B1 |
6851226 | MacGregor | Feb 2005 | B2 |
7681365 | Klein | Mar 2010 | B2 |
7810289 | Montgomery | Oct 2010 | B2 |
8024901 | Gosling | Sep 2011 | B2 |
20020108330 | Yu | Aug 2002 | A1 |
20020139060 | Contreras | Oct 2002 | A1 |
20040020137 | Battey | Feb 2004 | A1 |
20040031224 | Elderson | Feb 2004 | A1 |
20040035074 | Stanescu | Feb 2004 | A1 |
20040177573 | Newhouse | Sep 2004 | A1 |
20060059806 | Gosling | Mar 2006 | A1 |
20090294613 | Cline | Dec 2009 | A1 |
20100066148 | Matthews | Mar 2010 | A1 |
20100275548 | Wright | Dec 2010 | A1 |
20110232218 | Hynes | Sep 2011 | A1 |
20130025220 | Yu | Jan 2013 | A1 |
20130067839 | Zimmerman | Mar 2013 | A1 |
20140220874 | Meyer | Aug 2014 | A1 |
Entry |
---|
International Search Report and Written Opinion for PCT/US2014/064856 dated Feb. 12, 2015. |
Zeiger. Henkel Headquarters. Architect. Dec. 2009. [retrieved on Jan. 14, 2015] Retrieved from the internet. <URL: http://www.architectmagazine.com/office-and-business/henkel-headquarters-scottsdale-arizonaaspx> entire document. |
Supplementary Search Report for application No. 14843192.7 dated May 17, 2017. |
Number | Date | Country | |
---|---|---|---|
20160251851 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61906656 | Nov 2013 | US |