Modulated physiological sensor

Information

  • Patent Grant
  • 11877824
  • Patent Number
    11,877,824
  • Date Filed
    Monday, March 22, 2021
    3 years ago
  • Date Issued
    Tuesday, January 23, 2024
    3 months ago
Abstract
A modulated physiological sensor is a noninvasive device responsive to a physiological reaction of a living being to an internal or external perturbation that propagates to a skin surface area. The modulated physiological sensor has a detector configured to generate a signal responsive to the physiological reaction. A modulator varies the coupling of the detector to the skin so as to at least intermittently maximize the detector signal. A monitor controls the modulator and receives an effectively amplified detector signal, which is processed to calculate a physiological parameter indicative of the physiological reaction.
Description
BACKGROUND OF THE INVENTION

From a physiological perspective, the human body comprises a set of interacting systems, each having specific functions and purposes. These systems maintain the body's internal stability by coordinating the response of its parts to any situation or stimulus that would tend to disturb its normal condition or function. The nervous system includes the central nervous system and the peripheral nervous system. The central nervous system is the brain and the spinal cord. The musculoskeletal system includes the skeleton and attached muscles and includes bones, ligaments, tendons, and cartilage. The circulatory system includes the heart and blood vessels, including arteries, veins and capillaries. The respiratory system includes the nose, trachea and lungs. The gastrointestinal system includes the mouth, esophagus, stomach, intestines, liver, pancreas and gallbladder. The integumentary system includes the skin, hair, nails, sweat glands and sebaceous glands. The urinary system includes the kidneys and bladder. The immune system includes white blood cells, thymus and lymph nodes. The endocrine system includes the pituitary, thyroid, adrenal and parathyroid glands.


Various sensors may be applied for analyzing and measuring the processes occurring in the above-cited physiological systems and for generating physiological parameters indicative of health or wellness as a result. As one example, a pulse oximetry sensor generates a blood-volume plethysmograph waveform from which oxygen saturation of arterial blood and pulse rate may be determined, among other parameters. As another example, an acoustic sensor may be used to detect airflow sounds in the lungs, bronchia or trachea, which are indicative of respiration rate.


SUMMARY OF THE INVENTION

The physiological systems cited above maintain the stability, balance and equilibrium of a living being. Modulation may be advantageously used to accentuate detection of processes occurring within these physiological systems. An example of natural modulation is tissue vibration in the trachea due to the inflow and outflow of air between the lungs and the nose and mouth. This vibration creates sound waves at a higher frequency than the underlying respiration. An acoustic sensor utilizing a piezoelectric device attached to the neck is capable of detecting these sound waves and outputting a modulated sound wave envelope that can be demodulated so as to derive respiration rate. An acoustic respiration rate sensor and corresponding sensor processor is described in U.S. patent application Ser. No. 12/904,789, filed Oct. 14, 2010, titled Acoustic Respiratory Monitoring Systems and Methods, assigned to Masimo Corporation, Irvine, CA (“Masimo”) and incorporated by reference herein.


Another example of natural modulation is pulsatile arterial blood flow at a peripheral tissue site, such as a fingertip, resulting from pressure waves generated by the heart. An optical sensor generates a plethysmograph waveform responding to changes in a light absorption due to the pulsatile blood flow so as to measure blood composition, such as hemoglobin constituents. This plethysmograph also modulates a respiration envelope that can be demodulated so as to derive respiration rate.


An example of artificial modulation is a physiological sensor having an accelerometer and a vibration element mounted on a substrate so that the vibration element is in mechanical communications with the accelerometer. An interface communicates at least one axis of the accelerometer signal to a monitor. The substrate is attached to the skin surface of a living being, and the vibration element is activated so as to modulate the skin surface coupling at a modulation frequency. In an embodiment, an artificially-modulated sensor is responsive to respiratory-induced movements at the skin surface.


One aspect of a modulated physiological sensor is a noninvasive sensor responsive to a physiological reaction of a living being to an internal or external perturbation that propagates to a surface area of the living being. The modulated physiological sensor has a detector configured to communicate with a surface area of a living being so as to generate a signal responsive to a physiological reaction of the living being to the perturbation. A modulator varies the coupling of the detector to the surface area so as to at least intermittently maximize the detector signal. A monitor controls the modulator and receives a detector signal so as to calculate a physiological parameter indicative of a physiological state of the living being.


In various embodiments, the modulator is a vibration element that mechanically accentuates the coupling of the detector to the surface area. A substrate co-mounts the detector and the vibration element. An attachment releasably affixes the substrate, detector and vibration element to the surface area. In an embodiment, the detector is an accelerometer and the vibration element is a coin motor. The substrate is a circuit board that mechanically mounts and electrically interconnects the accelerometer and coin motor. The attachment is a tape having a sticky side that attaches to the surface area and a housing side that encloses the circuit board.


Another aspect of a modulated physiological sensor is a sensing method the provides a detector responsive to a physiological wave generated within a living being that propagates to a skin surface and couples the detector to the skin surface. The detector coupling is modulated so as to generate a modulated detector output indicative of the physiological wave. The detector signal is demodulated so as to derive a physiological signal, and a physiological parameter is determined from the physiological signal. In various embodiments, the modulation is vibration of the detector by co-mounting the detector and a vibration element. The detector and the vibration element may be co-mounted to a common substrate, which is attached to the skin surface. A second detector and a second vibration element may be mounted to the common substrate and isolated from the combination detector and vibration element.


A further aspect of a modulated physiological sensor is a detector means for responding to physiological propagations reaching a skin surface of a living being and a modulator means for varying the coupling of the detector means to the skin surface. A monitor demodulates a sensor signal from the detector means so as to analyze the physiological propagations and generate a physiological parameter output. In various embodiments, a substrate means mounts the detector means and the modulator means and an attachment means secures the substrate to the skin surface. A control signal from the monitor sets a frequency of the modulator means above a low frequency cutoff of the detector means. In an embodiment, the modulator means is a vibration element, the detector means is multiple detectors, the modulator means is multiple vibration elements and the substrate means incorporates at least one isolation element so as to isolate detector and vibration element pairs. In an embodiment, the vibration element remotely modulates the detector via an acoustic wave.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a general block diagram of a modulated physiological sensor in communications with the physiological systems of a living being;



FIG. 2 is general block diagram of a modulated physiological sensor embodiment;



FIGS. 3A-D are amplitude vs. time and corresponding amplitude vs. frequency graphs of a physiological reaction and a corresponding modulated and detected reaction;



FIG. 4 is a general block diagram of a vibration-modulated physiological sensor embodiment;



FIG. 5 is a general block diagram of a multi-element, vibration-modulated sensor embodiment;



FIGS. 6A-F are side views of various modulated physiological sensor embodiments;



FIG. 7 is a general block diagram of a vibration-accelerometer physiological sensor embodiment;



FIG. 8 is a detailed block diagram of a vibration-accelerometer physiological sensor embodiment;



FIG. 9A-B are assembled and exploded perspective views, respectively, of a vibration-accelerometer physiological sensor embodiment; and



FIG. 10 is a graph of a vibration-accelerometer physiological sensor output versus time illustrating three-axis of respiration envelopes with the vibration turned on and off.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 generally illustrates a modulated physiological sensor 100 in communications with the physiological systems 20 of a living being 10. Physiological reactions 50 to external 30 or internal 40 perturbations propagate to the body surface 12 and are coupled 110 to one or more detectors 120. These physiological reactions 50 are indicative of states and processes of the physiological systems 20. The detectors 120 are responsive to coupled physiological reactions 112 so as to generate detector outputs 122. One or more monitors 20 are responsive to the detector outputs 122 so as to compute physiological parameters 6 that quantify the states and processes of the physiological systems 20. The coupling(s) 110 is advantageously modulated 130 under control of the monitor(s) 20 so as to accentuate detection of the physiological reactions 50, as described in further detail below.


As shown in FIG. 1, detectors 120 include any device that is responsive to the coupled physiological reactions 112 such as optical, acoustical, electrical, mechanical, chemical and thermal mechanisms, to name a few. The detector outputs 122 may include blood photo-plethysmographs, ECG, EEG and body sound waveforms; indications of skin color, temperature, movement or pressure; and chemical responses and measurements of moisture, breath, sweat or odors, to name a few. The monitor(s) 20 may include any or all devices or combinations of devices that are responsive to the detector outputs 122 alone or in combination so as to calculate or otherwise derive physiological parameters 6 that measure, graph, quantify or otherwise indicate one or more aspects of the physiological systems 20 and corresponding states and processes corresponding to the physiological reactions 50. Parameter examples include circulatory system measurements such as oxygen saturation, heart rate, blood glucose and blood pressure; and respiratory system measurements such as respiration rate and volume, to name but a few. Parameters 6 can also include indications of specific abnormal physiological conditions such as sleep apnea, anemia and hypoglycemia, to name a few.


Also shown in FIG. 1, external perturbations 30 may be natural, such as changes to a person's physical environment including temperature, pressure, light and sound, for example. External perturbations 30 also may be artificial, such as the mechanical pressure induced by a respirator for breathing assistance or by a pulser on a fingertip for measuring venous oxygen saturation as examples. Internal perturbations 40 include normal and abnormal functioning and interactions of various physiological systems 20, including circulatory and respiratory functions, to name a few. Internal perturbations 40 may also be artificial, such as due to a pacemaker or other implanted device. Physiological reactions 50 resulting from external perturbations 30 or internal perturbations 40 include, as examples, a body surface expansion or contraction due to, say, lung inflation/deflation; an acoustic wave arriving from within the body to the body surface due to a heart beat or bowel sound; or a transverse wave traveling along the body surface due to a muscle spasm. In general a physiological reaction 50 may be an optical, acoustical, electrical, mechanical, chemical or thermal impulse, wave or other variation or change. Further, external perturbations 30 or internal perturbations 40 need not be the same type or kind (e.g. optical, acoustical, electrical, mechanical, chemical or thermal) as the corresponding physiological reaction 50 or the detector element 120 responsive to the physiological reaction 50. For example, an injection (external chemical perturbation) may trigger a heart arrhythmia that results in an acoustic and a mechanical wave (physiological reaction) that propagates to the skin surface and is detected by an acoustical or mechanical sensor, or both. Further, the heart arrhythmia may result in an arterial pulse abnormality that changes the optical characteristics of a tissue site as measured by an optical sensor attached to the tissue site.



FIG. 2 illustrates a modulated physiological sensor 200 embodiment that attaches to a body surface 12 and is configured to respond to physiological reactions 50, as described above. The sensor 200 has a coupling 210, a detector 220, an interface 230 and a modulator 240. A monitor (not shown) outputs controls 232, 234 to the sensor 200 and receives signals 232 from the sensor 200. The interface 230 communicates detector signals 222 to the monitor in response to drive controls 222 to the detector 220. The interface 230 also communicates a modulator control 242 to the modulator 240. The modulator 240 responds to the modulator control 242 so as to generate a modulation 244 to the coupling 210.


As shown in FIG. 2, the modulator 240 varies the coupling 210 of the detector 220 to the body surface 12 and hence to the physiological reaction 50. In particular, the body surface 12 of a person, including skin and underlying tissues, varies by individual and, indeed, by location on a particular individual. These variations are in shape, texture, color and elasticity to name a few. As such, a fixed coupling is unlikely to provide an optimum body surface/detector interface. Indeed efficient and effective body surface/detector coupling is an issue for most if not all physiological sensors. For example, common ECG electrodes require a conductive gel so as to effectively couple to a skin surface. The modulator 240 advantageously continuously varies the detector coupling 210 to the skin surface across a range of contact forces at the skin/sensor interface. For an electrical detector, say, this varied coupling alters the detector electrical resistance at the skin surface over a range of values. For a mechanical detector, the varied coupling alters the mechanical impedance of the detector at the skin surface over a range of values. For an acoustic detector, for example, the varied coupling alters the acoustical impedance of the detector at the skin surface over a range of values. As a result of this variable detector coupling to the skin surface, the detector has maximal and minimal coupling each modulation cycle. Further, the modulation frequency may be set above any detector low frequency response cutoffs. Accordingly, the modulation advantageously amplifies the detector signal 222, as described in further detail with respect to FIGS. 3A-D, below.



FIGS. 3A-D illustrate a physiological system reaction to perturbations and a corresponding modulated and detected sensing of the reaction. FIG. 3A is an exemplar time domain graph 310 of a relatively low amplitude, low frequency physiological system reaction 301 to some form of internal or external perturbation. FIG. 3B is a corresponding exemplar frequency domain graph 320 of the physiological system reaction 301. The physiological reaction 301 may be difficult to detect due to either a small amplitude signal 301 or a signal frequency fr 302 less than the detector cutoff frequency fc 304, i.e. outside the detector passband 303.



FIG. 3C is an exemplar time domain graph 330 of a modulated detector response 305 to the reaction 301 (FIG. 3A) described above. The response 305 has a modulation 306 and an envelope 307. In particular, the physiological sensor 200 (FIG. 2) has a modulated coupling 210 (FIG. 2) that achieves or approaches a maximal coupling of a detector 220 (FIG. 2) to a body surface 12 (FIG. 2) at least once per modulation cycle, as described with respect to FIG. 2 above. Accordingly, the modulated detector 220 (FIG. 2) accentuates the physiological signal 301 (FIG. 3A) during the maximal coupling and de-accentuates the physiological signal 301 (FIG. 3A) during the minimal coupling. This cyclical accentuation/de-accentuation generates an envelop 307 that is, effectively, an amplification of the physiological reaction 301 (FIG. 3A).



FIG. 3D is an exemplar frequency domain graph 340 of a modulated physiological sensor response 305 (FIG. 3C). In various embodiments, the modulation frequency fmod 308 is set substantially higher than any low frequency cutoff fc 304 of the detector so that the sensor response 305 is well within the detector passband 303 (FIG. 3B).


As described with respect to FIGS. 3A-D, in various embodiments an amplified version of the physiological response 301 (FIG. 3A) is derived from the sensor response 305 (FIG. 3C) by any of various well-known AM demodulation techniques. These include envelope detection with a rectifier or product detection utilizing multiplication by a local oscillator, to name a few.



FIG. 4 illustrates a vibration-modulated physiological sensor 400 embodiment. The sensor 400 has a detector 410, a vibration element (“vib”) 420, a substrate 430 and an interface 440 to a monitor. The detector 410 and the vib 420 are both mounted to the substrate 430. In an embodiment, the detector 410 is mounted so as to directly couple 401 to the body surface 12. For example, the detector 410 may be mounted through the substrate 430, as shown. In other embodiments, the detector 410 is attached adjacent the substrate 430. In additional embodiments, the detector 410 may not contact the body surface 12 at all, such as with an accelerometer-based detector described with respect to FIGS. 7-10, below. In an embodiment, the vib 420 is a coin motor, as described with respect to FIGS. 7-10, below. In other embodiments, the vib 420 is any of various off-balance motors, voice coils or similar electro-mechanical devices. In further embodiments, the vib 420 is any mechanical, electromagnetic, piezoelectric, pneumatic, electric, acoustic or magnetic device that vibrates in response to an electrical signal.


As shown in FIG. 4, the detector 410, and hence the coupling 401, is vibration-modulated 420 via the substrate 430. The substrate 430 may be any material that effectively transmits or conducts vibrations from the vib 420 to the detector 401. In an advantageous embodiment, the substrate 430 is a circuit board material that provides mechanical mounts for and supports electrical interconnects between the sensor components.


Also shown in FIG. 4, a monitor (not shown) outputs controls 442, 444 to the sensor 400 and receives signals 442 from the sensor 400. The interface 440 communicates detector signals 412 to the monitor in response to drive controls 412 to the detector 410. The interface 440 also communicates a vibration control 422 to the vib 420. The vib 420 responds to the vibration control 422 so as to generate a modulation to the coupling 401 via the substrate 430. In various embodiments, the detector 410 may be mechanical, such as an accelerometer described with respect to FIGS. 7-10, below. In other embodiments, the detector 410 may be electrical, such as an electrode for sensing ECG or EEG signals; or optical such as a photodiode; or acoustical, such as a piezoelectric device; or thermal, such as a thermopile, pyrometer, thermistor, thermocouple, IR photodiode or temperature diode, to name a few.



FIG. 5 illustrates a multiple-element, vibration-modulated sensor 500 embodiment having a two or more sensor elements 510, 520, one or more vibration elements (vibs) 530, 540, a substrate 550 and an interface 560 to a monitor. The sensor elements 510, 520 may each be detectors or a combination of one or more detectors and one or more emitters. In an embodiment, the sensor elements 510, 520 are different types of detectors. For example, element1510 may be mechanical and element2 may be electrical. In an embodiment, the sensor elements 510, 520 may be an emitter and a corresponding detector. For example, element1510 may be an LED for illuminating a tissue site and element2520 may be a optical detector, such as a diode or diode array, for receiving the LED illumination after attenuation by the tissue site. Advantageously, multiple elements 510, 520 on a single substrate 550 provide an array of like sensors for increased detection capability or for directional sensing capability, such as determining the source of a body sound as but one example. Advantageously, multiple elements 510, 520 on a single substrate 550 provide an array of different sensors in a single sensor package for simultaneous detection and analyses of multiple types or kinds of physiological responses to the same or different external or internal perturbations.


As shown in FIG. 5, multiple vibs 530, 540 may be separated by a substrate isolator 570. In this manner, vib1530 solely effects the coupling 501 of element1510 to a body surface 12 and, likewise, vib2540 solely effects the coupling 502 of element2520 to a body surface 12. Multiple isolated vibs 530, 540 advantageously allow each vib 530, 540 output to be adapted or otherwise suited to a particular element 510, 520, both in terms of amplitude and frequency. In an embodiment, the isolator 570 is a material that significantly attenuates mechanical/acoustical waves at the vib frequency or frequencies.


Also shown in FIG. 5, a monitor (not shown) outputs controls 562 to the sensor 500 and receives signals 562 from the sensor 500. The interface 560 communicates element signals 512, 522 to the monitor in response to drive controls 512, 522 to the elements 510, 520. The interface 560 also communicates vibration (vib) controls 564 to the vibs 530, 540. The vibs 530, 540 respond to the vib controls 564 so as to generate a modulation to their respect couplings 501, 502.



FIGS. 6A-F illustrate various modulated physiological sensor configurations. As shown in FIG. 6A, an integrated sensor embodiment 610 has a substrate 612, a detector 614, a vibration element (vib) 615, I/O (input/output) 617, an attachment 618 and electrical communication 619 to a monitor or similar device (not shown). The substrate 612 mounts the detector 614, vib 615 and I/O 617. In an embodiment, the substrate 612 also provides electrical trace interconnects between the I/O and both the detector 614 and vib 615. The I/O 617 transmits/receives sensor signals/controls and, in particular, drive to the vib 615 and signals from the detector 614. The attachment 618 adheres the substrate 612 and mounted components 614-617 to a body surface. In an embodiment, the detector 614 is mounted through the substrate 612 so as to couple directly to a body surface or via the attachment 618. The vib 615 advantageously modulates the coupling of the detector 614 to the body surface via the substrate 612 on which the detector 614 and vib 615 are co-mounted.


As shown in FIG. 6B, a semi-integrated sensor embodiment 620 has a substrate 622, a detector 624, a vib 625, I/O 627, an attachment 628 and electrical communication 629 to/from a monitor or other control or display device. The semi-integrated sensor embodiment 620 is similar to the integrated sensor embodiment 610 except that the I/O 627 is external to the sensor 620 and may be mounted in the monitor (not shown) or in a pod (not shown) between the sensor 620 and monitor. The I/O 627 is in electrical communications 626 with the detector 624 and vib 625, such as via cabling or other interconnect technology. The I/O 627 is also in electrical communications 629 with a monitor.


As shown in FIG. 6C, a substrate-less sensor embodiment 630 has a detector 634, a vib 635, I/O 637, an attachment 638 and electrical communications 639, which transmits signals and controls between the I/O 637 and a monitor or similar device (not shown). In this embodiment, the detector 634 or more specifically the detector package, such as a chip carrier, substitutes for a substrate. Accordingly, the vib 635 and VO 637 are mounted within or on or otherwise directly coupled to the detector 634 package so that the detector 634 package is directly coupled to the body surface and held in place with the attachment 638. In an embodiment, the attachment 638 is simply an adhesive layer on the detector 634 package.


As shown in FIG. 6D, a sensor array embodiment 640 has a substrate 642, multiple detectors 644, a vib 645, VO 647, an attachment 648 and electrical communication 649. The sensor array embodiment 640 is similar to the semi-integrated embodiment 620 (FIG. 6B) except for the multiple detectors 644. The detectors 644 may be all the same device type (mechanical, electrical, acoustical, etc.), all different or a mixture of one or more sub-arrays of the same device type with one or more different device types. Advantageously, multiple detectors 644 on a single substrate 642 provide an array of like sensors for increased detection capability or for directional sensing capability, such as determining the source of a body sound. Advantageously, multiple detectors 644 on a single substrate 642 provide an array of different detectors in a single sensor package for simultaneous detection and analyses of multiple types or kinds of physiological responses to the same or different external or internal perturbations. Advantageously, a mix of detectors and transmitters (not shown), such as one or more LEDs and one or more photodiode detectors, provide active sensing capabilities, such as illuminating and analyzing arterial (pulsatile) blood flow. Advantageously, one or more vibs 645 may provide both modulation and an active pulse for, say, analyzing non-pulsatile (venous) blood flow, as but one example.


As shown in FIG. 6E, a non-integrated sensor embodiment 650 has a detector 654, a vib 655 and attachments 658. The detector 654 and vib 655 are separately attached 658 to a body surface. The I/O 657 is in electrical communications 656 with the detector 654 and vib 655, such as via cabling or other interconnect technology, including wireless. Further, the I/O 657 is external to the sensor 650 and may be mounted in the monitor (not shown) or in a pod (not shown) between the sensor 650 and monitor with electrical communications 659 between the I/O 657 and the monitor. Advantageously, the vib 655 is attached to the body surface in close proximity to the detector 654 so that surface waves 601 generated by the vib in the body modulate the coupling between the detector 654 and the body surface.


As shown in FIG. 6F, a remote sensor embodiment 660 has a detector 664 and a modulation module 665. The modulation module 668 has a vib 665 and I/O 667. Advantageously, the vib 665 remotely modulates the detector 664 when brought into proximity to the detector 664. In particular, the vib 665 generates an acoustic wave 602 that vibrates the detector so as to modulate the detector coupling to the body surface. In particular, the acoustic wave 602 propagates through media intervening between the vib 665 and the detector 664. That media may be an air gap when the module 668 is positioned immediately over the detector 664 or the media may be tissue when the module 668 is positioned immediately over or on the body surface proximate the detector 664.



FIG. 7 generally illustrates a modulated physiological sensor 700 embodiment having an accelerometer 710 and a vibration element (vib) 720 mounted on a common substrate 730. An attachment (not shown) adheres or otherwise couples the substrate 730 to a body surface 12. The accelerometer 710 has three outputs 712 responsive to accelerations in three dimensions (x, y, z) advantageously enabling the sensor 700 to detect both the amplitude, direction and/or type of propagations (translational 85, 87 and longitudinal 86, 88) and whether the propagations are body waves 85, 86 or surface waves 87. The vib 720 mechanically modulates the coupling of the substrate 730 and, accordingly, the coupling of the accelerometer 710 to the body surface 12. The vib 720 frequency is selected to be substantially higher than the frequency of the propagations 85-88. As such, the accelerometer x, y and z outputs 712 are each amplitude modulated (AM) representations of the propagations 85-87. Advantageously, the modulated coupling substantially amplifies the propagations due to a peak AC coupling occurring once every cycle of the vib. That peak AC coupling is substantially greater than can be practically achieved with any static coupling of the accelerometer to the body surface 12. Accordingly, very low amplitude propagations can be detected and measured to yield physiological parameters. See, for example, a respiration rate sensor described with respect to FIGS. 8-10, below.



FIG. 8 is a detailed block diagram of a vibration-modulated physiological sensor 800 embodiment. The sensor 800 has an attachment 810, a substrate 820, an accelerometer 830, a coin motor 840 that generates vibration modulation, an accelerometer interface 850, a speed control 860 and monitor inputs/outputs (I/O) 801, 802. In an embodiment, the accelerometer 830 is an LIS352AX±2 g full scale, analog output, 3-axis (X, Y and Z) linear accelerometer available from STMicroelectronics, Geneva, Switzerland. In an embodiment, the coin motor 840 is a 10 mm coin motor 310-101 available from Precision Microdrives Ltd., London, UK. In an embodiment, the substrate 820 is a circuit board material that mechanically mounts and electrically interconnects the accelerometer 830, the coin motor 840, the accelerometer interface 850 and the speed control 860. In an embodiment, the attachment 810 is a sticky tape that mounts the sensor 800 to a body surface of a living being. In an embodiment, the monitor I/O 802 to the speed control is via a I2C bus. In an embodiment, the monitor I/O 801 to the accelerometer 830 includes a multiplexer control input to the accelerometer 830 to select one of the X, Y and Z axis for the accelerometer output 832 to the monitor. In another embodiment, all of X, Y and Z axes are simultaneously provided on the accelerometer output 832.



FIGS. 9A-B are assembled and exploded illustrations, respectively, of a vibration-modulated (vib) physiological sensor embodiment 900 that can be attached to a skin surface proximate various parts of a person's body, such as the chest, ribs, stomach, waist, arms or back so as to, for example, determine respiration-related parameters. In another embodiment, a modulated physiological sensor 900 may have an optical sensor (emitter and detector) combined with the accelerometer and vib. In this manner, the sensor can generate physiological measurements of pulsatile blood flow for blood constituent analysis, physiological measurements of non-pulsatile (venous) blood flow artificially pulsed by the vib and respiration measurements based upon either or both of pleth-modulated optical sensor waveforms and vib-modulated mechanical (accelerometer) waveforms.



FIG. 10 is a vibration-accelerometer physiological sensor output 1000 illustrating three-axis respiration envelope amplitudes 1010 versus time 1020. The vibration continuously modifies the coupling of the accelerometer to the skin, which effectively multiples the measured acceleration due to respiration by that due to the vibration. This yields AM modulation waveforms 1001-1003 that display a (greatly magnified) respiration envelope. This effect is amply illustrated in comparing the difference in the accelerator response when the vibration (coupling modulator) is turned on 1012 and off 1014.


There are various applications for a modulated physiological sensor, as described above. A chest mounted sensor could monitor for sleep apnea at home, as well as in the hospital for patients receiving narcotics in the general wards. An abdomen-mounted sensor could monitor bowel sounds to give a quantifiable measurement to peristalsis. A dual sensor configuration, with one sensor mounted on the upper part of the abdomen and one on the lower part, is used for diagnosing bowel obstruction, small bowel volvulus or intussuception. A sensor mounted over the radial artery would yield a semi-continuous blood pressure measurement. Another configuration is a screening tool for sub-clinical stenosis of major vessels. For example, rather than placing a stethoscope over the carotid arteries or the abdomen to listen to flow through the aorta, a modulated sensor could give a more quantifiable measurement of stenosis, one level better than auscultation but one level below imaging. Another application is the differential diagnosis of heart murmurs aided by noise cancellation of breathing and other mechanical movements so as to distinguish distinctive murmur patterns (e.g. crescendo/decrescendo).


A modulated physiological sensor has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

Claims
  • 1. A physiological monitoring system configured to monitor a physiological parameter of a patient, said physiological monitoring system comprising: an optical sensor including one or more components, said one or more components comprising at least one emitter configured to transmit optical radiation into a tissue site of the patient and at least one detector configured to detect a plethysmograph waveform responsive to attenuation of the transmitted optical radiation by the tissue site,a first motor and a second motor separated from the first motor by an isolator, wherein the first motor and the second motor is configured to vary a respective coupling between at least some of the one or more components of the optical sensor and a skin over the tissue site of the patient; andone or more hardware processors configured to: control the motor to vary the coupling;detect a plurality of plethysmograph waveform corresponding to varying coupling of the one or more components of the optical sensor and the skin; andmonitor a physiological parameter responsive to the detected plurality of plethysmograph waveforms.
  • 2. The physiological monitoring system of claim 1, wherein the coupling is varied to maximize a signal from the detector.
  • 3. The physiological monitoring system of claim 1, wherein the coupling is continuously varied while detecting the physiological parameter.
  • 4. The physiological monitoring system of claim 1, further comprising an accelerometer configured to detect a physiological signal.
  • 5. The physiological monitoring system of claim 4, wherein the accelerometer is configured to be placed proximate to a radial artery.
  • 6. The physiological monitoring system of claim 4, wherein the physiological parameter is blood pressure measurement.
  • 7. The physiological monitoring system of claim 4, wherein the motor is further configured to vary a second coupling between the accelerometer and the skin.
  • 8. The physiological monitoring system of claim 1, wherein the second motor is configured to vary the second coupling.
  • 9. A physiological monitoring method for monitoring a physiological parameter of a patient, said physiological monitoring method comprising: transmitting, by an optical sensor, optical radiation into a tissue site of the patient, said optical sensor including one or more components, said one or more components comprising at least one emitter and at least one detector;detecting, by the optical sensor, a plethysmograph waveform responsive to attenuation of the transmitted optical radiation by the tissue site,controlling a first motor to vary a first coupling between at least some of the one or more components of the optical sensor and a skin over the tissue site of the patient;controlling a second motor separated from the first motor by an isolator to vary a second coupling between at least other of the some of the one or more components of the optical sensor and the skin;detecting a plurality of plethysmograph waveform corresponding to varying coupling of the one or more components of the optical sensor and the skin; andmonitoring a physiological parameter responsive to the detected plurality of plethysmograph waveforms.
  • 10. The physiological monitoring method of claim 9, wherein the coupling is varied to maximize a signal from the at least one detector.
  • 11. The physiological monitoring method of claim 9, further comprising continuously varying the coupling while detecting the physiological parameter.
  • 12. The physiological monitoring method of claim 9, further comprising detect, with an accelerometer, a physiological signal.
  • 13. The physiological monitoring method of claim 12, wherein the accelerometer is configured to be placed proximate to a radial artery.
  • 14. The physiological monitoring method of claim 12, wherein the physiological parameter is blood pressure measurement.
  • 15. The physiological monitoring method of claim 12, further comprising varying, with the motor, an accelerometer coupling between the accelerometer and the skin.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/729,240, filed Oct. 10, 2017, which is a continuation of U.S. patent application Ser. No. 13/584,447, filed Aug. 13, 2012, which claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 61/524,744, filed Aug. 17, 2011, titled Modulating Physiological Sensor and U.S. Provisional Patent Application Ser. No. 61/639,985, filed Apr. 29, 2012, titled Modulated Physiological Sensor, both provisional applications hereby incorporated in their entirety by reference herein.

US Referenced Citations (1036)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6491647 Bridger Dec 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Ai-Ali Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9622692 Lamego et al. Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9649054 Lamego et al. May 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10952614 Lamego et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
11596363 Lamego Mar 2023 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020055680 Miele et al. May 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20030225337 Scharf Dec 2003 A1
20040034289 Teller et al. Feb 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070096911 Gualtieri May 2007 A1
20070100666 Stivoric et al. May 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080086063 Baxter et al. Apr 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247924 Harima et al. Oct 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100261979 Al-Ali et al. Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20120059267 Lamego et al. Mar 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120265039 Kiani Oct 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060108 Schurman et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130109935 Al-Ali et al. May 2013 A1
20130162433 Muhsin et al. Jun 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140025306 Weber et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051952 Reichgott et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140051954 Al-Ali et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140125495 Al-Ali May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128696 Al-Ali May 2014 A1
20140128699 Al-Ali et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140142402 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140200420 Al-Ali Jul 2014 A1
20140200422 Weber et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140296664 Bruinsma et al. Oct 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140309506 Lamego et al. Oct 2014 A1
20140309559 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160029933 Al-Ali et al. Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160073967 Lamego et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20180103874 Lee et al. Apr 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20190117070 Muhsin et al. Apr 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
Foreign Referenced Citations (2)
Number Date Country
WO 2009147615 Dec 2009 WO
WO-2009147615 Dec 2009 WO
Non-Patent Literature Citations (2)
Entry
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)
Official Communication in Application No. GB1214728.6 dated Nov. 30, 2012.
Related Publications (1)
Number Date Country
20210378517 A1 Dec 2021 US
Provisional Applications (2)
Number Date Country
61639985 Apr 2012 US
61524744 Aug 2011 US
Continuations (2)
Number Date Country
Parent 15729240 Oct 2017 US
Child 17208501 US
Parent 13584447 Aug 2012 US
Child 15729240 US