This disclosure is generally directed to the creation of an imitation flame for use in non-flammable candles as well as numerous other applications.
Simulated flames in candles are desirable for use in enclosed spaces where a real flame is undesirable, impractical or not permitted. There are different ways to generate simulated flames, and some simulated flames are more realistic than others. Creating a cost effective and compact simulated flame is a desirable for many applications in both homes and commercial environments.
An apparatus having a transducer configured to transduce and modulate a liquid to form a simulated flame. The transducer may be a piezoelectric transducer driven by a modulated drive signal such that a liquid transduces to a mist/aerosol, such that the transducer controls and shapes the mist to create a vapor plume. Use of a nozzle/manifold a certain distance above the transducer may shape the mist as well, The plume is illuminated by a colored light source to generate the simulated flame. A wick or a dispenser may be one means of presenting the liquid to the transducer. Controlling the droplet size presented to the transducer may shape the size, dimension of the plume. The transducer may have multiple openings, angled or straight perforations, notches, and/or impressions to shape the plume and create the effect of a dancing flame.
The following description of exemplary embodiments provides information that enables a person skilled in the art to make and use the subject matter set forth in the appended claims, but may omit certain details already well-known in the art. The following detailed description is, therefore, to be taken as illustrative and not limiting.
The example embodiments may also be described herein with reference to spatial relationships between various elements or to the spatial orientation of various elements depicted in the attached drawings. In general, such relationships or orientation assume a frame of reference consistent with or relative to a patient in a position to receive treatment. However, as should be recognized by those skilled in the art, this frame of reference is merely a descriptive expedient rather than a strict prescription.
Referring to
Referring to
The resonator 24 is controlled by a control circuit 28 that provides a selectively controllable electrical modulated drive signal 30 to control the shape and appearance of the generated aerosol 12. The drive signal 30 may be pulsed, and generated at varying power levels, frequencies and waveshapes to variably control the transducing energy and produce a dancing flame-like effect, and such that it swirls, floats, or produces other selected shapes, such as shown in
The mist directing nozzle 14, shown as a cone, is configured to shape the aerosol. vapor 12. The nozzle 14 may be positioned directly on the top surface of the wick structure 22 and above the resonator 24, but is preferably spaced a distance D2 above the resonator 24, an a distance D1+D2 above the wick structure 22 such as using spacers.
The resonator 24 has at least one centrally located opening configured to allow the aerosol 12 to rise through. the opening 32, and helps shape the aerosol vapor 12 such that is swirls, floats, or produces other selected shapes. At least one colored light source 34 is configured to illuminate the aerosol 12 to create the appearance of a flame. The light source 34 may be a light emitting diode (LED) source, integrated fiber optic light source, and is internal to the candle 10 such as shown in
The resonator/transducer 24 may consist of a certain shape, dimension, material type, impressions, perforations, notches, etc. resulting in shaping the liquid into mist/aerosol with flame-like characteristics. The transducer may be comprised of a metal plate, or a ceramic element/material of suitable composition, electrode patterns (ie. solid, wrap-around, side-tab, insulation band, bull's-eye), tolerances (i.e. Capacitance, d33 value, Frequency) voltage, shape, size, surface finish, shaping process and/or post-processing, specific patterns or alternative electrode materials (nickel, gold, etc.).
The resonator 24 may have larger and/or shaped openings 32, such as shown as resonator 40 and resonator 42 in
The nozzle (manifold) 14 may have other shapes/sizes, such as shorter or taller cones, or be configured as a spiral as shown at 50, 52 and 54, respectively, in
Various illuminated aerosol vapors that can be created are shown in
An alternative embodiment of this disclosure is shown, in
One illustrative embodiment shown in
As shown in
As shown in
In one illustrative embodiment, the resonant frequency of the drive signal 108 of the modulated transducer 106 is a driving signal of 28.52 Khz, at an operating power about 20 Watts. In other embodiments the frequency may be about 100 Khz. The diameter of the transducer 106 is 26 mm (about 1 inch). What creates the flame effect is the generated irregular, ultrasonic wave that spreads upwards from the modulated transducer. This works brilliantly for candles. Essential oils can be added to the liquid and diffused for scented candles—opening a market of proprietary products.
The transducer 106 arrangement(s) can be one of a number of types, such as a piezoelectric transducer creating a high frequency mechanical oscillation just below the surface of a source of water, such that an ultrasonic vibration turns the liquid into mist. The dispensed fluid, such as water, may be dropped as droplets (in consistent or inconsistent sizes) onto the modulated transducer 106 to take advantage of gravity. The water may be injected onto the transducer 106 using an injector, and the water may be a standing liquid residing in a basin. The fluid can be transported, dropped, placed, pushed onto, through transducer 106 in many fashions. The implementation of capillary effect, use of solenoids, tubes, pumps, wicking effect, and/or the implementation of fluidic technology (e.g., switches, amplifiers, oscillators, etc.) may be utilized to effectively transport liquid and/or create plume motion and support functions that may allow for the movement of specific sized droplets of liquid onto the transducer. Liquid may be injected, pumped, pressurized onto the transducer 106. A fluidic switch and/or solenoid valve may be utilized to effectively create and move specific sized droplets of liquid for movement and release onto the transducer 106. A system of fluid supply channels through a solenoid valve, and/or a cavitation process, may provide random plume sizes as droplets are intermittently delivered onto the transducer (which remains on) to create various flame heights to mimic a real flame. Integrated circuitry may allow random frequency/power modulation of the transducer. Variable droplet size may be achieved through a fluidic valve delivery system or through a modulated pump system disseminating fluid onto the transducer in several fashions e.g. dropping (gravity), pushing (pump/capillary effect/pressure), injecting, from above, below, the side, and/or the center onto the transducer.
One embodiment comprises a fireplace insert 120 as shown in
Other uses may include biological applications (not necessarily related to simulation of a realistic flame), pyrotechnics, fire pits, torches, car exhaust tubes, education, magic acts, special effects, military/law enforcement/first responders training, etc. This flame technology can be utilized in any application requiring the simulation/replication. of a realistic flame.
The appended claims set forth novel and inventive aspects of the subject matter described above, but the claims may also encompass additional subject matter not specifically recited in detail. For example, certain features, elements, or aspects may be omitted from the claims if not necessary to distinguish the novel and inventive features from what is already known to a person having ordinary skill in the art. Features, elements, and aspects described herein may also be combined or replaced by alternative features serving the same, equivalent, or similar purpose without departing from the scope of the invention defined by the appended claims.
This application claims priority under 35 U.S.C. 119 (e) of U.S. Provisional Patent Application Ser. No. 62/173,809 titled Mist Illuminated Liquid Light Art filed Jun. 10, 2015, the teachings of which are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
62173809 | Jun 2015 | US |