The invention relates to the design of selectively operable friction clutches in a marine transmission to provide forward and reverse drives to the propeller shaft of a vessel.
U.S. Pat. No. 2,851,895 Aschauer describes a marine transmission drive that has been extensively used. It is intended that the gearing and clutch locations shown on U.S. Pat. No. 2,851,895 be utilized for this invention. These gear and shaft locations are shown on end view FIG. 3. Clutches are mounted on the input shaft and countershaft in transverse coplanar relationship, shown on FIGS. 1 and 2 of U.S. Pat. No. 2,851,895.
U.S. Pat. No. 2,851,895, filed 1953, describes a marine reverse and reduction gear. FIG. 1 shows how input power from an engine drives two input members of multiple plate oil lubricated friction clutches in reverse rotations, as shown by FIGS. 2 and 3. The output of an engaged clutch drives 35 for forward and pinion 58 for reverse. The pinions mesh with output gear 36 on shaft 37 to drive a propeller either forward or reverse. Cooling oil passes through small holes in the input members plates drive.
It is to be noted that the clutches utilized in the aforementioned patent are engaged by applying oil pressure to rotating annular pistons housed in their respective cylinders. Clutch speed is generally at engine speed with the forward and reverse clutches rotating in opposite direction. Over the past fifty years, engine speeds have increased substantially, some now up to 3000 RPM. Clutch apply piston pressure and thrust caused by centrifugal force have risen as clutch speed squared and now require significant release spring effort to hold a clutch not engaged in the released position.
The invention relates to the engaging means for forward and reverse wet multiple plate clutches in a marine transmission, using nonrotating hydraulic activated pistons to provide clutch engagement through thrust bearings to the rotating plate stacks. Centrifugal piston thrust and its release spring force is avoided. The invention provides simplified clutch modulation over a wider speed range and improved confined plate cooling, including cooling pumping action. A clutch plate stack may be compressed from both ends utilizing helical gear thrust, as will be further developed. Rotating piston outer diameters usually mimic the friction plate outer diameter.
Referring to
For the marine transmission the difference between this application and application Ser. No. 11/364,783 is the use of nonrotating fluid engaged pistons 33 as the forward and reverse clutch engaging means. Piston 33 is retained in housing 15 and prevented from rotation with respect to housing 15 by not shown means. Seals 34 and 35 retain fluid pressure applied through passage 53 in housing 15 to engage the clutch plate stack through thrust bearing 32. The forward and reverse clutch pistons may or may not be the same outside diameter but the sum of their radii must not exceed the sum of the transfer gears 29 radii.
Oil is introduced into shaft 10 through port 45 in housing end cover wall 15.
The pumping passages 52 are sealed by the engaged plate stack to maintain a pressure head under them, an advancement over the drilled holes used in U.S. Pat. No. 2,851,895.
During continuous clutch slip utilizing hydroviscous power transmission, the complete confined annular chamber may be filled with oil pressure raised to drive the required oil flow through the entire stack friction plate face grooving. Operating a released clutch with the oil filled confined annular chamber could provide objectional drag where an air/oil mix may not.
A marine gear transmission may require high level clutch torque for full engine power or lower level varying torque for clutch modulation when trolling, acting to provide constant propeller speed with variation of engine input speed or clutch friction coefficient. This requires continuous slipping of an oil cooled clutch, to tow a load or, during docking. Clutch engaging pressure is regulated to sense and maintain constant propeller speed.
In a multiple plate clutch having a fluid operated movable piston for effecting clutch operation by compression of the plates, it is known that the compressive force degrades due to tooth friction of both the friction plates and the spacer plates. This is due to plate tooth friction losses between the teeth or lugs and their support members, and tends to limit the number of plates usable as the compressive force degrades, as well as reduction of the energy absorption per plate. The obvious answer to compress the plate stack from both ends has not been achieved because of complexity and cost.
Refer to
Pulse engagement plate energy absorption for a crash back occurrence need be examined.
It is anticipated that screws bearing against the piston may provide:
This application is a continuation-in-part of U.S. patent application Ser. No. 11/364,783, filed Feb. 27, 2006, and now U.S. Pat. No. 7,793,768.
Number | Name | Date | Kind |
---|---|---|---|
2851895 | Aschauer | Sep 1958 | A |
4186829 | Schneider et al. | Feb 1980 | A |
4607736 | Kelley | Aug 1986 | A |
4664240 | Majima et al. | May 1987 | A |
20050049106 | Stevenson et al. | Mar 2005 | A1 |
20080047800 | Borgerson et al. | Feb 2008 | A1 |
20080214355 | Capito et al. | Sep 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100212442 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11364783 | Feb 2006 | US |
Child | 12592295 | US |