Modulating signal transduction pathways with substituted pyridol [2,3-b] pyrazines

Information

  • Patent Grant
  • 8536332
  • Patent Number
    8,536,332
  • Date Filed
    Wednesday, April 25, 2012
    12 years ago
  • Date Issued
    Tuesday, September 17, 2013
    11 years ago
Abstract
Method of modulating ras-Raf-Mek-Erk signal transduction pathway, PI3K-Akt signal transduction pathway and/or SAPK signal transduction pathway with a pyrido[2,3-b]pyrazine of formula (Ia).
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to novel pyrido[2,3-b]pyrazine derivatives, to processes of manufacturing and use thereof, in particular as medicaments for the modulation of misdirected cellular signal transduction processes, such as modulation of tyrosine kinases, serine/threonine kinases and/or lipid kinases and for the treatment or prophylaxis of malignant or benign oncoses and other disorders based on pathological cell proliferation, for example restenosis, psoriasis, arteriosclerosis and cirrhosis of the liver.


2. Description of Related Art


The activation of protein kinases is a central event in cellular signal transduction processes. Aberrant kinase activation is observed in various pathological states. Targeted inhibition of kinases is therefore a fundamental therapeutic aim.


The phosphorylation of proteins is generally initiated by extracellular signals and represents a universal mechanism for controlling various cellular events, for example metabolic processes, cell growth, cell migration, cell differentiation, membrane trans-port and apoptosis. The kinase protein family is responsible for protein phosphorylation. These enzymes catalyse transfer of phosphate to specific substrate proteins. Based on the substrate specificity, the kinases are divided into three main classes, tyrosine kinases, serine/threonine kinases and lipid kinases. Both receptor tyrosine kinases and cytoplasmic tyrosine, serine/threonine and lipid kinases are important proteins in cellular signal transduction. Overexpression or overactivation of these proteins plays an important part in disorders based on pathological cell proliferations. These include metabolic disorders, disorders of the connective tissue and of the blood vessels, and malignant and benign oncoses. In tumor initiation and development they frequently occur as oncogens, i.e. as aberrant, constitutively active kinase proteins. The consequences of this excessive kinase activation are, for example, uncontrolled cell growth and reduced cell death. Stimulation of tumor-induced growth factors may also be the cause of overstimulation of kinases. The development of kinase modulators is therefore of particular interest for all pathogenic processes influenced by kinases.


Ras-Raf-Mek-Erk and PI3K-Akt signal transduction cascades play a central role in cell growth, cell proliferation, apoptosis, adhesion, migration and glucose metabolism. Thus, the fundamental involvement in the pathogenesis of disorders such as cancer, neurodegeneration and inflammatory disorders has been demonstrated both for ras-Raf-Mek-Erk and for PI3K-Akt signaling pathway. Therefore, the individual components of these signal cascades constitute important therapeutic points of attack for the intervention in the various disease processes (Weinstein-Oppenheimer C R et al., Pharmacol Ther. 2000, 88(3): 229-279, Chang F et al., Leukemia 2003, 17(3): 590-603; Chang F et al., Leukemia 2003, 17(7): 1263-1293; Katso R et al., Annu Rev Cell Dev Biol. 2001, 17: 615-675; and Lu Y et al., Rev Clin Exp Hematol. 2003, 7(2): 205-228; Hennessy B T et al., Nat Rev Drug Discov 2005, 4, 988-1004).


In the following, the molecular and biochemical properties of the two signaling pathways are first described separately.


A multitude of growth factors, cytokines and oncogens transduce their growth-promoting signals via the activation of G-protein-coupled ras, which leads to the activation of serine-threonine kinase Raf and to the activation of mitogen-activated protein kinase kinase 1 and 2 (MAPKK1/2 or Mek1/2), and results in the phosphorylation and activation of MAPK 1 and 2—also known as extracellular signal-regulated kinase (Erk1 and 2). Compared to other signaling pathways, ras-Raf-Mek-Erk signaling pathway combines a large number of proto-oncogenes, including ligands, tyrosine kinase receptors, G proteins, kinases and nuclear transcription factors. Tyrosine-kinases, for example EGFR (Mendelsohn J et al., Oncogene. 2000, 19(56): 6550-6565) mediate, in the course of tumor process, caused by overexpression and mutation, frequently constitutively active signals to downstream ras-Raf-Mek-Erk signaling pathway. Ras is mutated in 30% of all human tumors (Khleif S N et al., J Immunother. 1999, 22(2): 155-165; Marshall C, Curr Opin Cell Biol. 1999, 11(6): 732-736) the highest incidence at 90% being in pancreas carcinomas (Friess H et al., J Mol Med. 1996, 74(1): 35-42; Sirivatanauksorn V et al., Langenbecks Arch Surg. 1998, 383(2): 105-115). As for c-Raf, deregulated expression and/or activation have been described in various tumors (Hoshino R et al., Oncogene 1999, 18(3): 813-822; McPhillips F et al., Br J Cancer 2001, 85(11): 1753-1758). B-Raf point mutants have been detected in 66% of all human malignant melanomas, 14% of ovarian carcinomas and 12% of colon carcinomas (Davies H et al., Nature 2002, 417(6892): 949-954). It is therefore not surprising that Erk1/2 is involved at primary stage in many cellular processes, such as cell growth, cell proliferation and cell differentiation (Lewis T S et al., Adv Cancer Res. 1998, 74: 49-139; Chang F et al., Leukemia 2003, 17(3): 590-603; Chang F et al., Leukemia 2003, 17(7): 1263-1293).


In addition, members of Raf kinases also have Mek-Erk-independent, anti-apoptotic functions whose molecular steps have not yet been fully described. Possible interaction partners described for the Mek-Erk-independent Raf activity have been Ask1, Bcl-2, Akt and Bag1 (Chen J et al., Proc Natl Acad Sci USA 2001, 98(14): 7783-7788; Troppmair J et al., Biochem Pharmacol 2003, 66(8): 1341-1345; Rapp U R et al., Biochim Biophys Acta 2004, 1644(2-3): 149-158; Gotz R et al., Nat Neurosci 2005, 8(9): 1169-1178). It is now assumed that both Mek-Erk-dependent and Mek-Erk-independent signal transduction mechanisms control the activation of upstream ras and Raf stimuli.


The isoenzymes of the phosphatidylinositol 3-kinases (PI3Ks) function primarily as lipid kinases and catalyse the D3 phosphorylation of second messenger lipids PtdIns (phosphatidylinositol) to PtdIns(3)P, PtdIns(3,4)P2, PtdIns(3,4,5)P3 phosphatidylinositol phosphates. PI3Ks of class I are composed in structural terms of catalytic subunit (p110alpha, beta, gamma, delta) and of regulatory subunit (p85alpha, beta or p101gamma). In addition, class II (PI3K-C2alpha, PI3K-C2beta) and class III (Vps34p) enzymes also belong to the family of PI3 kinases (Wymann M P et al., Biochim Biophys Acta 1998, 1436(1-2): 127-150; Vanhaesebroeck B et al., Annu Rev Biochem 2001, 70: 535-602). PIP rise induced by PI3Ks activates proliferative ras-Raf-Mek-Erk signaling pathway via the coupling of ras (Rodriguez-Viciana P et al., Nature 1994, 370(6490): 527-532) and stimulates the anti-apoptotic signaling pathway by recruiting Akt to the cell membrane and consequently overactivating this kinase (Alessi D R et al., EMBO J 1996, 15(23): 6541-6551; Chang H W et al., Science 1997, 276(5320): 1848-1850; Moore S M et al., Cancer Res 1998, 58(22): 5239-5247). Thus, activation of PI3Ks fulfils at least two crucial mechanisms of tumor development, specifically activation of cell growth and cell differentiation, and inhibition of apoptosis. In addition, PI3Ks also have protein-phosphorylating properties (Dhand R et al., EMBO J 1994, 13(3): 522-533; Bondeva T et al., Science 1998, 282(5387): 293-296; Bondev A et al., Biol Chem 1999, 380(11): 1337-1340; Vanhaesebroeck B et al., EMBO J 1999, 18(5): 1292-1302), which, for example, can induce serine autophosphorylation which intrinsically regulates PI3Ks. It is also known that PI3Ks have kinase-independent, regulating effector properties, for example in the control of heart contraction (Crackower M A et al., Cell 2002, 110(6): 737-749; Patrucco E et al., Cell. 2004, 118(3): 375-387). It has also been demonstrated that PI3Kdelta and PI3Kgamma are expressed specifically on haematopoietic cells and are thus potential points of attack for isoenzyme-specific PI3Kdelta and PI3Kgamma inhibitors in the treatment of inflammatory disorders, such as rheumatism, asthmas, allergies and in the treatment of B cell and T cell lymphomas (Okkenhaug K et al., Nat Rev Immunol 2003, 3(4): 317-330; Ali K et al., Nature 2004, 431(7011): 1007-1011; Sujobert P et al., Blood 2005, 106(3): 1063-1066). PI3Kalpha, which has recently been identified as a proto-oncogen (Shayesteh L et al., Nat Genet 1999, 21(1): 99-102; Ma Y Y et al., Oncogene 2000, 19(23): 2739-2744; Samuels Y et al., Science 2004, 304(5670): 554; Campbell I G, et al., Cancer Res 2004, 64(21): 7678-7681; Levine D A et al., Clin Cancer Res 2005, 11(8): 2875-2878) is an important target in the therapy of tumor disorders. The significance of the PI3K species as a target for active pharmaceutical ingredient (API) development is therefore extremely wide (Chang F et al., Leukemia 2003, 17(3): 590-603).


Of equally great interest are PI3K-related kinases (PIKKs), which include serine/threonine kinases mTOR, ATM, ATR, h-SMG-1 and DNA-PK (Sabatini D M, Nat Rev Canc 2006, 6: 729-34; Chiang G G et al., Methods Mol Biol 2004, 281: 125-141). Their catalytic domains have a high sequence homology to the catalytic domains of PI3Ks.


Moreover, loss of tumor suppressor protein PTEN (Li J et al., Science 1997, 275(5308): 1943-1947; Steck P A et al., Nat Genet 1997, 15(4): 356-362; Cully M et al., Nat Rev Canc 2006, 6: 184-192)—whose function is the reversal of the phosphorylation initiated by PI3K—contributes to overactivation of Akt and its downstream cascade components and hence underlines the causal significance of PI3K as a target molecule for tumor therapy.


Various inhibitors of individual components of ras-Raf-Mek-Erk and PI3K-Akt signaling pathways have already been published and patented.


The current state of development in the field of the kinase-inhibitors, particularly of ras-Raf-Mek-Erk and of PI3K-Akt pathway, is detailed in the reviews by J. S. Sebolt-Leopold et al., Nat Rev Cancer 2004, 4(12): 937-947; R. Wetzker et al., Curr Pharm Des 2004, 10(16): 1915-1922; Z. A. Knight et al., Biochem Soc Trans. 2007, 35(Pt 2):245-9; R. A. Smith et al., Curr. Top. Med. Chem. 2006, 6, 1071-89; S. Faivre et al., Nat Rev Drug Discov 2006, 5, 671-688. Said publications contain a comprehensive list of published patent applications and patents which describe the synthesis and use of low molecular weight ras-Raf-Mek-Erk and PI3K inhibitors.


European Commission has granted marketing authorization to Nexavar(R) (sorafenib, Bay 43-9006; WO 99/32111, WO 03/068223 in July 2006 for the treatment of patients with advanced renal cell carcinoma who have failed prior interferon-alpha or interleukin-2 based therapy or are considered unsuitable for such therapy. Nexavar (Bay 43-9006) exhibits a relatively unspecific inhibition pattern of serine/threonine kinases and of tyrosine kinases, such as Raf, VEGFR2/3, Flt-3, PDGFR, c-Kit and further kinases. Great significance is attributed to this inhibitor in advanced tumor disorders induced by angiogenesis (for example in the case of kidney cell carcinoma) but also in the case of melanomas with high B-Raf mutation rate. The clinical action of Bay 43-9006 is currently also being determined in patients having refractory solid tumors in combination, for example, with docetaxel. To date, mild side effects and promising anti-tumor effects have been described. Inhibition of the kinases in the PI3K-Akt signaling pathway has neither been described nor disclosed for Bay 43-9006. Recent advances in the research and development of Raf Kinase inhibitors are described in a review of R. A. Smith et al., Curr. Top. Med. Chem. 2006, 6, 1071-89.


Mek1/2 inhibitor PD0325901 (WO 02/06213) is currently in phase II clinical trials for lung cancer and phase I/II clinical trials for the treatment of other solid tumors. The precursor substance CI-1040 (WO 00/35435, WO 00/37141) was noticeable by its high Mek specificity and target affinity. However, this compound was found to be metabolically unstable in phase I/II studies. Clinical data for the current successor substance PD0325901 are still to come. However, neither interaction with Erk1 or Erk2 nor a function inhibiting the PI3K-Akt signaling pathway or their simultaneous modulation has been published or disclosed for this Mek inhibitor.


A phase II study in malignant melanoma is under way for AZD-6244 (ARRY-142886), a selective MEK inhibitor from Array BioPharmaArray.


The PI3K/mTOR inhibitor BEZ-235 from Novartis (WO 06122806) entered a phase I clinical program as a targeted anticancer agent. The compound inhibited mTOR (IC50=21 nM), p110alpha, p110alpha E542K, p110alpha H107R and p110alpha E545K (IC50=4, 5, 18 and 4 nM, respectively) and p110beta, gamma and delta (IC50=76, 5 and 7 nM, respectively), while preserving selectivity over a panel of other kinases


Recent developments at Piramed have resulted in the synthesis of two series of compounds that act as phosphatidylinositol 3-kinase of class Ib (PI3K-Ib) inhibitors and are described as possessing potent anticancer activity. Additional indications include immune disorders, cardiovascular diseases, metabolism/endocrine disorders, neurodegenerative diseases and bacterial or viral infections (WO 06046035, WO 06046040).


Semafore recently initiated a phase I trial of its lead phosphoinositide 3-kinase (PI3K) inhibitor, SF-1126 (WO 04089925), in patients with solid tumor cancers. SF-1126 is a small-molecule conjugate containing a pan-PI3K inhibitor that selectively inhibits all PI3K class IA isoforms and other key members of the PI3K superfamily, including DNA PK and mTOR. Preclinically, SF-1126 has been shown to inhibit angiogenesis and cellular proliferation, induce apoptosis, block pro-survival signals and produce synergistic antitumor effects in combination with chemotherapy.


ICOS disclosed a PI3K inhibitor IC87114 with high PI3Kdelta isoenzyme specificity (WO 01/81346). For PI103 (WO 04/017950).


Exelixis has submitted an IND for XL-147, a novel anticancer compound. XL-147 is an orally available small-molecule inhibitor of phosphoinositide-3 kinase (PI3K). Inactivation of PI3K has been shown to inhibit growth and induce apoptosis in tumor cells. In preclinical studies, XL-147 slowed tumor growth or caused tumor shrinkage in multiple preclinical cancer models, including breast, lung, ovarian and prostate cancers, and gliomas.


Moreover, a highly noted field of research exists in the early development of PI3K inhibitors (see reviews of Z. A. Knight et al., Biochem Soc Trans. 2007, 35(Pt 2):245-9; R. Wetzker et al., Curr Pharm Des 2004, 10(16): 1915-19222004).


Inhibitors of SAPK signaling pathway, either of Jnk or of p38, are described in the literature (Gum R J et al., J Biol Chem 1998, 273(25): 15605-15610; Bennett B L et al., Proc Natl Acad Sci USA. 2001, 98(24): 13681-13686; Davies S P et al., Biochem J. 2000, 351(Pt 1): 95-105). However, no function of inhibiting the PI3Ks nor any specific inhibition of Erk1 or Erk2 or else any specific inhibition of SAPKs, Erk1, Erk2, or PI3Ks has been disclosed for these SAPK inhibitors.


6- or 7-substituted pyrido[2,3-b]pyrazine derivatives find wide use in pharmaceutical chemistry as pharmacologically active compounds and as synthetic units.


Patent applications WO 04/104002 and WO 04/104003, for example, describe pyrido[2,3-b]pyrazines which may be 6- or 7-substituted by urea, thiourea, amidine or guanidine groups. These compounds have properties as inhibitors or modulators of kinases, especially of tyrosine and serine/threonine kinases. The use as a medicament is reported. In contrast, use of these compounds as modulators of lipid kinases, alone or in combination with tyrosine and serine/threonine kinases, has not been described.


Moreover, WO 99/17759 describes pyrido[2,3-b]pyrazines which bear, in 6-position, inter alia, alkyl-, aryl- and heteroaryl-substituted carbamates. These compounds are intended to be used for the modulation of serine-threonine protein kinase function.


Patent application WO 05/007099 describes, inter alia, urea-substituted pyrido[2,3-b]pyrazines as inhibitors of serine/threonine kinase PKB. However, the document does not further define the R radical, which describes the range of possible substitutions on urea. Therefore, the range of possible substitution on urea is thus not clearly disclosed. As for these compounds, use in the treatment of cancer disorders is reported. However, no specific examples of urea-substituted pyridopyrazines having the claimed biological properties are given. In addition, the pyridopyrazines described here differ significantly in structure from the novel pyrido[2,3-b]pyrazines described in this invention.


Further examples of 6- and 7-urea-substituted pyrido[2,3-b]pyrazines are reported in WO 05/056547. However, the compounds disclosed there have additional carbonyl, sulphoxy, sulphone or imine substitution in the 2- or 3-position, which means that the compounds differ structurally significantly from the novel pyrido[2,3-b]pyrazines described in this invention. The pyridopyrazines reported in WO 05/056547 are described as inhibitors of protein kinases, especially of GSK-3, Syk and JAK-3. Uses reported include use in the treatment of proliferative disorders. Use of these compounds as modulators of lipid kinases, alone or in combination with serine/threonine kinases, is not described.


WO 04/005472 describes, inter alia, 6-carbamate-substituted pyrido[2,3-b]pyrazines which, as antibacterial substances, inhibit the growth of bacteria. Antitumor action is not described.


Certain diphenylquinoxalines and -pyrido[2,3-b]pyrazines with specific alkylpyrrolidine, alkylpiperidine or alkylsulphonamide radicals on a phenyl ring, which may additionally also bear urea or carbamate substitutions in 6- or 7-position, are described in patent applications WO 03/084473, WO 03/086394 and WO 03/086403 as inhibitors of serine/threonine kinase Akt. For these compounds, use in the treatment of cancer disorders is reported. For pyrido[2,3-b]pyrazine example compounds described there, no defined indication of biological action is specified. Moreover, there is a significant structural difference to the novel pyrido[2,3-b]pyrazines described in this invention.


Moreover, patent application WO 03/024448 describes amide- and acrylamide-substituted pyrido[2,3-b]pyrazines which also contain carbamates as additional substitutents and can be used as histone deacetylase inhibitors for the treatment of cell proliferation disorders.


A further publication (Temple, C. Jr.; J. Med. Chem. 1990: 3044-3050) exemplarily describes the synthesis of a 6-ethyl carbamate-substituted pyrido[2,3-b]pyrazine derivative. Antitumor action is neither disclosed nor rendered obvious.


The synthesis of further derivatives of 6-ethyl carbamate-substituted pyrido[2,3-b]pyrazine is described in a publication by R. D. Elliott (Elliott R D, J. Org. Chem. 1968: 2393-2397). Biological action of these compounds is neither described nor rendered obvious.


The publication by C. Temple (Temple, C. Jr., J. Med. Chem. 1968: 1216-1218) describes the synthesis and examination of 6-ethyl carbamate-substituted pyrido[2,3-b]pyrazines as potential active antimalarial ingredients. Antitumor action is neither disclosed nor rendered obvious.


WO 2005/021513 is directed to the preparation of condensed n-pyrazinyl-sulfonamides and their use in the treatment of chemokine mediated diseases. Antitumor action is neither disclosed nor rendered obvious.


JP 2006137723 describes the preparation of sulfonamides, their use as CCL17 and/or 22 regulators, and pharmaceuticals containing them for treatment of the chemokine-associated diseases. Antitumor action is neither disclosed nor rendered obvious.


Sako M. (Sako M., Houben-Weyl, Science of Synthesis 2004, 16.20: 1269-1290) gives a general overview about the synthesis of pyridopyrazines. Antitumor action is neither disclosed nor rendered obvious.


U.S. Pat. No. 4,082,845 discloses 3-(1-piperazinyl)-pyrido[2,3-b]pyrazines. Antitumor action is neither disclosed nor rendered obvious.


WO 04/005472 relates to antibacterial inhibitors of Ftsz protein. Pyridopyrazines are not explicitly mentioned. Antitumor action is neither disclosed nor rendered obvious.


WO 02/090355 describes the preparation of N-aroyl cyclic amines as orexin antagonists. Pyrido[2,3-b]pyrazines are not mentioned.


JP 50053394 discloses 3-substituted 5-alkyl-5,8-dihydro-8-oxopyrido[2,3-b]pyrazine-7-carboxylic acids and their esters. Antitumor action is neither disclosed nor rendered obvious.


U.S. Pat. No. 3,209,004 relates to 3,6-diamino-N-(2,2-dialkoxyethyl)pyrido[2,3-b]pyrazine-2-carboxamides. Antitumor action is neither disclosed nor rendered obvious.


U.S. Pat. No. 3,180,868 describes 3,6-diamino-N-(substituted)pyrido[2,3-b]pyrazine-2-carboxamides. Antitumor action is neither disclosed nor rendered obvious.


Chen J J et al. (Chen J J et al., J. Am. Chem. Soc. 1996, 118: 8953-8954) discuss the synthesis of pyrido[2,3-b]pyrazines from pyrazine C-nucleosides. Antitumor action is neither disclosed nor rendered obvious.


Nagel A et al. (Nagel A et al., J. Heterocyclic Chem. 1979, 16: 301-304) show NMR data of pyrido[2,3-b]pyrazine derivatives. Antitumor action is neither disclosed nor rendered obvious.


Tanaka T et al. (Tanaka T et al., Yakugaku Zasshi 1975, 95(9): 1092-1097) describe the synthesis of certain pyrido[2,3-b]pyrazine derivatives. Antitumor action is neither disclosed nor rendered obvious.


Osdene T S et al. (Osdene T S et al., J. Chem. Soc. 1955, pp. 2032-2035) discuss the synthesis of 3,6-diaminopyridopyrazine and derived compounds with potential anti-folic acid activity. Antitumor action is neither disclosed nor rendered obvious.


WO 2006/128172 is directed to a method for treating B cell regulated autoimmune disorders. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 2006/091395 relates to inhibitors of serine/threonine kinase Akt activity. Pyrido[2,3-b]pyrazine derivatives are comprised. However, possible pyrido[2,3-b]pyrazine derivatives are substituted with substituted phenyl and (C3-C8)cycloalkyl, aryl, heteroaryl and heterocyclyl.


WO 06/081179, WO 06/017326, WO 06/017468, WO 06/014580, WO 06/012396, WO 06/002047 and WO 06/020561 are all directed to antibacterial agents. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 2006/074147 discloses 4-arylamino-quinazolines as activatots of caspases and inducers of apoptosis. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 2006/024666 relates to the preparation of pyridine methylene thioxothiazolidinones as phosphoinositide inhibitors. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the displayed pyrido[2,3-b]pyrazine derivatives are not substituted at their pyrazine moiety.


WO 06/021448 is directed to compounds with antibacterial action. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 2005/123733 describes pyrido[2,3-b]pyrazine derivatives as agents for combating phytopathogenic fungi. However, possible pyrido[2,3-b]pyrazine derivatives are substituted with aryl, heteraryl, halogen or substituted amino at their pyridine moiety.


WO 2005/123698 describes agents for combating phytopathogenic fungi. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are substituted with aryl, heteraryl, halogen or substituted amino at their pyridine moiety.


US 2005/0272736 relates to tri- and bi-cyclic heteroaryl histamine-3 receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


US 2005/0272728 discloses bicyclic amines bearing heterocyclic substituents as H3 receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


US 2005/0256309 relates to tri- and bi-cyclic heteroaryl histamine-3 receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


US 2005/0256118 discloses bicyclic amines bearing heterocyclic substituents as H3 receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


US 2005/0165028 is directed to N-heteroaryl substituted benzamides as vanilloid receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 05/023807 describes bicyclic quinazolin-4-ylamine derivatives as capsaicin receptor modulators. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


EP 1 661 889, which corresponds to WO 2005/07099, relates to pyridinyl benzene-sulfonylamide derivatives as chemokine receptor antagonist. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are concomitantly substituted with sulfonamides and cyclic structures.


WO 04/055003 discloses quinazolin-4-yl)amines as capsaicin receptor modulators. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


US 2004/0092521 discloses bicyclic amines bearing heterocyclic substituents as H3 receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 2004/030635 is directed to vasculostatic agents. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are substituted with aryl or heteraryl at their pyrazine moiety.


WO 03/064421 describes aminopiperidine derivatives as antibacterial agents. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 03/064431 also describes aminopiperidine derivatives as antibacterial agents. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 02/055079 relates to 8-hydroxy-1,6-naphthyridine-7-carboxamides as inhibitors of HIV integrase and HIV replication. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 00/12497 discloses quinazoline derivatives as TGF-beta and p38-alpha kinase inhibitors. However, pyrido[2,3-b]pyrazines are not disclosed.


WO 99/43681 is directed to N-(4-piperidinylmethyl)thieno[3,2-b]pyridin-7-amines and related compounds as GABA brain receptor ligands. Pyrido[2,3-b]pyrazines are not disclosed. Antitumor action is neither disclosed nor rendered obvious.


WO 95/15758 describes aryl and heteroaryl quinazoline compounds which inhibit CSF-1R receptor tyrosine kinase. Pyrido[2,3-b]pyrazines are not disclosed.


U.S. Pat. No. 5,480,883 describes bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are directly substituted with aryl or heteraryl at their pyrazine moiety.


WO 2006/059103 relates to substituted pyridines and derivatives thereof. Pyrido[2,3-b]pyrazines are not disclosed.


WO 2007/023186 discloses pyrazine derivatives and their use as PI3K inhibitors. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are directly substituted with sulfonamides at their pyrazine moiety.


WO 2007/044729 also describes pyrazine derivatives and their use as PI3K inhibitors. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are directly substituted with sulfonamides at their pyrazine moiety.


WO 2004/108702 is directed to indole derivatives. Pyrido[2,3-b]pyrazine derivatives are comprised. However, the comprised pyrido[2,3-b]pyrazine derivatives are directly substituted with glyoxyl-indolyl at their pyrimidine moiety.







DESCRIPTION OF THE INVENTION

The present invention has the object to provide novel pyrido[2,3-b]pyrazine derivatives that act as kinase modulators.


The object of the present invention has surprisingly been solved in one aspect by providing pyrido[2,3-b]pyrazine derivatives according to general formula (Ia)




embedded image




    • wherein:

    • one of radicals R3, R4 independently is selected, or both of radicals R3, R4 independently from each other are selected from the group consisting of:

    • (1) “—NR6R7”;

    • wherein radicals R6, R7 are independently from each other selected from the group consisting of:

    • (a) “hydrogen, alkyl, arylalkyl, heteroarylalkyl”;
      • with the first proviso that radicals R6, R7 are not both hydrogen, alkyl, arylalkyl or heteroarylalkyl at the same time;
      • with the second proviso that, if one of radicals R6, R7 independently is “hydrogen”, radical R5 is not selected from the group consisting of: “—NH-cycloalkyl, —NH-heterocyclyl, —NH-aryl, —NH-heteroaryl, halogen, —F, —Cl, —Br, —I, —NRaRb”, with Ra, Rb being independently selected from the group consisting of: “H, alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —NRcRd”, Rc, Rd in turn being independently selected from the group consisting of: “H, alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl”;

    • (b) “—C(Y1)NR8R9, —C(Y1b)OR9b, —C(═NR10)-R11, —C(Y2)NR12-Y3-R13”;
      • wherein Y1, Y1b, Y2 are independently from each other selected from the group consisting of: “═O, ═S, ═NH, ═NR14”;
      • wherein Y3 is independently selected from the group consisting of: “O, S”;
      • wherein radicals R8, R9, R9b, R10, R11, R12, R13, R14 are independently from each other selected from the group consisting of:
      • (I) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX1, —NX2X3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X4, —C(O)O—X5, —C(O)NH—X6, —C(O)NX7X8, —O—X9, —O(—X10-O)a—H (a=1, 2, 3, 4, 5), —O(—X11-O)b—X12 (b=1, 2, 3, 4, 5), —OC(O)—X13, —OC(O)—O—X14, —OC(O)—NHX15, —O—C(O)—NX16X17, —OP(O)(OX18)(OX19), —OSi(X20)(X21)(X22), —OS(O2)—X23, —NHC(O)—NH2, —NHC(O)—X24, —NX25C(O)—X26, —NH—C(O)—O—X27, —NH—C(O)—NH—X28, —NH—C(O)—NX29X30, —NX31-C(O)—O—X32, —NX33-C(O)—NH—X34, —NX35-C(O)—NX36X37, —NHS(O2)—X38, —NX39S(O2)—X40, —S—X41, —S(O)—X42, —S(O2)—X43, —S(O2)NH—X44, —S(O2)NX45X46, —S(O2)O—X47, —P(O)(OX48)(OX49), —Si(X50)(X51)(X52), —C(NH)—NH2, —C(NX53)-NH2, —C(NH)—NHX54, —C(NH)—NX55X56, —C(NX57)-NHX58, —C(NX59)-NX60X61, —NH—C(O)—NH—O—X62, —NH—C(O)—NX63-O—X64, —NX65-C(O)—NX66-O—X67, —N(—C(O)—NH—O—X68)2, —N(—C(O)—NX69-O—X70)2, —N(—C(O)—NH—O—X71)(—C(O)—NX72-O—X73), —C(S)—X74, —C(S)—O—X75, —C(S)—NH—X76, —C(S)—NX77X78, —C(O)—NH—O—X79, —C(O)—NX80-O—X81, —C(S)—NH—O—X82, —C(S)—NX83-O—X84, —C(O)—NH—NH—X85, —C(O)—NH—NX86X87, —C(O)—NX88-NX89X90, —C(S)—NH—NH—X91, —C(S)—NH—NX92X93, —C(S)—NX94-NX95X96, —C(O)—C(O)—O—X97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX98, —C(O)—C(O)—NX99X100, —C(S)—C(O)—O—X101, —C(O)—C(S)—O—X102, —C(S)—C(S)—O—X103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX104, —C(S)—C(O)—NX105X106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX107, —C(S)—C(S)—NX108X109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX110, —C(O)—C(S)—NX111X112”;
        • wherein X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, X32, X33, X34, X35, X36, X37, X38, X39, X40, X41, X42, X43, X44, X45, X46, X47, X48, X49, X50, X51, X52, X53, X54, X55, X56, X57, X58, X59, X60, X61, X62, X63, X64, X65, X66, X67, X68, X69, X70, X71, X72, X73, X74, X75, X76, X77, X78, X79, X80, X81, X82, X83, X84, X85, X86, X87, X88, X89, X90, X91, X92, X93, X94, X95, X96, X97, X98, X99, X100, X101, X102, X103, X104, X105, X106, X107, X108, X109, X110, X111, X112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X7, X8 and/or X16, X17 and/or X29, X30 and/or X36, X37 and/or X45, X46 and/or X55, X56 and/or X60, X61 and/or X77, X78 and/or X86, X87 and/or X89, X90 and/or X92, X93 and/or X95, X96 and/or X99, X100 and/or X105, X106 and/or X108, X109 and/or X111, X112 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (I)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX201, —NX202X203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X204, —C(O)O—X205, —C(O)NH—X206, —C(O)NX207X208, —O—X209, —O(—X210-O)c—H (c=1, 2, 3, 4, 5), —O(—X211-O)d—X212 (d=1, 2, 3, 4, 5), —OC(O)—X213, —OC(O)—O—X214, —OC(O)—NHX215, —O—C(O)—NX216X217, —OP(O)(OX218)(OX219), —OSi(X220)(X221)(X222), —OS(O2)—X223, —NHC(O)—NH2, —NHC(O)—X224, —NX225C(O)—X226, —NH—C(O)—O—X227, —NH—C(O)—NH—X228, —NH—C(O)—NX229X230, —NX231-C(O)—O—X232, —NX233-C(O)—NH—X234, —NX235-C(O)—NX236X237, —NHS(O2)—X238, —NX239S(O2)—X240, —S—X241, —S(O)—X242, —S(O2)—X243, —S(O2)NH—X244, —S(O2)NX245X246, —S(O2)O—X247, —P(O)(OX248)(OX249), —Si(X250)(X251)(X252), —C(NH)—NH2, —C(NX253)-NH2, —C(NH)—NHX254, —C(NH)—NX255X256, —C(NX257)-NHX258, —C(NX259)-NX260X261, —NH—C(O)—NH—O—X262, —NH—C(O)—NX263-O—X264, —NX265-C(O)—NX266-O—X267, —N(—C(O)—NH—O—X268)2, —N(—C(O)—NX269-O—X270)2, —N(—C(O)—NH—O—X271)(—C(O)—NX272-O—X273), —C(S)—X274, —C(S)—O—X275, —C(S)—NH—X276, —C(S)—NX277X278, —C(O)—NH—O—X279, —C(O)—NX280-O—X281, —C(S)—NH—O—X282, —C(S)—NX283-O—X284, —C(O)—NH—NH—X285, —C(O)—NH—NX286X287, —C(O)—NX288-NX289X290, —C(S)—NH—NH—X291, —C(S)—NH—NX292X293, —C(S)—NX294-NX295X296, —C(O)—C(O)—O—X297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX298, —C(O)—C(O)—NX299X300, —C(S)—C(O)—O—X301, —C(O)—C(S)—O—X302, —C(S)—C(S)—O—X303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX304, —C(S)—C(O)—NX305X306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX307, —C(S)—C(S)—NX308X309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX310, —C(O)—C(S)—NX311X312”;
          • wherein X201, X202, X203, X204, X205, X206, X207, X208, X209, X210, X211, X212, X213, X214, X215, X216, X217, X218, X219, X220, X221, X222, X223, X224, X225, X226, X227, X228, X229, X230, X231, X232, X233, X234, X235, X236, X237, X238, X239, X240, X241, X242, X243, X244, X245, X246, X247, X248, X249, X250, X251, X252, X253, X254, X255, X256, X257, X258, X259, X260, X261, X262, X263, X264, X265, X266, X267, X268, X269, X270, X271, X272, X273, X274, X275, X276, X277, X278, X279, X280, X281, X282, X283, X284, X285, X286, X287, X288, X289, X290, X291, X292, X293, X294, X295, X296, X297, X298, X299, X300, X301, X302, X303, X304, X305, X306, X307, X308, X309, X310, X311, X312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X207, X208 and/or X216, X217 and/or X229, X230 and/or X236, X237 and/or X245, X246 and/or X255, X256 and/or X260, X261 and/or X277, X278 and/or X286, X287 and/or X289, X290 and/or X292, X293 and/or X295, X296 and/or X299, X300 and/or X305, X306 and/or X308, X309 and/or X311, X312 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX401, —NX402X403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X404, —C(O)O—X405, —C(O)NH—X406, —C(O)NX407X408, —O—X409, —O(—X410-0)e—H (e=1, 2, 3, 4, 5), —O(—X411-O)rX412 (f=1, 2, 3, 4, 5), —OC(O)—X413, —OC(O)—O—X414, —OC(O)—NHX415, —O—C(O)—NX416X417, —OP(O)(OX418)(OX419), —OSi(X420)(X421)(X422), —OS(O2)—X423, —NHC(O)—NH2, —NHC(O)—X424, —NX425C(O)—X426, —NH—C(O)—O—X427, —NH—C(O)—NH—X428, —NH—C(O)—NX429X430, —NX431-C(O)—O—X432, —NX433-C(O)—NH—X434, —NX435-C(O)—NX436X437, —NHS(O2)—X438, —NX439S(O2)—X440, —S—X441, —S(O)—X442, —S(O2)—X443, —S(O2)NH—X444, —S(O2)NX445X446, —S(O2)O—X447, —P(O)(OX448)(OX449), —Si(X450)(X451)(X452), —C(NH)—NH2, —C(NX453)-NH2, —C(NH)—NHX454, —C(NH)—NX455X456, —C(NX457)-NHX458, —C(NX459)-NX460X461, —NH—C(O)—NH—O—X462, —NH—C(O)—NX463-O—X464, —NX465-C(O)—NX466-O—X467, —N(—C(O)—NH—O—X468)2, —N(—C(O)—NX469-O—X470)2, —N(—C(O)—NH—O—X471)(—C(O)—NX472-O—X473), —C(S)—X474, —C(S)—O—X475, —C(S)—NH—X476, —C(S)—NX477X478, —C(O)—NH—O—X479, —C(O)—NX480-O—X481, —C(S)—NH—O—X482, —C(S)—NX483-O—X484, —C(O)—NH—NH—X485, —C(O)—NH—NX486X487, —C(O)—NX488-NX489X490, —C(S)—NH—NH—X491, —C(S)—NH—NX492X493, —C(S)—NX494-NX495X496, —C(O)—C(O)—O—X497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX498, —C(O)—C(O)—NX499X500, —C(S)—C(O)—O—X501, —C(O)—C(S)—O—X502, —C(S)—C(S)—O—X503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX504, —C(S)—C(O)—NX505X506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX507, —C(S)—C(S)—NX508X509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX510, —C(O)—C(S)—NX511X512”;
          •  wherein X401, X402, X403, X404, X405, X406, X407, X408, X409, X410, X411, X412, X413, X414, X415, X416, X417, X418, X419, X420, X421, X422, X423, X424, X425, X426, X427, X428, X429, X430, X431, X432, X433, X434, X435, X436, X437, X438, X439, X440, X441, X442, X443, X444, X445, X446, X447, X448, X449, X450, X451, X452, X453, X454, X455, X456, X457, X458, X459, X460, X461, X462, X463, X464, X465, X466, X467, X468, X469, X470, X471, X472, X473, X474, X475, X476, X477, X478, X479, X480, X481, X482, X483, X484, X485, X486, X487, X488, X489, X490, X491, X492, X493, X494, X495, X496, X497, X498, X499, X500, X501, X502, X503, X504, X505, X506, X507, X508, X509, X510, X511, X512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X407, X408 and/or X416, X417 and/or X429, X430 and/or X436, X437 and/or X445, X446 and/or X455, X456 and/or X460, X461 and/or X477, X478 and/or X486, X487 and/or X489, X490 and/or X492, X493 and/or X495, X496 and/or X499, X500 and/or X505, X506 and/or X508, X509 and/or X511, X512 and/or respectively together can also form “heterocyclyl”;
          •  wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          •  (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX601, —NX602X603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X604, —C(O)O—X605, —C(O)NH—X606, —C(O)NX607X608, —O—X609, —O(—X610-O)e—H (e=1, 2, 3, 4, 5), —O(—X611-O)r—X612 (f=1, 2, 3, 4, 5), —OC(O)—X613, —OC(O)—O—X614, —OC(O)—NHX615, —O—C(O)—NX616X617, —OP(O)(OX618)(OX619), —OSi(X620)(X621)(X622), —OS(O2)—X623, —NHC(O)—NH2, —NHC(O)—X624, —NX625C(O)—X626, —NH—C(O)—O—X627, —NH—C(O)—NH—X628, —NH—C(O)—NX629X630, —NX631-C(O)—O—X632, —NX633-C(O)—NH—X634, —NX635-C(O)—NX636X637, —NHS(O2)—X638, —NX639S(O2)—X640, —S—X641, —S(O)—X642, —S(O2)—X643, —S(O2)NH—X644, —S(O2)NX645X646, —S(O2)O—X647, —P(O)(OX648)(OX649), —Si(X650)(X651)(X652), —C(NH)—NH2, —C(NX653)-NH2, —C(NH)—NHX654, —C(NH)—NX655X656, —C(NX657)-NHX658, —C(NX659)-NX660X661, —NH—C(O)—NH—O—X662, —NH—C(O)—NX663-O—X664, —NX665-C(O)—NX666-O—X667, —N(—C(O)—NH—O—X668)2, —N(—C(O)—NX669-O—X670)2, —N(—C(O)—NH—O—X671)(—C(O)—NX672-O—X673), —C(S)—X674, —C(S)—O—X675, —C(S)—NH—X676, —C(S)—NX677X678, —C(O)—NH—O—X679, —C(O)—NX680-O—X681, —C(S)—NH—O—X682, —C(S)—NX683-O—X684, —C(O)—NH—NH—X685, —C(O)—NH—NX686X687, —C(O)—NX688-NX689X690, —C(S)—NH—NH—X691, —C(S)—NH—NX692X693, —C(S)—NX694-NX695X696, —C(O)—C(O)—O—X697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX698, —C(O)—C(O)—NX699X700, —C(S)—C(O)—O—X701, —C(O)—C(S)—O—X702, —C(S)—C(S)—O—X703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX704, —C(S)—C(O)—NX705X706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX707, —C(S)—C(S)—NX708X709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX710, —C(O)—C(S)—NX711X712”;
          •  wherein X601, X602, X603, X604, X605, X606, X607, X608, X609, X610, X611, X612, X613, X614, X615, X616, X617, X618, X619, X620, X621, X622, X623, X624, X625, X626, X627, X628, X629, X630, X631, X632, X633, X634, X635, X636, X637, X638, X639, X640, X641, X642, X643, X644, X645, X646, X647, X648, X649, X650, X651, X652, X653, X654, X655, X656, X657, X658, X659, X660, X661, X662, X663, X664, X665, X666, X667, X668, X669, X670, X671, X672, X673, X674, X675, X676, X677, X678, X679, X680, X681, X682, X683, X684, X685, X686, X687, X688, X689, X690, X691, X692, X693, X694, X695, X696, X697, X698, X699, X700, X701, X702, X703, X704, X705, X706, X707, X708, X709, X710, X711, X712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X607, X608 and/or X616, X617 and/or X629, X630 and/or X636, X637 and/or X645, X646 and/or X655, X656 and/or X660, X661 and/or X677, X678 and/or X686, X687 and/or X689, X690 and/or X692, X693 and/or X695, X696 and/or X699, X700 and/or X705, X706 and/or X708, X709 and/or X711, X712 and/or respectively together can also form “heterocyclyl”;
      • with the first proviso that if “—C(Y1)-NR8R9” is selected from the group consisting of: “—C(O)—NRaRb”, with Ra, Rb independently from each other being selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl” or with Ra, Rb forming together “heterocyclyl”, one of radicals R1, R2 is not “hydrogen” and the other one of radicals R1, R2 is not “—NRcRd with Rc, Rd independently from each other being selected from the group consisting of: “hydrogen, alkyl, (C9-C30alkyl), cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —C(Ya1)NXa16Xa17, —C(═NXa18)-Xa19, —C(Ya2)NXa20-Ya3-Xa21”; with the proviso that Rc, Rd are not “hydrogen” or “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” at the same time, with the further proviso that if one of radicals Rc, Rd is “hydrogen” or “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl”, the other radical Rc, Rd is “—C(Ya1)NXa16Xa17”, “—C(═NXa18)-Xa19” oder “—C(Ya2)NXa20-Ya3-Xa21”, where Ya1, Ya2, Ya3 are independently from each other selected from the group consisting of “O, S, ═NH, ═NXa22”; where Xa16, Xa17, Xa18, Xa19, Xa20, Z21, Z22 are independently from each other selected from the group consisting of: hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl”;
      • with the second proviso that if at least one of radicals R1, R2 is “—NXa26Xa27” with at least one of radicals Xa26, Xa27 being “—C(O)—NReRf where at least one of radicals Re, Rf is selected from the group consisting of: “alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, C(O)-alkyl, C(O)-aryl, C(O)-heteroaryl, (C9-C30)alkyl, cycloalkylalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, —C(O)—(C9-C30)alkyl, —C(O)-cycloalkyl, —C(O)-cycloalkylalkyl, —C(O)-arylalkyl, —C(O)-heteroarylalkyl, —C(O)-heterocyclyl, —C(O)-heterocyclylalkyl, —S(O2)-alkyl, —S(O2)—(C9-C30)alkyl, —S(O2)-cycloalkyl, —S(O2)-cycloalkylalkyl, —S(O2)-aryl, —S(O2)-arylalkyl, —S(O2)-heteroaryl, —S(O2)-heteroarylalkyl, —S(O2)— heterocyclyl, —S(O2)-heterocyclylalkyl”, radicals R3, R4 are not “—C(O)—NXa1135Xa1136 with Xa1135, Xa1136 independently being selected from the group consisting of: hydrogen, alkyl, (C9-C30alkyl), cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” or with Xa1135, Xa1136 forming together “heterocyclyl”;
      • with the third proviso that, if “—C(Y1)-NR8R9” independently is selected from the group consisting of: “—C(O)—N[C(O)—O-alkyl]2, —C(O)—N[C(O)-alkyl]2, —C(O)—N[S(O2)-alkyl]2, —C(O)—N[S(O2)-cycloalkyl]2, —C(O)—N[S(O2)— cycloalkylalkyl]2, —C(O)—N[S(O2)-aryl]2, —C(O)—N[S(O2)-heterocyclyl]2”, radicals R1, R2 independently from each other are not “phenyl”;
      • with the fourth proviso that, if “—C(Y2)-NR12-Y3-R13” independently is selected from the group consisting of: “—C(O)—N[O-alkyl]2”, radicals R1, R2 independently from each other are not “phenyl”;

    • (c) “—C(O)—C(O)—R16”;
      • wherein radical R16 is independently selected from the group consisting of:
      • (II) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ1, —NZ2Z3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z4, —C(O)O—Z5, —C(O)NH—Z6, —C(O)NZ7Z8, —O—Z9, —O(—Z10-O)a— H (a=1, 2, 3, 4, 5), —O(—Z11-O)b—Z12 (b=1, 2, 3, 4, 5), —OC(O)—Z13, —OC(O)—O—Z14, —OC(O)—NHZ15, —O—C(O)—NZ16Z17, —OP(O)(OZ18)(OZ19), —OSi(Z20)(Z21)(Z22), —OS(O2)—Z23, —NHC(O)—NH2, —NHC(O)—Z24, —NZ25C(O)—Z26, —NH—C(O)—O—Z27, —NH—C(O)—NH—Z28, —NH—C(O)—NZ29Z30, —NZ31-C(O)—O—Z32, —NZ33-C(O)—NH—Z34, —NZ35-C(O)—NZ36Z37, —NHS(O2)—Z38, —NZ39S(O2)—Z40, —S—Z41, —S(O)—Z42, —S(O2)—Z43, —S(O2)NH—Z44, —S(O2)NZ45Z46, —S(O2)O—Z47, —P(O)(OZ48)(OZ49), —Si(Z50)(Z51)(Z52), —C(NH)—NH2, —C(NZ53)-NH2, —C(NH)—NHZ54, —C(NH)—NZ55Z56, —C(NZ57)-NHZ58, —C(NZ59)-NZ60Z61, —NH—C(O)—NH—O—Z62, —NH—C(O)—NZ63-O—Z64, —NZ65-C(O)—NZ66-O—Z67, —N(—C(O)—NH—O—Z68)2, —N(—C(O)—NZ69-O—Z70)2, —N(—C(O)—NH—O—Z71)(—C(O)—NZ72-O—Z73), —C(S)—Z74, —C(S)—O—Z75, —C(S)—NH—Z76, —C(S)—NZ77Z78, —C(O)—NH—O—Z79, —C(O)—NZ80-O—Z81, —C(S)—NH—O—Z82, —C(S)—NZ83-O—Z84, —C(O)—NH—NH—Z85, —C(O)—NH—NZ86Z87, —C(O)—NZ88-NZ89Z90, —C(S)—NH—NH—Z91, —C(S)—NH—NZ92Z93, —C(S)—NZ94-NZ95Z96, —C(O)—C(O)—O—Z97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ98, —C(O)—C(O)—NZ99Z100, —C(S)—C(O)—O—Z101, —C(O)—C(S)—O—Z102, —C(S)—C(S)—O—Z103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ104, —C(S)—C(O)—NZ105Z106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ107, —C(S)—C(S)—NZ108Z109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ110, —C(O)—C(S)—NZ111Z112”;
        • wherein Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35, Z36, Z37, Z38, Z39, Z40, Z41, Z42, Z43, Z44, Z45, Z46, Z47, Z48, Z49, Z50, Z51, Z52, Z53, Z54, Z55, Z56, Z57, Z58, Z59, Z60, Z61, Z62, Z63, Z64, Z65, Z66, Z67, Z68, Z69, Z70, Z71, Z72, Z73, Z74, Z75, Z76, Z77, Z78, Z79, Z80, Z81, Z82, Z83, Z84, Z85, Z86, Z87, Z88, Z89, Z90, Z91, Z92, Z93, Z94, Z95, Z96, Z97, Z98, Z99, Z100, Z101, Z102, Z103, Z104, Z105, Z106, Z107, Z108, Z109, Z110, Z111, Z112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z7, Z8 and/or Z16, Z17 and/or Z29, Z30 and/or Z36, Z37 and/or Z45, Z46 and/or Z55, Z56 and/or Z60, Z61 and/or Z77, Z78 and/or Z86, Z87 and/or Z89, Z90 and/or Z92, Z93 and/or Z95, Z96 and/or Z99, Z100 and/or Z105, Z106 and/or Z108, Z109 and/or Z111, Z112 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (II)— if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ201, —NZ202Z203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z204, —C(O)O—Z205, —C(O)NH—Z206, —C(O)NZ207Z208, —O—Z209, —O(—Z210-O)—H (c=1, 2, 3, 4, 5), —O(—Z211-O)d—Z212 (d=1, 2, 3, 4, 5), —OC(O)—Z213, —OC(O)—O—Z214, —OC(O)—NHZ215, —O—C(O)—NZ216Z217, —OP(O)(OZ218)(OZ219), —OSi(Z220)(Z221)(Z222), —OS(O2)—Z223, —NHC(O)—NH2, —NHC(O)—Z224, —NZ225C(O)—Z226, —NH—C(O)—O—Z227, —NH—C(O)—NH—Z228, —NH—C(O)—NZ229Z230, —NZ231-C(O)—O—Z232, —NZ233-C(O)—NH—Z234, —NZ235-C(O)—NZ236Z237, —NHS(O2)—Z238, —NZ239S(O2)—Z240, —S—Z241, —S(O)—Z242, —S(O2)—Z243, —S(O2)NH—Z244, —S(O2)NZ245Z246, —S(O2)O—Z247, —P(O)(OZ248)(OZ249), —Si(Z250)(Z251)(Z252), —C(NH)—NH2, —C(NZ253)-NH2, —C(NH)—NHZ254, —C(NH)—NZ255Z256, —C(NZ257)-NHZ258, —C(NZ259)-NZ260Z261, —NH—C(O)—NH—O—Z262, —NH—C(O)—NZ263-O—Z264, —NZ265-C(O)—NZ266-O—Z267, —N(—C(O)—NH—O—Z268)2, —N(—C(O)—NZ269-O—Z270)2, —N(—C(O)—NH—O—Z271)(—C(O)—NZ272-O—Z273), —C(S)—Z274, —C(S)—O—Z275, —C(S)—NH—Z276, —C(S)—NZ277Z278, —C(O)—NH—O—Z279, —C(O)—NZ280-O—Z281, —C(S)—NH—O—Z282, —C(S)—NZ283-O—Z284, —C(O)—NH—NH—Z285, —C(O)—NH—NZ286Z287, —C(O)—NZ288-NZ289Z290, —C(S)—NH—NH—Z291, —C(S)—NH—NZ292Z293, —C(S)—NZ294-NZ295Z296, —C(O)—C(O)—O—Z297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ298, —C(O)—C(O)—NZ299Z300, —C(S)—C(O)—O—Z301, —C(O)—C(S)—O—Z302, —C(S)—C(S)—O—Z303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ304, —C(S)—C(O)—NZ305Z306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ307, —C(S)—C(S)—NZ308Z309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ310, —C(O)—C(S)—NZ311Z312”;
          • wherein Z201, Z202, Z203, Z204, Z205, Z206, Z207, Z208, Z209, Z210, Z211, Z212, Z213, Z214, Z215, Z216, Z217, Z218, Z219, Z220, Z221, Z222, Z223, Z224, Z225, Z226, Z227, Z228, Z229, Z230, Z231, Z232, Z233, Z234, Z235, Z236, Z237, Z238, Z239, Z240, Z241, Z242, Z243, Z244, Z245, Z246, Z247, Z248, Z249, Z250, Z251, Z252, Z253, Z254, Z255, Z256, Z257, Z258, Z259, Z260, Z261, Z262, Z263, Z264, Z265, Z266, Z267, Z268, Z269, Z270, Z271, Z272, Z273, Z274, Z275, Z276, Z277, Z278, Z279, Z280, Z281, Z282, Z283, Z284, Z285, Z286, Z287, Z288, Z289, Z290, Z291, Z292, Z293, Z294, Z295, Z296, Z297, Z298, Z299, Z300, Z301, Z302, Z303, Z304, Z305, Z306, Z307, Z308, Z309, Z310, Z311, Z312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z207, Z208 and/or Z216, Z217 and/or Z229, Z230 and/or Z236, Z237 and/or Z245, Z246 and/or Z255, Z256 and/or Z260, Z261 and/or Z277, Z278 and/or Z286, Z287 and/or Z289, Z290 and/or Z292, Z293 and/or Z295, Z296 and/or Z299, Z300 and/or Z305, Z306 and/or Z308, Z309 and/or Z311, Z312 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ401, —NZ402Z403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z404, —C(O)O—Z405, —C(O)NH—Z406, —C(O)NZ407Z408, —O—Z409, —O(—Z410-O)e—H (e=1, 2, 3, 4, 5), —O(—Z411-O)rZ412 (f=1, 2, 3, 4, 5), —OC(O)—Z413, —OC(O)—O—Z414, —OC(O)—NHZ415, —O—C(O)—NZ416Z417, —OP(O)(OZ418)(OZ419), —OSi(Z420)(Z421)(Z422), —OS(O2)—Z423, —NHC(O)—NH2, —NHC(O)—Z424, —NZ425C(O)—Z426, —NH—C(O)—O—Z427, —NH—C(O)—NH—Z428, —NH—C(O)—NZ429Z430, —NZ431-C(O)—O—Z432, —NZ433-C(O)—NH—Z434, —NZ435-C(O)—NZ436Z437, —NHS(O2)—Z438, —NZ439S(O2)—Z440, —S—Z441, —S(O)—Z442, —S(O2)—Z443, —S(O2)NH—Z444, —S(O2)NZ445Z446, —S(O2)O—Z447, —P(O)(OZ448)(0Z449), —Si(Z450)(Z451)(Z452), —C(NH)—NH2, —C(NZ453)-NH2, —C(NH)—NHZ454, —C(NH)—NZ455Z456, —C(NZ457)-NHZ458, —C(NZ459)-NZ460Z461, —NH—C(O)—NH—O—Z462, —NH—C(O)—NZ463-O—Z464, —NZ465-C(O)—NZ466-O—Z467, —N(—C(O)—NH—O—Z468)2, —N(—C(O)—NZ469-O—Z470)2, —N(—C(O)—NH—O—Z471)(—C(O)—NZ472-O—Z473), —C(S)—Z474, —C(S)—O—Z475, —C(S)—NH—Z476, —C(S)—NZ477Z478, —C(O)—NH—O—Z479, —C(O)—NZ480-O—Z481, —C(S)—NH—O—Z482, —C(S)—NZ483-O—Z484, —C(O)—NH—NH—Z485, —C(O)—NH—NZ486Z487, —C(O)—NZ488-NZ489Z490, —C(S)—NH—NH—Z491, —C(S)—NH—NZ492Z493, —C(S)—NZ494-NZ495Z496, —C(O)—C(O)—O—Z497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ498, —C(O)—C(O)—NZ499Z500, —C(S)—C(O)—O—Z501, —C(O)—C(S)—O—Z502, —C(S)—C(S)—O—Z503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ504, —C(S)—C(O)—NZ505Z506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ507, —C(S)—C(S)—NZ508Z509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ510, —C(O)—C(S)—NZ511Z512”;
          •  wherein Z401, Z402, Z403, Z404, Z405, Z406, Z407, Z408, Z409, Z410, Z411, Z412, Z413, Z414, Z415, Z416, Z417, Z418, Z419, Z420, Z421, Z422, Z423, Z424, Z425, Z426, Z427, Z428, Z429, Z430, Z431, Z432, Z433, Z434, Z435, Z436, Z437, Z438, Z439, Z440, Z441, Z442, Z443, Z444, Z445, Z446, Z447, Z448, Z449, Z450, Z451, Z452, Z453, Z454, Z455, Z456, Z457, Z458, Z459, Z460, Z461, Z462, Z463, Z464, Z465, Z466, Z467, Z468, Z469, Z470, Z471, Z472, Z473, Z474, Z475, Z476, Z477, Z478, Z479, Z480, Z481, Z482, Z483, Z484, Z485, Z486, Z487, Z488, Z489, Z490, Z491, Z492, Z493, Z494, Z495, Z496, Z497, Z498, Z499, Z500, Z501, Z502, Z503, Z504, Z505, Z506, Z507, Z508, Z509, Z510, Z511, Z512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z407, Z408 and/or Z416, Z417 and/or Z429, Z430 and/or Z436, Z437 and/or Z445, Z446 and/or Z455, Z456 and/or Z460, Z461 and/or Z477, Z478 and/or Z486, Z487 and/or Z489, Z490 and/or Z492, Z493 and/or Z495, Z496 and/or Z499, Z500 and/or Z505, Z506 and/or Z508, Z509 and/or Z511, Z512 and/or respectively together can also form “heterocyclyl”;
          •  wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          •  (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ601, —NZ602Z603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z604, —C(O)O—Z605, —C(O)NH—Z606, —C(O)NZ607Z608, —O—Z609, —O(—Z610-O)e—H (e=1, 2, 3, 4, 5), —O(—Z611-O)rZ612 (f=1, 2, 3, 4, 5), —OC(O)—Z613, —OC(O)—O—Z614, —OC(O)—NHZ615, —O—C(O)—NZ616Z617, —OP(O)(OZ618)(OZ619), —OSi(Z620)(Z621)(Z622), —OS(O2)—Z623, —NHC(O)—NH2, —NHC(O)—Z624, —NZ625C(O)—Z626, —NH—C(O)—O—Z627, —NH—C(O)—NH—Z628, —NH—C(O)—NZ629Z630, —NZ631-C(O)—O—Z632, —NZ633-C(O)—NH—Z634, —NZ635-C(O)—NZ636Z637, —NHS(O2)—Z638, —NZ639S(O2)—Z640, —S—Z641, —S(O)—Z642, —S(O2)—Z643, —S(O2)NH—Z644, —S(O2)NZ645Z646, —S(O2)O—Z647, —P(O)(OZ648)(OZ649), —Si(Z650)(Z651)(Z652), —C(NH)—NH2, —C(NZ653)-NH2, —C(NH)—NHZ654, —C(NH)—NZ655Z656, —C(NZ657)-NHZ658, —C(NZ659)-NZ660Z661, —NH—C(O)—NH—O—Z662, —NH—C(O)—NZ663-O—Z664, —NZ665-C(O)—NZ666-O—Z667, —N(—C(O)—NH—O—Z668)2, —N(—C(O)—NZ669-O—Z670)2, —N(—C(O)—NH—O—Z671)(—C(O)—NZ672-O—Z673), —C(S)—Z674, —C(S)—O—Z675, —C(S)—NH—Z676, —C(S)—NZ677Z678, —C(O)—NH—O—Z679, —C(O)—NZ680-O—Z681, —C(S)—NH—O—Z682, —C(S)—NZ683-O—Z684, —C(O)—NH—NH—Z685, —C(O)—NH—NZ686Z687, —C(O)—NZ688-NZ689Z690, —C(S)—NH—NH—Z691, —C(S)—NH—NZ692Z693, —C(S)—NZ694-NZ695Z696, —C(O)—C(O)—O—Z697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ698, —C(O)—C(O)—NZ699Z700, —C(S)—C(O)—O—Z701, —C(O)—C(S)—O—Z702, —C(S)—C(S)—O—Z703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ704, —C(S)—C(O)—NZ705Z706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ707, —C(S)—C(S)—NZ708Z709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ710, —C(O)—C(S)—NZ711Z712”;
          •  wherein Z601, Z602, Z603, Z604, Z605, Z606, Z607, Z608, Z609, Z610, Z611, Z612, Z613, Z614, Z615, Z616, Z617, Z618, Z619, Z620, Z621, Z622, Z623, Z624, Z625, Z626, Z627, Z628, Z629, Z630, Z631, Z632, Z633, Z634, Z635, Z636, Z637, Z638, Z639, Z640, Z641, Z642, Z643, Z644, Z645, Z646, Z647, Z648, Z649, Z650, Z651, Z652, Z653, Z654, Z655, Z656, Z657, Z658, Z659, Z660, Z661, Z662, Z663, Z664, Z665, Z666, Z667, Z668, Z669, Z670, Z671, Z672, Z673, Z674, Z675, Z676, Z677, Z678, Z679, Z680, Z681, Z682, Z683, Z684, Z685, Z686, Z687, Z688, Z689, Z690, Z691, Z692, Z693, Z694, Z695, Z696, Z697, Z698, Z699, Z700, Z701, Z702, Z703, Z704, Z705, Z706, Z707, Z708, Z709, Z710, Z711, Z712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z607, Z608 and/or Z616, Z617 and/or Z629, Z630 and/or Z636, Z637 and/or Z645, Z646 and/or Z655, Z656 and/or Z660, Z661 and/or Z677, Z678 and/or Z686, Z687 and/or Z689, Z690 and/or Z692, Z693 and/or Z695, Z696 and/or Z699, Z700 and/or Z705, Z706 and/or Z708, Z709 and/or Z711, Z712 and/or respectively together can also form “heterocyclyl”;
      • with the proviso that radical R16 is not “indol-yl”;

    • (d) “—S(O2)—R18”;
      • wherein radical R18 is independently selected from the group consisting of:
      • (III) “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW1, —NW2W3, —NO2, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W4, —C(O)O—W5, —C(O)NH—W6, —C(O)NW7W8, —O—W9, —O(—W10-O)a—H (a=1, 2, 3, 4, 5), —O(—W11-O)b—W12 (b=1, 2, 3, 4, 5), —OC(O)—W13, —OC(O)—O—W14, —OC(O)—NHW15, —O—C(O)—NW16W17, —OP(O)(OW18)(OW19), —OSi(W20)(W21)(W22), —OS(O2)—W23, —NHC(O)—NH2, —NHC(O)—W24, —NW25C(O)—W26, —NH—C(O)—O—W27, —NH—C(O)—NH—W28, —NH—C(O)—NW29W30, —NW31-C(O)—O—W32, —NW33-C(O)—NH—W34, —NW35-C(O)—NW36W37, —NHS(O2)—W38, —NW39S(O2)—W40, —S—W41, —S(O)—W42, —S(O2)—W43, —S(O2)NH—W44, —S(O2)NW45W46, —S(O2)O—W47, —P(O)(OW48)(OW49), —Si(W50)(W51)(W52), —C(NH)—NH2, —C(NW53)-NH2, —C(NH)—NHW54, —C(NH)—NW55W56, —C(NW57)-NHW58, —C(NW59)-NW60W61, —NH—C(O)—NH—O—W62, —NH—C(O)—NW63-O—W64, —NW65-C(O)—NW66-O—W67, —N(—C(O)—NH—O—W68)2, —N(—C(O)—NW69-O—W70)2, —N(—C(O)—NH—O—W71)(—C(O)—NW72-O—W73), —C(S)—W74, —C(S)—O—W75, —C(S)—NH—W76, —C(S)—NW77W78, —C(O)—NH—O—W79, —C(O)—NW80-O—W81, —C(S)—NH—O—W82, —C(S)—NW83-O—W84, —C(O)—NH—NH—W85, —C(O)—NH—NW86W87, —C(O)—NW88-NW89W90, —C(S)—NH—NH—W91, —C(S)—NH—NW92W93, —C(S)—NW94-NW95W96, —C(O)—C(O)—O—W97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW98, —C(O)—C(O)—NW99W100, —C(S)—C(O)—O—W101, —C(O)—C(S)—O—W102, —C(S)—C(S)—O—W103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW104, —C(S)—C(O)—NW105W106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW107, —C(S)—C(S)—NW108W109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW110, —C(O)—C(S)—NW111W112”;
        • wherein W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, W16, W17, W18, W19, W20, W21, W22, W23, W24, W25, W26, W27, W28, W29, W30, W31, W32, W33, W34, W35, W36, W37, W38, W39, W40, W41, W42, W43, W44, W45, W46, W47, W48, W49, W50, W51, W52, W53, W54, W55, W56, W57, W58, W59, W60, W61, W62, W63, W64, W65, W66, W67, W68, W69, W70, W71, W72, W73, W74, W75, W76, W77, W78, W79, W80, W81, W82, W83, W84, W85, W86, W87, W88, W89, W90, W91, W92, W93, W94, W95, W96, W97, W98, W99, W100, W101, W102, W103, W104, W105, W106, W107, W108, W109, W110, W111, W112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W7, W8 and/or W16, W17 and/or W29, W30 and/or W36, W37 and/or W45, W46 and/or W55, W56 and/or W60, W61 and/or W77, W78 and/or W86, W87 and/or W89, W90 and/or W92, W93 and/or W95, W96 and/or W99, W100 and/or W105, W106 and/or W108, W109 and/or W111, W112 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (III) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW201, —NW202W203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W204, —C(O)O—W205, —C(O)NH—W206, —C(O)NW207W208, —O—W209, —O(—W210-O)d—H (c=1, 2, 3, 4, 5), —O(—W211-O)d—W212 (d=1, 2, 3, 4, 5), —OC(O)—W213, —OC(O)—O—W214, —OC(O)—NHW215, —O—C(O)—NW216W217, —OP(O)(OW218)(OW219), —OSi(W220)(W221)(W222), —OS(O2)—W223, —NHC(O)—NH2, —NHC(O)—W224, —NW225C(O)—W226, —NH—C(O)—O—W227, —NH—C(O)—NH—W228, —NH—C(O)—NW229W230, —NW231-C(O)—O—W232, —NW233-C(O)—NH—W234, —NW235-C(O)—NW236W237, —NHS(O2)—W238, —NW239S(O2)—W240, —S—W241, —S(O)—W242, —S(O2)—W243, —S(O2)NH—W244, —S(O2)NW245W246, —S(O2)O—W247, —P(O)(OW248)(OW249), —Si(W250)(W251)(W252), —C(NH)—NH2, —C(NW253)-NH2, —C(NH)—NHW254, —C(NH)—NW255W256, —C(NW257)-NHW258, —C(NW259)-NW260W261, —NH—C(O)—NH—O—W262, —NH—C(O)—NW263-O—W264, —NW265-C(O)—NW266-O—W267, —N(—C(O)—NH—O—W268)2, —N(—C(O)—NW269-O—W270)2, —N(—C(O)—NH—O—W271)(—C(O)—NW272-O—W273), —C(S)—W274, —C(S)—O—W275, —C(S)—NH—W276, —C(S)—NW277W278, —C(O)—NH—O—W279, —C(O)—NW280-O—W281, —C(S)—NH—O—W282, —C(S)—NW283-O—W284, —C(O)—NH—NH—W285, —C(O)—NH—NW286W287, —C(O)—NW288-NW289W290, —C(S)—NH—NH—W291, —C(S)—NH—NW292W293, —C(S)—NW294-NW295W296, —C(O)—C(O)—O—W297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW298, —C(O)—C(O)—NW299W300, —C(S)—C(O)—O—W301, —C(O)—C(S)—O—W302, —C(S)—C(S)—O—W303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW304, —C(S)—C(O)—NW305W306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW307, —C(S)—C(S)—NW308W309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW310, —C(O)—C(S)—NW311W312”;
          • wherein W201, W202, W203, W204, W205, W206, W207, W208, W209, W210, W211, W212, W213, W214, W215, W216, W217, W218, W219, W220, W221, W222, W223, W224, W225, W226, W227, W228, W229, W230, W231, W232, W233, W234, W235, W236, W237, W238, W239, W240, W241, W242, W243, W244, W245, W246, W247, W248, W249, W250, W251, W252, W253, W254, W255, W256, W257, W258, W259, W260, W261, W262, W263, W264, W265, W266, W267, W268, W269, W270, W271, W272, W273, W274, W275, W276, W277, W278, W279, W280, W281, W282, W283, W284, W285, W286, W287, W288, W289, W290, W291, W292, W293, W294, W295, W296, W297, W298, W299, W300, W301, W302, W303, W304, W305, W306, W307, W308, W309, W310, W311, W312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W207, W208 and/or W216, W217 and/or W229, W230 and/or W236, W237 and/or W245, W246 and/or W255, W256 and/or W260, W261 and/or W277, W278 and/or W286, W287 and/or W289, W290 and/or W292, W293 and/or W295, W296 and/or W299, W300 and/or W305, W306 and/or W308, W309 and/or W311, W312 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW401, —NW402W403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W404, —C(O)O—W405, —C(O)NH—W406, —C(O)NW407W408, —O—W409, —O(—W410-0)e—H (e=1, 2, 3, 4, 5), —O(—W411-O)rW412 (f=1, 2, 3, 4, 5), —OC(O)—W413, —OC(O)—O—W414, —OC(O)—NHW415, —O—C(O)—NW416W417, —OP(O)(OW418)(OW419), —OSi(W420)(W421)(W422), —OS(O2)—W423, —NHC(O)—NH2, —NHC(O)—W424, —NW425C(O)—W426, —NH—C(O)—O—W427, —NH—C(O)—NH—W428, —NH—C(O)—NW429W430, —NW431-C(O)—O—W432, —NW433-C(O)—NH—W434, —NW435-C(O)—NW436W437, —NHS(O2)—W438, —NW439S(O2)—W440, —S—W441, —S(O)—W442, —S(O2)—W443, —S(O2)NH—W444, —S(O2)NW445W446, —S(O2)O—W447, —P(O)(OW448)(OW449), —Si(W450)(W451)(W452), —C(NH)—NH2, —C(NW453)-NH2, —C(NH)—NHW454, —C(NH)—NW455W456, —C(NW457)—NHW458, —C(NW459)-NW460W461, —NH—C(O)—NH—O—W462, —NH—C(O)—NW463-O—W464, —NW465-C(O)—NW466-O—W467, —N(—C(O)—NH—O—W468)2, —N(—C(O)—NW469-O—W470)2, —N(—C(O)—NH—O—W471)(—C(O)—NW472-O—W473), —C(S)—W474, —C(S)—O—W475, —C(S)—NH—W476, —C(S)—NW477W478, —C(O)—NH—O—W479, —C(O)—NW480-W481, —C(S)—NH—O—W482, —C(S)—NW483-O—W484, —C(O)—NH—NH—W485, —C(O)—NH—NW486W487, —C(O)—NW488-NW489W490, —C(S)—NH—NH—W491, —C(S)—NH—NW492W493, —C(S)—NW494-NW495W496, —C(O)—C(O)—O—W497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW498, —C(O)—C(O)—NW499W500, —C(S)—C(O)—O—W501, —C(O)—C(S)—O—W502, —C(S)—C(S)—O—W503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW504, —C(S)—C(O)—NW505W506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW507, —C(S)—C(S)—NW508W509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW510, —C(O)—C(S)—NW511W512”;
          •  wherein W401, W402, W403, W404, W405, W406, W407, W408, W409, W410, W411, W412, W413, W414, W415, W416, W417, W418, W419, W420, W421, W422, W423, W424, W425, W426, W427, W428, W429, W430, W431, W432, W433, W434, W435, W436, W437, W438, W439, W440, W441, W442, W443, W444, W445, W446, W447, W448, W449, W450, W451, W452, W453, W454, W455, W456, W457, W458, W459, W460, W461, W462, W463, W464, W465, W466, W467, W468, W469, W470, W471, W472, W473, W474, W475, W476, W477, W478, W479, W480, W481, W482, W483, W484, W485, W486, W487, W488, W489, W490, W491, W492, W493, W494, W495, W496, W497, W498, W499, W500, W501, W502, W503, W504, W505, W506, W507, W508, W509, W510, W511, W512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W407, W408 and/or W416, W417 and/or W429, W430 and/or W436, W437 and/or W445, W446 and/or W455, W456 and/or W460, W461 and/or W477, W478 and/or W486, W487 and/or W489, W490 and/or W492, W493 and/or W495, W496 and/or W499, W500 and/or W505, W506 and/or W508, W509 and/or W511, W512 and/or respectively together can also form “heterocyclyl”;
          •  wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          •  (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW601, —NW602W603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W604, —C(O)O—W605, —C(O)NH—W606, —C(O)NW607W608, —O—W609, —O(—W610-O)e—H (e=1, 2, 3, 4, 5), —O(—W611-O)r—W612 (f=1, 2, 3, 4, 5), —OC(O)—W613, —OC(O)—O—W614, —OC(O)—NHW615, —O—C(O)—NW616W617, —OP(O)(OW618)(OW619), —OSi(W620)(W621)(W622), —OS(O2)—W623, —NHC(O)—NH2, —NHC(O)—W624, —NW625C(O)—W626, —NH—C(O)—O—W627, —NH—C(O)—NH—W628, —NH—C(O)—NW629W630, —NW631-C(O)—O—W632, —NW633-C(O)—NH—W634, —NW635-C(O)—NW636W637, —NHS(O2)—W638, —NW639S(O2)—W640, —S—W641, —S(O)—W642, —S(O2)—W643, —S(O2)NH—W644, —S(O2)NW645W646, —S(O2)O—W647, —P(O)(OW648)(OW649), —Si(W650)(W651)(W652), —C(NH)—NH2, —C(NW653)-NH2, —C(NH)—NHW654, —C(NH)—NW655W656, —C(NW657)-NHW658, —C(NW659)-NW660W661, —NH—C(O)—NH—O—W662, —NH—C(O)—NW663-O—W664, —NW665-C(O)—NW666-O—W667, —N(—C(O)—NH—O—W668)2, —N(—C(O)—NW669-O—W670)2, —N(—C(O)—NH—O—W671)(—C(O)—NW672-O—W673), —C(S)—W674, —C(S)—O—W675, —C(S)—NH—W676, —C(S)—NW677W678, —C(O)—NH—O—W679, —C(O)—NW680-O—W681, —C(S)—NH—O—W682, —C(S)—NW683-O—W684, —C(O)—NH—NH—W685, —C(O)—NH—NW686W687, —C(O)—NW688-NW689W690, —C(S)—NH—NH—W691, —C(S)—NH—NW692W693, —C(S)—NW694-NW695W696, —C(O)—C(O)—O—W697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW698, —C(O)—C(O)—NW699W700, —C(S)—C(O)—O—W701, —C(O)—C(S)—O—W702, —C(S)—C(S)—O—W703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW704, —C(S)—C(O)—NW705W706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW707, —C(S)—C(S)—NW708W709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW710, —C(O)—C(S)—NW711W712”;
          •  wherein W601, W602, W603, W604, W605, W606, W607, W608, W609, W610, W611, W612, W613, W614, W615, W616, W617, W618, W619, W620, W621, W622, W623, W624, W625, W626, W627, W628, W629, W630, W631, W632, W633, W634, W635, W636, W637, W638, W639, W640, W641, W642, W643, W644, W645, W646, W647, W648, W649, W650, W651, W652, W653, W654, W655, W656, W657, W658, W659, W660, W661, W662, W663, W664, W665, W666, W667, W668, W669, W670, W671, W672, W673, W674, W675, W676, W677, W678, W679, W680, W681, W682, W683, W684, W685, W686, W687, W688, W689, W690, W691, W692, W693, W694, W695, W696, W697, W698, W699, W700, W701, W702, W703, W704, W705, W706, W707, W708, W709, W710, W711, W712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W607, W608 and/or W616, W617 and/or W629, W630 and/or W636, W637 and/or W645, W646 and/or W655, W656 and/or W660, W661 and/or W677, W678 and/or W686, W687 and/or W689, W690 and/or W692, W693 and/or W695, W696 and/or W699, W700 and/or W705, W706 and/or W708, W709 and/or W711, W712 and/or respectively together can also form “heterocyclyl”;
      • with the first proviso that radical R18 is not selected from the group consisting of: “—O-alkyl, —O—(C9-C30)alkyl, —O-aryl, —O-arylalkyl, —O-heteroaryl, —O-heteroarylalkyl, —O-cycloalkyl, —O-cycloalkylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl”;
      • with the second proviso that, if radical R18 independently is selected from the group consisting of: “—NRaRb”, with Ra, Rb independently from each other being selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl”, radical R1 is not selected from the group consisting of: “heterocyclylalkyl being substituted with ═O, where heterocyclyl is 5-membered; alkyl being substituted with heterocyclyl, where heterocyclyl is 5-membered and substituted with ═O”;

    • and one of radicals R3, R4 or neither of radicals R3, R4 independently is selected from the group consisting of:

    • (2) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA1, —NA2A3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A4, —C(O)O-A5, —C(O)NH-A6, —C(O)NA7A8, —O-A9, —O(-A10-O)a—H (a=1, 2, 3, 4, 5), —O(-A11-O)b-A12 (b=1, 2, 3, 4, 5), —OC(O)-A13, —OC(O)—O-A14, —OC(O)—NHA15, —O—C(O)—NA16A17, —OP(O)(OA18)(OA19), —OSi(A20)(A21)(A22), —OS(O2)-A23, —NHC(O)—NH2, —NHC(O)-A24, —NA25C(O)-A26, —NH—C(O)—O-A27, —NH—C(O)—NH-A28, —NH—C(O)—NA29A30, —NA31-C(O)—O-A32, —NA33-C(O)—NH-A34, —NA35-C(O)—NA36A37, —NHS(O2)-A38, —NA39S(O2)-A40, —S-A41, —S(O)-A42, —S(O2)-A43, —S(O2)NH-A44, —S(O2)NA45A46, —S(O2)O-A47, —P(O)(OA48)(OA49), —Si(A50)(A51)(A52), —C(NH)—NH2, —C(NA53)-NH2, —C(NH)—NHA54, —C(NH)—NA55A56, —C(NA57)-NHA58, —C(NA59)-NA60A61, —NH—C(O)—NH—O-A62, —NH—C(O)—NA63-O-A64, —NA65-C(O)—NA66-O-A67, —N(—C(O)—NH—O-A68)2, —N(—C(O)—NA69-O-A70)2, —N(—C(O)—NH—O-A71)(—C(O)—NA72-O-A73), —C(S)-A74, —C(S)—O-A75, —C(S)—NH-A76, —C(S)—NA77A78, —C(O)—NH—O-A79, —C(O)—NA80-O-A81, —C(S)—NH—O-A82, —C(S)—NA83-O-A84, —C(O)—NH—NH-A85, —C(O)—NH—NA86A87, —C(O)—NA88-NA89A90, —C(S)—NH—NH-A91, —C(S)—NH—NA92A93, —C(S)—NA94-NA95A96, —C(O)—C(O)—O-A97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA98, —C(O)—C(O)—NA99A100, —C(S)—C(O)—O-A101, —C(O)—C(S)—O-A102, —C(S)—C(S)—O-A103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA104, —C(S)—C(O)—NA105A106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA107, —C(S)—C(S)—NA108A109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA110, —C(O)—C(S)—NA111A112”;
      • wherein A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32, A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43, A44, A45, A46, A47, A48, A49, A50, A51, A52, A53, A54, A55, A56, A57, A58, A59, A60, A61, A62, A63, A64, A65, A66, A67, A68, A69, A70, A71, A72, A73, A74, A75, A76, A77, A78, A79, A80, A81, A82, A83, A84, A85, A86, A87, A88, A89, A90, A91, A92, A93, A94, A95, A96, A97, A98, A99, A100, A101, A102, A103, A104, A105, A106, A107, A108, A109, A110, A111, A112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A7, A8 and/or A16, A17 and/or A29, A30 and/or A36, A37 and/or A45, A46 and/or A55, A56 and/or A60, A61 and/or A77, A78 and/or A86, A87 and/or A89, A90 and/or A92, A93 and/or A95, A96 and/or A99, A100 and/or A105, A106 and/or A108, A109 and/or A111, A112 and/or respectively together can also form “heterocyclyl”;
      • wherein optionally above substituents of substituents group (2)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
      • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA201, —NA202A2O3, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A204, —C(O)O-A205, —C(O)NH-A206, —C(O)NA207A208, —O-A209, —O(-A210-O)c—H (c=1, 2, 3, 4, 5), —O(-A211-O)d-A212 (d=1, 2, 3, 4, 5), —OC(O)-A213, —OC(O)—O-A214, —OC(O)—NHA215, —O—C(O)—NA216A217, —OP(O)(OA218)(OA219), —OSi(A220)(A221)(A222), —OS(O2)-A223, —NHC(O)—NH2, —NHC(O)-A224, —NA225C(O)-A226, —NH—C(O)—O-A227, —NH—C(O)—NH-A228, —NH—C(O)—NA229A230, —NA231-C(O)—O-A232, —NA233-C(O)—NH-A234, —NA235-C(O)—NA236A237, —NHS(O2)-A238, —NA239S(O2)-A240, —S-A241, —S(O)-A242, —S(O2)-A243, —S(O2)NH-A244, —S(O2)NA245A246, —S(O2)O-A247, —P(O)(OA248)(OA249), —Si(A250)(A251)(A252), —C(NH)—NH2, —C(NA253)-NH2, —C(NH)—NHA254, —C(NH)—NA255A256, —C(NA257)-NHA258, —C(NA259)-NA260A261, —NH—C(O)—NH—O-A262, —NH—C(O)—NA263-O-A264, —NA265-C(O)—NA266-O-A267, —N(—C(O)—NH—O-A268)2, —N(—C(O)—NA269-O-A270)2, —N(—C(O)—NH—O-A271)(—C(O)—NA272-O-A273), —C(S)-A274, —C(S)—O-A275, —C(S)—NH-A276, —C(S)—NA277A278, —C(O)—NH—O-A279, —C(O)—NA280-O-A281, —C(S)—NH—O-A282, —C(S)—NA283-O-A284, —C(O)—NH—NH-A285, —C(O)—NH—NA286A287, —C(O)—NA288-NA289A290, —C(S)—NH—NH-A291, —C(S)—NH—NA292A293, —C(S)—NA294-NA295A296, —C(O)—C(O)—O-A297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA298, —C(O)—C(O)—NA299A300, —C(S)—C(O)—O-A301, —C(O)—C(S)—O-A302, —C(S)—C(S)—O-A303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA304, —C(S)—C(O)—NA305A306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA307, —C(S)—C(S)—NA308A309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA310, —C(O)—C(S)—NA311A312”;
        • wherein A201, A202, A203, A204, A205, A206, A207, A208, A209, A210, A211, A212, A213, A214, A215, A216, A217, A218, A219, A220, A221, A222, A223, A224, A225, A226, A227, A228, A229, A230, A231, A232, A233, A234, A235, A236, A237, A238, A239, A240, A241, A242, A243, A244, A245, A246, A247, A248, A249, A250, A251, A252, A253, A254, A255, A256, A257, A258, A259, A260, A261, A262, A263, A264, A265, A266, A267, A268, A269, A270, A271, A272, A273, A274, A275, A276, A277, A278, A279, A280, A281, A282, A283, A284, A285, A286, A287, A288, A289, A290, A291, A292, A293, A294, A295, A296, A297, A298, A299, A300, A301, A302, A303, A304, A305, A306, A307, A308, A309, A310, A311, A312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A207, A208 and/or A216, A217 and/or A229, A230 and/or A236, A237 and/or A245, A246 and/or A255, A256 and/or A260, A261 and/or A277, A278 and/or A286, A287 and/or A289, A290 and/or A292, A293 and/or A295, A296 and/or A299, A300 and/or A305, A306 and/or A308, A309 and/or A311, A312 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA401, —NA402A403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A404, —C(O)O-A405, —C(O)NH-A406, —C(O)NA407A408, —O-A409, —O(-A410-O)e—H (e=1, 2, 3, 4, 5), —O(-A411-O)r-A412 (f=1, 2, 3, 4, 5), —OC(O)-A413, —OC(O)—O-A414, —OC(O)—NHA415, —O—C(O)—NA416A417, —OP(O)(OA418)(OA419), —OSi(A420)(A421)(A422), —OS(O2)-A423, —NHC(O)—NH2, —NHC(O)-A424, —NA425C(O)-A426, —NH—C(O)—O-A427, —NH—C(O)—NH-A428, —NH—C(O)—NA429A430, —NA431-C(O)—O-A432, —NA433-C(O)—NH-A434, —NA435-C(O)—NA436A437, —NHS(O2)-A438, —NA439S(O2)-A440, —S-A441, —S(O)-A442, —S(O2)— A443, —S(O2)NH-A444, —S(O2)NA445A446, —S(O2)O-A447, —P(O)(OA448)(OA449), —Si(A450)(A451)(A452), —C(NH)—NH2, —C(NA453)-NH2, —C(NH)—NHA454, —C(NH)—NA455A456, —C(NA457)-NHA458, —C(NA459)-NA460A461, —NH—C(O)—NH—O-A462, —NH—C(O)—NA463-O-A464, —NA465-C(O)—NA466-O-A467, —N(—C(O)—NH—O-A468)2, —N(—C(O)—NA469-O-A470)2, —N(—C(O)—NH—O-A471)(—C(O)—NA472-O-A473), —C(S)-A474, —C(S)—O-A475, —C(S)—NH-A476, —C(S)—NA477A478, —C(O)—NH—O-A479, —C(O)—NA480-O-A481, —C(S)—NH—O-A482, —C(S)—NA483-O-A484, —C(O)—NH—NH-A485, —C(O)—NH—NA486A487, —C(O)—NA488-NA489A490, —C(S)—NH—NH-A491, —C(S)—NH—NA492A493, —C(S)—NA494-NA495A496, —C(O)—C(O)—O-A497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA498, —C(O)—C(O)—NA499A500, —C(S)—C(O)—O-A501, —C(O)—C(S)—O-A502, —C(S)—C(S)—O-A503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA504, —C(S)—C(O)—NA505A506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA507, —C(S)—C(S)—NA508A509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA510, —C(O)—C(S)—NA511A512”;
          • wherein A401, A402, A403, A404, A405, A406, A407, A408, A409, A410, A411, A412, A413, A414, A415, A416, A417, A418, A419, A420, A421, A422, A423, A424, A425, A426, A427, A428, A429, A430, A431, A432, A433, A434, A435, A436, A437, A438, A439, A440, A441, A442, A443, A444, A445, A446, A447, A448, A449, A450, A451, A452, A453, A454, A455, A456, A457, A458, A459, A460, A461, A462, A463, A464, A465, A466, A467, A468, A469, A470, A471, A472, A473, A474, A475, A476, A477, A478, A479, A480, A481, A482, A483, A484, A485, A486, A487, A488, A489, A490, A491, A492, A493, A494, A495, A496, A497, A498, A499, A500, A501, A502, A503, A504, A505, A506, A507, A508, A509, A510, A511, A512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A407, A408 and/or A416, A417 and/or A429, A430 and/or A436, A437 and/or A445, A446 and/or A455, A456 and/or A460, A461 and/or A477, A478 and/or A486, A487 and/or A489, A490 and/or A492, A493 and/or A495, A496 and/or A499, A500 and/or A505, A506 and/or A508, A509 and/or A511, A512 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA601, —NA602A603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A604, —C(O)O-A605, —C(O)NH-A606, —C(O)NA607A608, —O-A609, —O(-A610-O)e—H (e=1, 2, 3, 4, 5), —O(-A611-O)rA612 (f=1, 2, 3, 4, 5), —OC(O)-A613, —OC(O)—O-A614, —OC(O)—NHA615, —O—C(O)—NA616A617, —OP(O)(OA618)(OA619), —OSi(A620)(A621)(A622), —OS(O2)-A623, —NHC(O)—NH2, —NHC(O)-A624, —NA625C(O)-A626, —NH—C(O)—O-A627, —NH—C(O)—NH-A628, —NH—C(O)—NA629A630, —NA631-C(O)—O-A632, —NA633-C(O)—NH-A634, —NA635-C(O)—NA636A637, —NHS(O2)-A638, —NA639S(O2)-A640, —S-A641, —S(O)-A642, —S(O2)-A643, —S(O2)NH-A644, —S(O2)NA645A646, —S(O2)O-A647, —P(O)(OA648)(OA649), —Si(A650)(A651)(A652), —C(NH)—NH2, —C(NA653)-NH2, —C(NH)—NHA654, —C(NH)—NA655A656, —C(NA657)-NHA658, —C(NA659)-NA660A661, —NH—C(O)—NH—O-A662, —NH—C(O)—NA663-O-A664, —NA665-C(O)—NA666-O-A667, —N(—C(O)—NH—O-A668)2, —N(—C(O)—NA669-O-A670)2, —N(—C(O)—NH—O-A671)(—C(O)—NA672-O-A673), —C(S)-A674, —C(S)—O-A675, —C(S)—NH-A676, —C(S)—NA677A678, —C(O)—NH—O-A679, —C(O)—NA680-O-A681, —C(S)—NH—O-A682, —C(S)—NA683-O-A684, —C(O)—NH—NH-A685, —C(O)—NH—NA686A687, —C(O)—NA688-NA689A690, —C(S)—NH—NH-A691, —C(S)—NH—NA692A693, —C(S)—NA694-NA695A696, —C(O)—C(O)—O-A697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA698, —C(O)—C(O)—NA699A700, —C(S)—C(O)—O-A701, —C(O)—C(S)—O-A702, —C(S)—C(S)—O-A703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA704, —C(S)—C(O)—NA705A706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA707, —C(S)—C(S)—NA708A709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA710, —C(O)—C(S)—NA711A712”;
          •  wherein A601, A602, A603, A604, A605, A606, A607, A608, A609, A610, A611, A612, A613, A614, A615, A616, A617, A618, A619, A620, A621, A622, A623, A624, A625, A626, A627, A628, A629, A630, A631, A632, A633, A634, A635, A636, A637, A638, A639, A640, A641, A642, A643, A644, A645, A646, A647, A648, A649, A650, A651, A652, A653, A654, A655, A656, A657, A658, A659, A660, A661, A662, A663, A664, A665, A666, A667, A668, A669, A670, A671, A672, A673, A674, A675, A676, A677, A678, A679, A680, A681, A682, A683, A684, A685, A686, A687, A688, A689, A690, A691, A692, A693, A694, A695, A696, A697, A698, A699, A700, A701, A702, A703, A704, A705, A706, A707, A708, A709, A710, A711, A712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A607, A608 and/or A616, A617 and/or A629, A630 and/or A636, A637 and/or A645, A646 and/or A655, A656 and/or A660, A661 and/or A677, A678 and/or A686, A687 and/or A689, A690 and/or A692, A693 and/or A695, A696 and/or A699, A700 and/or A705, A706 and/or A708, A709 and/or A711, A712 and/or respectively together can also form “heterocyclyl”;

    • and radicals R1, R2, R5 independently from each other are selected from the group consisting of:

    • (3) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB1, —NB2B3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B4, —C(O)O—B5, —C(O)NH—B6, —C(O)NB7B8, —O—B9, —O(—B10-O)a—H (a=1, 2, 3, 4, 5), —O(—B11-O)b—B12 (b=1, 2, 3, 4, 5), —OC(O)—B13, —OC(O)—O—B14, —OC(O)—NHB15, —O—C(O)—NB16B17, —OP(O)(OB18)(OB19), —OSi(B20)(B21)(B22), —OS(O2)—B23, —NHC(O)—NH2, —NHC(O)—B24, —NB25C(O)—B26, —NH—C(O)—O—B27, —NH—C(O)—NH—B28, —NH—C(O)—NB29B30, —NB31-C(O)—O—B32, —NB33-C(O)—NH—B34, —NB35-C(O)—NB36B37, —NHS(O2)—B38, —NB39S(O2)—B40, —S—B41, —S(O)—B42, —S(O2)— B43, —S(O2)NH—B44, —S(O2)NB45B46, —S(O2)O—B47, —P(O)(OB48)(OB49), —Si(B50)(B51)(B52), —C(NH)—NH2, —C(NB53)-NH2, —C(NH)—NHB54, —C(NH)—NB55B56, —C(NB57)-NHB58, —C(NB59)-NB60B61, —NH—C(O)—NH—O—B62, —NH—C(O)—NB63-O—B64, —NB65-C(O)—NB66-O—B67, —N(—C(O)—NH—O—B68)2, —N(—C(O)—NB69-O—B70)2, —N(—C(O)—NH—O—B71)(—C(O)—NB72-O—B73), —C(S)—B74, —C(S)—O—B75, —C(S)—NH—B76, —C(S)—NB77B78, —C(O)—NH—O—B79, —C(O)—NB80-O—B81, —C(S)—NH—O—B82, —C(S)—NB83-O—B84, —C(O)—NH—NH—B85, —C(O)—NH—NB86B87, —C(O)—NB88-NB89B90, —C(S)—NH—NH—B91, —C(S)—NH—NB92B93, —C(S)—NB94-NB95B96, —C(O)—C(O)—O—B97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB98, —C(O)—C(O)—NB99B100, —C(S)—C(O)—O—B101, —C(O)—C(S)—O—B102, —C(S)—C(S)—O—B103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB104, —C(S)—C(O)—NB105B106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB107, —C(S)—C(S)—NB108B109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB110, —C(O)—C(S)—NB111B112”;
      • wherein B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16, 817, 818, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, B32, B33, B34, B35, B36, B37, B38, B39, B40, B41, B42, B43, B44, B45, B46, B47, B48, B49, B50, B51, B52, B53, B54, B55, B56, B57, B58, B59, B60, B61, B62, B63, B64, B65, B66, B67, B68, B69, B70, B71, B72, B73, B74, B75, B76, B77, B78, B79, B80, B81, B82, B83, B84, B85, B86, B87, B88, B89, B90, B91, B92, B93, B94, B95, B96, B97, B98, B99, B100, B101, B102, B103, B104, B105, B106, 8107, B108, B109, B110, B111, B112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B2, B3 and/or B7, B8 and/or 816, 817 and/or B29, B30 and/or B36, B37 and/or B45, B46 and/or B55, B56 and/or B60, B61 and/or B77, B78 and/or B86, B87 and/or B89, B90 and/or B92, B93 and/or B95, B96 and/or B99, B100 and/or B105, 8106 and/or B108, B109 and/or B111, 8112 and/or respectively together can also form “heterocyclyl”;
      • wherein optionally above substituents of substituents group (3)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
      • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB201, —NB202B203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B204, —C(O)O—B205, —C(O)NH—B206, —C(O)NB207B208, —O—B209, —O(—B210-O)c—H (c=1, 2, 3, 4, 5), —O(—B211-O)d—B212 (d=1, 2, 3, 4, 5), —OC(O)—B213, —OC(O)—O—B214, —OC(O)—NHB215, —O—C(O)—NB216B217, —OP(O)(OB218)(OB219), —OSi(B220)(B221)(B222), —OS(O2)— B223, —NHC(O)—NH2, —NHC(O)—B224, —NB225C(O)—B226, —NH—C(O)—O—B227, —NH—C(O)—NH—B228, —NH—C(O)—NB229B230, —NB231-C(O)—O—B232, —NB233-C(O)—NH—B234, —NB235-C(O)—NB236B237, —NHS(O2)— B238, —NB239S(O2)—B240, —S—B241, —S(O)—B242, —S(O2)—B243, —S(O2) NH—B244, —S(O2) NB245B246, —S(O2)O—B247, —P(O)(OB248)(OB249), —Si(B250)(B251)(B252), —C(NH)—NH2, —C(NB253)-NH2, —C(NH)—NHB254, —C(NH)—NB255B256, —C(NB257)-NHB258, —C(NB259)-NB260B261, —NH—C(O)—NH—O—B262, —NH—C(O)—NB263-O—B264, —NB265-C(O)—NB266-O—B267, —N(—C(O)—NH—O—B268)2, —N(—C(O)—NB269-O—B270)2, —N(—C(O)—NH—O—B271)(—C(O)—NB272-O—B273), —C(S)—B274, —C(S)—O—B275, —C(S)—NH—B276, —C(S)—NB277B278, —C(O)—NH—O—B279, —C(O)—NB280-O—B281, —C(S)—NH—O—B282, —C(S)—NB283-O—B284, —C(O)—NH—NH—B285, —C(O)—NH—NB286B287, —C(O)—NB288-NB289B290, —C(S)—NH—NH—B291, —C(S)—NH—NB292B293, —C(S)—NB294-NB295B296, —C(O)—C(O)—O—B297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB298, —C(O)—C(O)—NB299B300, —C(S)—C(O)—O—B301, —C(O)—C(S)—O—B302, —C(S)—C(S)—O—B303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB304, —C(S)—C(O)—NB305B306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB307, —C(S)—C(S)—NB308B309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB310, —C(O)—C(S)—NB311B312”;
        • wherein B201, B202, B203, B204, B205, B206, B207, B208, B209, B210, B211, B212, B213, B214, B215, B216, B217, B218, B219, B220, B221, B222, B223, B224, B225, B226, B227, B228, B229, B230, B231, B232, B233, B234, B235, B236, B237, B238, B239, B240, B241, B242, B243, B244, B245, B246, B247, B248, B249, B250, B251, B252, B253, B254, B255, B256, B257, B258, B259, B260, B261, B262, B263, B264, B265, B266, B267, B268, B269, B270, B271, B272, B273, B274, B275, B276, B277, B278, B279, B280, B281, B282, B283, B284, B285, B286, B287, B288, B289, B290, B291, B292, B293, B294, B295, B296, B297, B298, B299, B300, B301, B302, B303, B304, B305, B306, B307, B308, B309, B310, B311, B312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B207, B208 and/or B216, B217 and/or B229, B230 and/or B236, B237 and/or B245, B246 and/or B255, B256 and/or B260, B261 and/or B277, B278 and/or B286, B287 and/or B289, B290 and/or B292, B293 and/or B295, B296 and/or B299, B300 and/or B305, B306 and/or B308, B309 and/or B311, B312 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB401, —NB402B403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B404, —C(O)O—B405, —C(O)NH—B406, —C(O)NB407B408, —O—B409, —O(—B410-O)e—H (e=1, 2, 3, 4, 5), —O(—B411-O)r—B412 (f=1, 2, 3, 4, 5), —OC(O)—B413, —OC(O)—O—B414, —OC(O)—NHB415, —O—C(O)—NB416B417, —OP(O)(OB418)(OB419), —OSi(B420)(B421)(B422), —OS(O2)—B423, —NHC(O)—NH2, —NHC(O)—B424, —NB425C(O)—B426, —NH—C(O)—O—B427, —NH—C(O)—NH—B428, —NH—C(O)—NB429B430, —NB431-C(O)—O—B432, —NB433-C(O)—NH—B434, —NB435-C(O)—NB436B437, —NHS(O2)—B438, —NB439S(O2)— B440, —S—B441, —S(O)—B442, —S(O2)—B443, —S(O2)NH—B444, —S(O2)NB445B446, —S(O2)O—B447, —P(O)(OB448)(OB449), —Si(B450)(B451)(B452), —C(NH)—NH2, —C(NB453)-NH2, —C(NH)—NHB454, —C(NH)—NB455B456, —C(NB457)-NHB458, —C(NB459)-NB460B461, —NH—C(O)—NH—O—B462, —NH—C(O)—NB463-O—B464, —NB465-C(O)—NB466-O—B467, —N(—C(O)—NH—O—B468)2, —N(—C(O)—NB469-O—B470)2, —N(—C(O)—NH—O—B471)(—C(O)—NB472-O—B473), —C(S)—B474, —C(S)—O—B475, —C(S)—NH—B476, —C(S)—NB477B478, —C(O)—NH—O—B479, —C(O)—NB480-O—B481, —C(S)—NH—O—B482, —C(S)—NB483-O—B484, —C(O)—NH—NH—B485, —C(O)—NH—NB486B487, —C(O)—NB488-NB489B490, —C(S)—NH—NH—B491, —C(S)—NH—NB492B493, —C(S)—NB494-NB495B496, —C(O)—C(O)—O—B497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB498, —C(O)—C(O)—NB499B500, —C(S)—C(O)—O—B501, —C(O)—C(S)—O—B502, —C(S)—C(S)—O—B503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB504, —C(S)—C(O)—NB505B506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB507, —C(S)—C(S)—NB508B509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB510, —C(O)—C(S)—NB511B512”;
          • wherein B401, B402, B403, B404, B405, B406, B407, B408, B409, B410, B411, B412, B413, B414, B415, B416, B417, B418, B419, B420, B421, B422, B423, B424, B425, B426, B427, B428, B429, B430, B431, B432, B433, B434, B435, B436, B437, B438, B439, B440, B441, B442, B443, B444, B445, B446, B447, B448, B449, B450, B451, B452, B453, B454, B455, B456, B457, B458, B459, B460, B461, B462, B463, B464, B465, B466, B467, B468, B469, B470, B471, B472, B473, B474, B475, B476, B477, B478, B479, B480, B481, B482, B483, B484, B485, B486, B487, B488, B489, B490, B491, B492, B493, B494, B495, B496, B497, B498, B499, B500, B501, B502, B503, B504, B505, B506, B507, B508, B509, B510, B511, B512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B407, B408 and/or B416, B417 and/or B429, B430 and/or B436, B437 and/or B445, B446 and/or B455, B456 and/or B460, B461 and/or B477, B478 and/or B486, B487 and/or B489, B490 and/or B492, B493 and/or B495, B496 and/or B499, B500 and/or B505, B506 and/or B508, B509 and/or B511, B512 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB601, —NB602B603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B604, —C(O)O—B605, —C(O)NH—B606, —C(O)NB607B608, —O—B609, —O(—B610-O)e—H (e=1, 2, 3, 4, 5), —O(—B611-O)rB612 (f=1, 2, 3, 4, 5), —OC(O)—B613, —OC(O)—O—B614, —OC(O)—NHB615, —O—C(O)—NB616B617, —OP(O)(OB618)(OB619), —OSi(B620)(B621)(B622), —OS(O2)—B623, —NHC(O)—NH2, —NHC(O)—B624, —NB625C(O)—B626, —NH—C(O)—O—B627, —NH—C(O)—NH—B628, —NH—C(O)—NB629B630, —NB631-C(O)—O—B632, —NB633-C(O)—NH—B634, —NB635-C(O)—NB636B637, —NHS(O2)—B638, —NB639S(O2)—B640, —S—B641, —S(O)—B642, —S(O2)—B643, —S(O2)NH—B644, —S(O2)NB645B646, —S(O2)O—B647, —P(O)(OB648)(OB649), —Si(B650)(B651)(B652), —C(NH)—NH2, —C(NB653)-NH2, —C(NH)—NHB654, —C(NH)—NB655B656, —C(NB657)-NHB658, —C(NB659)-NB660B661, —NH—C(O)—NH—O—B662, —NH—C(O)—NB663-O—B664, —NB665-C(O)—NB666-O—B667, —N(—C(O)—NH—O—B668)2, —N(—C(O)—NB669-O—B670)2, —N(—C(O)—NH—O—B671)(—C(O)—NB672-O—B673), —C(S)—B674, —C(S)—O—B675, —C(S)—NH—B676, —C(S)—NB677B678, —C(O)—NH—O—B679, —C(O)—NB680-O—B681, —C(S)—NH—O—B682, —C(S)—NB683-O—B684, —C(O)—NH—NH—B685, —C(O)—NH—NB686B687, —C(O)—NB688-NB689B690, —C(S)—NH—NH—B691, —C(S)—NH—NB692B693, —C(S)—NB694-NB695B696, —C(O)—C(O)—O—B697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB698, —C(O)—C(O)—NB699B700, —C(S)—C(O)—O—B701, —C(O)—C(S)—O—B702, —C(S)—C(S)—O—B703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB704, —C(S)—C(O)—NB705B706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB707, —C(S)—C(S)—NB708B709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB710, —C(O)—C(S)—NB711B712”;
          •  wherein B601, B602, B603, B604, B605, B606, B607, B608, B609, B610, B611, B612, B613, B614, B615, B616, B617, B618, B619, B620, B621, B622, B623, B624, B625, B626, B627, B628, B629, B630, B631, B632, B633, B634, B635, B636, B637, B638, B639, B640, B641, B642, B643, B644, B645, B646, B647, B648, B649, B650, B651, B652, B653, B654, B655, B656, B657, B658, B659, B660, B661, B662, B663, B664, B665, B666, B667, B668, B669, B670, B671, B672, B673, B674, B675, B676, B677, B678, B679, B680, B681, B682, B683, B684, B685, B686, B687, B688, B689, B690, B691, B692, B693, B694, B695, B696, B697, B698, B699, B700, B701, B702, B703, B704, B705, B706, B707, B708, B709, B710, B711, B712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B607, B608 and/or B616, B617 and/or B629, B630 and/or B636, B637 and/or B645, B646 and/or B655, B656 and/or B660, B661 and/or B677, B678 and/or B686, B687 and/or B689, B690 and/or B692, B693 and/or B695, B696 and/or B699, B700 and/or B705, B706 and/or B708, B709 and/or B711, B712 and/or respectively together can also form “heterocyclyl”.





The object of the present invention has surprisingly been solved in one aspect by providing pyrido[2,3-b]pyrazine derivatives according to general formula (Ib)




embedded image




    • wherein:

    • one of radicals R3, R4 independently is selected, or both of radicals R3, R4 independently from each other are selected from the group consisting of:

    • (1) “—NR6R7”;

    • wherein radicals R6, R7 are independently from each other selected from the group consisting of:

    • (a) “hydrogen”;
      • with the first proviso that radicals R6, R7 are not both hydrogen at the same time;
      • with the second proviso that, if one of radicals R6, R7 independently is “hydrogen”, radical R5 is not selected from the group consisting of: “—NH-cycloalkyl, —NH-heterocyclyl, —NH-aryl, —NH-heteroaryl, halogen, —F, —Cl, —Br, —I, —NRaRb”, with Ra, Rb being independently selected from the group consisting of: “H, alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —NRcRd”, Rc, Rd in turn being independently selected from the group consisting of: “H, alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl”;

    • (b) “—C(Y1)NR8R9, —C(═NR10)-R11, —C(Y2)NR12-Y3-R13”;
      • wherein Y1, Y2 are independently from each other selected from the group consisting of: “═O, ═S, ═NH, ═NR14”;
      • wherein Y3 is independently selected from the group consisting of: “O, S”;
      • wherein radicals R8, R9, R10, R11, R12, R13, R14 are independently from each other selected from the group consisting of:
      • (I) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX1, —NX2X3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X4, —C(O)O—X5, —C(O)NH—X6, —C(O)NX7X8, —O—X9, —O(—X10-O)a—H (a=1, 2, 3, 4, 5), —O(—X11-O)b—X12 (b=1, 2, 3, 4, 5), —OC(O)—X13, —OC(O)—O—X14, —OC(O)—NHX15, —O—C(O)—NX16X17, —OP(O)(OX18)(OX19), —OSi(X20)(X21)(X22), —OS(O2)—X23, —NHC(O)—NH2, —NHC(O)—X24, —NX25C(O)—X26, —NH—C(O)—O—X27, —NH—C(O)—NH—X28, —NH—C(O)—NX29X30, —NX31-C(O)—O—X32, —NX33-C(O)—NH—X34, —NX35-C(O)—NX36X37, —NHS(O2)—X38, —NX39S(O2)—X40, —S—X41, —S(O)—X42, —S(O2)—X43, —S(O2)NH—X44, —S(O2)NX45X46, —S(O2)O—X47, —P(O)(OX48)(OX49), —Si(X50)(X51)(X52), —C(NH)—NH2, —C(NX53)-NH2, —C(NH)—NHX54, —C(NH)—NX55X56, —C(NX57)-NHX58, —C(NX59)-NX60X61, —NH—C(O)—NH—O—X62, —NH—C(O)—NX63-O—X64, —NX65-C(O)—NX66-O—X67, —N(—C(O)—NH—O—X68)2, —N(—C(O)—NX69-O—X70)2, —N(—C(O)—NH—O—X71)(—C(O)—NX72-O—X73), —C(S)—X74, —C(S)—O—X75, —C(S)—NH—X76, —C(S)—NX77X78, —C(O)—NH—O—X79, —C(O)—NX80-O—X81, —C(S)—NH—O—X82, —C(S)—NX83-O—X84, —C(O)—NH—NH—X85, —C(O)—NH—NX86X87, —C(O)—NX88-NX89X90, —C(S)—NH—NH—X91, —C(S)—NH—NX92X93, —C(S)—NX94-NX95X96, —C(O)—C(O)—O—X97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX98, —C(O)—C(O)—NX99X100, —C(S)—C(O)—O—X101, —C(O)—C(S)—O—X102, —C(S)—C(S)—O—X103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX104, —C(S)—C(O)—NX105X106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX107, —C(S)—C(S)—NX108X109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX110, —C(O)—C(S)—NX111X112”;
        • wherein X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, X29, X30, X31, X32, X33, X34, X35, X36, X37, X38, X39, X40, X41, X42, X43, X44, X45, X46, X47, X48, X49, X50, X51, X52, X53, X54, X55, X56, X57, X58, X59, X60, X61, X62, X63, X64, X65, X66, X67, X68, X69, X70, X71, X72, X73, X74, X75, X76, X77, X78, X79, X80, X81, X82, X83, X84, X85, X86, X87, X88, X89, X90, X91, X92, X93, X94, X95, X96, X97, X98, X99, X100, X101, X102, X103, X104, X105, X106, X107, X108, X109, X110, X111, X112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X7, X8 and/or X16, X17 and/or X29, X30 and/or X36, X37 and/or X45, X46 and/or X55, X56 and/or X60, X61 and/or X77, X78 and/or X86, X87 and/or X89, X90 and/or X92, X93 and/or X95, X96 and/or X99, X100 and/or X105, X106 and/or X108, X109 and/or X111, X112 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (I)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX201, —NX202X203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X204, —C(O)O—X205, —C(O)NH—X206, —C(O)NX207X208, —O—X209, —O(—X210-O)c—H (c=1, 2, 3, 4, 5), —O(—X211-O)d—X212 (d=1, 2, 3, 4, 5), —OC(O)—X213, —OC(O)—O—X214, —OC(O)—NHX215, —O—C(O)—NX216X217, —OP(O)(OX218)(OX219), —OSi(X220)(X221)(X222), —OS(O2)—X223, —NHC(O)—NH2, —NHC(O)—X224, —NX225C(O)—X226, —NH—C(O)—O—X227, —NH—C(O)—NH—X228, —NH—C(O)—NX229X230, —NX231-C(O)—O—X232, —NX233-C(O)—NH—X234, —NX235-C(O)—NX236X237, —NHS(O2)—X238, —NX239S(O2)—X240, —S—X241, —S(O)—X242, —S(O2)—X243, —S(O2)NH—X244, —S(O2)NX245X246, —S(O2)O—X247, —P(O)(OX248)(OX249), —Si(X250)(X251)(X252), —C(NH)—NH2, —C(NX253)-NH2, —C(NH)—NHX254, —C(NH)—NX255X256, —C(NX257)-NHX258, —C(NX259)-NX260X261, —NH—C(O)—NH—O—X262, —NH—C(O)—NX263-O—X264, —NX265—C(O)—NX266-O—X267, —N(—C(O)—NH—O—X268)2, —N(—C(O)—NX269-O—X270)2, —N(—C(O)—NH—O—X271)(—C(O)—NX272-O—X273), —C(S)—X274, —C(S)—O—X275, —C(S)—NH—X276, —C(S)—NX277X278, —C(O)—NH—O—X279, —C(O)—NX280-O—X281, —C(S)—NH—O—X282, —C(S)—NX283-O—X284, —C(O)—NH—NH—X285, —C(O)—NH—NX286X287, —C(O)—NX288-NX289X290, —C(S)—NH—NH—X291, —C(S)—NH—NX292X293, —C(S)—NX294-NX295X296, —C(O)—C(O)—O—X297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX298, —C(O)—C(O)—NX299X300, —C(S)—C(O)—O—X301, —C(O)—C(S)—O—X302, —C(S)—C(S)—O—X303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX304, —C(S)—C(O)—NX305X306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX307, —C(S)—C(S)—NX308X309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX310, —C(O)—C(S)—NX311X312”;
          • wherein X201, X202, X203, X204, X205, X206, X207, X208, X209, X210, X211, X212, X213, X214, X215, X216, X217, X218, X219, X220, X221, X222, X223, X224, X225, X226, X227, X228, X229, X230, X231, X232, X233, X234, X235, X236, X237, X238, X239, X240, X241, X242, X243, X244, X245, X246, X247, X248, X249, X250, X251, X252, X253, X254, X255, X256, X257, X258, X259, X260, X261, X262, X263, X264, X265, X266, X267, X268, X269, X270, X271, X272, X273, X274, X275, X276, X277, X278, X279, X280, X281, X282, X283, X284, X285, X286, X287, X288, X289, X290, X291, X292, X293, X294, X295, X296, X297, X298, X299, X300, X301, X302, X303, X304, X305, X306, X307, X308, X309, X310, X311, X312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X207, X208 and/or X216, X217 and/or X229, X230 and/or X236, X237 and/or X245, X246 and/or X255, X256 and/or X260, X261 and/or X277, X278 and/or X286, X287 and/or X289, X290 and/or X292, X293 and/or X295, X296 and/or X299, X300 and/or X305, X306 and/or X308, X309 and/or X311, X312 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX401, —NX402X403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X404, —C(O)O—X405, —C(O)NH—X406, —C(O)NX407X408, —O—X409, —O(—X410-O)e—H (e=1, 2, 3, 4, 5), —O(—X411-O)f—X412 (f=1, 2, 3, 4, 5), —OC(O)—X413, —OC(O)—O—X414, —OC(O)—NHX415, —O—C(O)—NX416X417, —OP(O)(OX418)(OX419), —OSi(X420)(X421)(X422), —OS(O2)—X423, —NHC(O)—NH2, —NHC(O)—X424, —NX425C(O)—X426, —NH—C(O)—O—X427, —NH—C(O)—NH—X428, —NH—C(O)—NX429X430, —NX431-C(O)—O—X432, —NX433-C(O)—NH—X434, —NX435-C(O)—NX436X437, —NHS(O2)—X438, —NX439S(O2)—X440, —S—X441, —S(O)—X442, —S(O2)—X443, —S(O2)NH—X444, —S(O2)NX445X446, —S(O2)O—X447, —P(O)(OX448)(OX449), —Si(X450)(X451)(X452), —C(NH)—NH2, —C(NX453)-NH2, —C(NH)—NHX454, —C(NH)—NX455X456, —C(NX457)-NHX458, —C(NX459)-NX460X461, —NH—C(O)—NH—O—X462, —NH—C(O)—NX463-O—X464, —NX465-C(O)—NX466-O—X467, —N(—C(O)—NH—O—X468)2, —N(—C(O)—NX469-O—X470)2, —N(—C(O)—NH—O—X471)(—C(O)—NX472-O—X473), —C(S)—X474, —C(S)—O—X475, —C(S)—NH—X476, —C(S)—NX477X478, —C(O)—NH—O—X479, —C(O)—NX480-O—X481, —C(S)—NH—O—X482, —C(S)—NX483-O—X484, —C(O)—NH—NH—X485, —C(O)—NH—NX486X487, —C(O)—NX488-NX489X490, —C(S)—NH—NH—X491, —C(S)—NH—NX492X493, —C(S)—NX494-NX495X496, —C(O)—C(O)—O—X497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX498, —C(O)—C(O)—NX499X500, —C(S)—C(O)—O—X501, —C(O)—C(S)—O—X502, —C(S)—C(S)—O—X503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX504, —C(S)—C(O)—NX505X506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX507, —C(S)—C(S)—NX508X509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX510, —C(O)—C(S)—NX511X512”;
          •  wherein X401, X402, X403, X404, X405, X406, X407, X408, X409, X410, X411, X412, X413, X414, X415, X416, X417, X418, X419, X420, X421, X422, X423, X424, X425, X426, X427, X428, X429, X430, X431, X432, X433, X434, X435, X436, X437, X438, X439, X440, X441, X442, X443, X444, X445, X446, X447, X448, X449, X450, X451, X452, X453, X454, X455, X456, X457, X458, X459, X460, X461, X462, X463, X464, X465, X466, X467, X468, X469, X470, X471, X472, X473, X474, X475, X476, X477, X478, X479, X480, X481, X482, X483, X484, X485, X486, X487, X488, X489, X490, X491, X492, X493, X494, X495, X496, X497, X498, X499, X500, X501, X502, X503, X504, X505, X506, X507, X508, X509, X510, X511, X512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X407, X408 and/or X416, X417 and/or X429, X430 and/or X436, X437 and/or X445, X446 and/or X455, X456 and/or X460, X461 and/or X477, X478 and/or X486, X487 and/or X489, X490 and/or X492, X493 and/or X495, X496 and/or X499, X500 and/or X505, X506 and/or X508, X509 and/or X511, X512 and/or respectively together can also form “heterocyclyl”;
          •  wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          •  (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHX601, —NX602X603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—X604, —C(O)O—X605, —C(O)NH—X606, —C(O)NX607X608, —O—X609, —O(—X610-O)e—H (e=1, 2, 3, 4, 5), —O(—X611-O)f—X612 (f=1, 2, 3, 4, 5), —OC(O)—X613, —OC(O)—O—X614, —OC(O)—NHX615, —O—C(O)—NX616X617, —OP(O)(OX618)(OX619), —OSi(X620)(X621)(X622), —OS(O2)—X623, —NHC(O)—NH2, —NHC(O)—X624, —NX625C(O)—X626, —NH—C(O)—O—X627, —NH—C(O)—NH—X628, —NH—C(O)—NX629X630, —NX631-C(O)—O—X632, —NX633-C(O)—NH—X634, —NX635-C(O)—NX636X637, —NHS(O2)—X638, —NX639S(O2)—X640, —S—X641, —S(O)—X642, —S(O2)—X643, —S(O2)NH—X644, —S(O2)NX645X646, —S(O2)O—X647, —P(O)(OX648)(OX649), —Si(X650)(X651)(X652), —C(NH)—NH2, —C(NX653)-NH2, —C(NH)—NHX654, —C(NH)—NX655X656, —C(NX657)-NHX658, —C(NX659)-NX660X661, —NH—C(O)—NH—O—X662, —NH—C(O)—NX663-O—X664, —NX665-C(O)—NX666-O—X667, —N(—C(O)—NH—O—X668)2, —N(—C(O)—NX669-O—X670)2, —N(—C(O)—NH—O—X671)(—C(O)—NX672-O—X673), —C(S)—X674, —C(S)—O—X675, —C(S)—NH—X676, —C(S)—NX677X678, —C(O)—NH—O—X679, —C(O)—NX680-O—X681, —C(S)—NH—O—X682, —C(S)—NX683-O—X684, —C(O)—NH—NH—X685, —C(O)—NH—NX686X687, —C(O)—NX688-NX689X690, —C(S)—NH—NH—X691, —C(S)—NH—NX692X693, —C(S)—NX694-NX695X696, —C(O)—C(O)—O—X697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHX698, —C(O)—C(O)—NX699X700, —C(S)—C(O)—O—X701, —C(O)—C(S)—O—X702, —C(S)—C(S)—O—X703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHX704, —C(S)—C(O)—NX705X706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHX707, —C(S)—C(S)—NX708X709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHX710, —C(O)—C(S)—NX711X712”;
          •  wherein X601, X602, X603, X604, X605, X606, X607, X608, X609, X610, X611, X612, X613, X614, X615, X616, X617, X618, X619, X620, X621, X622, X623, X624, X625, X626, X627, X628, X629, X630, X631, X632, X633, X634, X635, X636, X637, X638, X639, X640, X641, X642, X643, X644, X645, X646, X647, X648, X649, X650, X651, X652, X653, X654, X655, X656, X657, X658, X659, X660, X661, X662, X663, X664, X665, X666, X667, X668, X669, X670, X671, X672, X673, X674, X675, X676, X677, X678, X679, X680, X681, X682, X683, X684, X685, X686, X687, X688, X689, X690, X691, X692, X693, X694, X695, X696, X697, X698, X699, X700, X701, X702, X703, X704, X705, X706, X707, X708, X709, X710, X711, X712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively X607, X608 and/or X616, X617 and/or X629, X630 and/or X636, X637 and/or X645, X646 and/or X655, X656 and/or X660, X661 and/or X677, X678 and/or X686, X687 and/or X689, X690 and/or X692, X693 and/or X695, X696 and/or X699, X700 and/or X705, X706 and/or X708, X709 and/or X711, X712 and/or respectively together can also form “heterocyclyl”;
      • with the first proviso that “—C(Y1)-NR8R9” is not selected from the group consisting of: “—C(O)—NRaRb”, with Ra, Rb independently from each other being selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl”
      • with the second proviso that, if “—C(Y1)-NR8R9” independently is selected from the group consisting of: “—C(O)—N[C(O)—O-alkyl]2, —C(O)—N[C(O)-alkyl]2, —C(O)—N[S(O2)-alkyl]2, —C(O)—N[S(O2)-cycloalkyl]2, —C(O)—N[S(O2)— cycloalkylalkyl]2, —C(O)—N[S(O2)-aryl]2, —C(O)—N[S(O2)-heterocyclyl]2”, radicals R1, R2 independently from each other are not “phenyl”;
      • with the third proviso that, if “—C(Y2)-NR12-Y3-R13” independently is selected from the group consisting of: “—C(O)—N[O-alkyl]2”, radicals R1, R2 independently from each other are not “phenyl”;

    • (c) “—C(O)—C(O)—R16”;
      • wherein radical R16 is independently selected from the group consisting of:
      • (II) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ1, —NZ2Z3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z4, —C(O)O—Z5, —C(O)NH—Z6, —C(O)NZ7Z8, —O—Z9, —O(—Z10-O)a— H (a=1, 2, 3, 4, 5), —O(—Z11-O)b—Z12 (b=1, 2, 3, 4, 5), —OC(O)—Z13, —OC(O)—O—Z14, —OC(O)—NHZ15, —O—C(O)—NZ16Z17, —OP(O)(OZ18)(OZ19), —OSi(Z20)(Z21)(Z22), —OS(O2)—Z23, —NHC(O)—NH2, —NHC(O)—Z24, —NZ25C(O)—Z26, —NH—C(O)—O—Z27, —NH—C(O)—NH—Z28, —NH—C(O)—NZ29Z30, —NZ31-C(O)—O—Z32, —NZ33-C(O)—NH—Z34, —NZ35-C(O)—NZ36Z37, —NHS(O2)—Z38, —NZ39S(O2)—Z40, —S—Z41, —S(O)—Z42, —S(O2)—Z43, —S(O2)NH—Z44, —S(O2)NZ45Z46, —S(O2)O—Z47, —P(O)(OZ48)(OZ49), —Si(Z50)(Z51)(Z52), —C(NH)—NH2, —C(NZ53)-NH2, —C(NH)—NHZ54, —C(NH)—NZ55Z56, —C(NZ57)-NHZ58, —C(NZ59)-NZ60Z61, —NH—C(O)—NH—O—Z62, —NH—C(O)—NZ63-O—Z64, —NZ65-C(O)—NZ66-O—Z67, —N(—C(O)—NH—O—Z68)2, —N(—C(O)—NZ69-O—Z70)2, —N(—C(O)—NH—O—Z71)(—C(O)—NZ72-O—Z73), —C(S)—Z74, —C(S)—O—Z75, —C(S)—NH—Z76, —C(S)—NZ77Z78, —C(O)—NH—O—Z79, —C(O)—NZ80-O—Z81, —C(S)—NH—O—Z82, —C(S)—NZ83-O—Z84, —C(O)—NH—NH—Z85, —C(O)—NH—NZ86Z87, —C(O)—NZ88-NZ89Z90, —C(S)—NH—NH—Z91, —C(S)—NH—NZ92Z93, —C(S)—NZ94-NZ95Z96, —C(O)—C(O)—O—Z97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ98, —C(O)—C(O)—NZ99Z100, —C(S)—C(O)—O—Z101, —C(O)—C(S)—O—Z102, —C(S)—C(S)—O—Z103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ104, —C(S)—C(O)—NZ105Z106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ107, —C(S)—C(S)—NZ108Z109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ110, —C(O)—C(S)—NZ111Z112”;
        • wherein Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35, Z36, Z37, Z38, Z39, Z40, Z41, Z42, Z43, Z44, Z45, Z46, Z47, Z48, Z49, Z50, Z51, Z52, Z53, Z54, Z55, Z56, Z57, Z58, Z59, Z60, Z61, Z62, Z63, Z64, Z65, Z66, Z67, Z68, Z69, Z70, Z71, Z72, Z73, Z74, Z75, Z76, Z77, Z78, Z79, Z80, Z81, Z82, Z83, Z84, Z85, Z86, Z87, Z88, Z89, Z90, Z91, Z92, Z93, Z94, Z95, Z96, Z97, Z98, Z99, Z100, Z101, Z102, Z103, Z104, Z105, Z106, Z107, Z108, Z109, Z110, Z111, Z112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z7, Z8 and/or Z16, Z17 and/or Z29, Z30 and/or Z36, Z37 and/or Z45, Z46 and/or Z55, Z56 and/or Z60, Z61 and/or Z77, Z78 and/or Z86, Z87 and/or Z89, Z90 and/or Z92, Z93 and/or Z95, Z96 and/or Z99, Z100 and/or Z105, Z106 and/or Z108, Z109 and/or Z111, Z112 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (II)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ201, —NZ202Z203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z204, —C(O)O—Z205, —C(O)NH—Z206, —C(O)NZ207Z208, —O—Z209, —O(—Z210-O), —H (c=1, 2, 3, 4, 5), —O(—Z211-O)d—Z212 (d=1, 2, 3, 4, 5), —OC(O)—Z213, —OC(O)—O—Z214, —OC(O)—NHZ215, —O—C(O)—NZ216Z217, —OP(O)(OZ218)(0Z219), —OSi(Z220)(Z221)(Z222), —OS(O2)—Z223, —NHC(O)—NH2, —NHC(O)—Z224, —NZ225C(O)—Z226, —NH—C(O)—O—Z227, —NH—C(O)—NH—Z228, —NH—C(O)—NZ229Z230, —NZ231-C(O)—O—Z232, —NZ233-C(O)—NH—Z234, —NZ235-C(O)—NZ236Z237, —NHS(O2)—Z238, —NZ239S(O2)— Z240, —S—Z241, —S(O)—Z242, —S(O2)—Z243, —S(O2)NH—Z244, —S(O2)NZ245Z246, —S(O2)O—Z247, —P(O)(OZ248)(OZ249), —Si(Z250)(Z251)(Z252), —C(NH)—NH2, —C(NZ253)-NH2, —C(NH)—NHZ254, —C(NH)—NZ255Z256, —C(NZ257)-NHZ258, —C(NZ259)-NZ260Z261, —NH—C(O)—NH—O—Z262, —NH—C(O)—NZ263-O—Z264, —NZ265-C(O)—NZ266-O—Z267, —N(—C(O)—NH—O—Z268)2, —N(—C(O)—NZ269-O—Z270)2, —N(—C(O)—NH—O—Z271)(—C(O)—NZ272-O—Z273), —C(S)—Z274, —C(S)—O—Z275, —C(S)—NH—Z276, —C(S)—NZ277Z278, —C(O)—NH—O—Z279, —C(O)—NZ280-O—Z281, —C(S)—NH—O—Z282, —C(S)—NZ283-O—Z284, —C(O)—NH—NH—Z285, —C(O)—NH—NZ286Z287, —C(O)—NZ288-NZ289Z290, —C(S)—NH—NH—Z291, —C(S)—NH—NZ292Z293, —C(S)—NZ294-NZ295Z296, —C(O)—C(O)—O—Z297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ298, —C(O)—C(O)—NZ299Z300, —C(S)—C(O)—O—Z301, —C(O)—C(S)—O—Z302, —C(S)—C(S)—O—Z303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ304, —C(S)—C(O)—NZ305Z306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ307, —C(S)—C(S)—NZ308Z309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ310, —C(O)—C(S)—NZ311Z312”;
          • wherein Z201, Z202, Z203, Z204, Z205, Z206, Z207, Z208, Z209, Z210, Z211, Z212, Z213, Z214, Z215, Z216, Z217, Z218, Z219, Z220, Z221, Z222, Z223, Z224, Z225, Z226, Z227, Z228, Z229, Z230, Z231, Z232, Z233, Z234, Z235, Z236, Z237, Z238, Z239, Z240, Z241, Z242, Z243, Z244, Z245, Z246, Z247, Z248, Z249, Z250, Z251, Z252, Z253, Z254, Z255, Z256, Z257, Z258, Z259, Z260, Z261, Z262, Z263, Z264, Z265, Z266, Z267, Z268, Z269, Z270, Z271, Z272, Z273, Z274, Z275, Z276, Z277, Z278, Z279, Z280, Z281, Z282, Z283, Z284, Z285, Z286, Z287, Z288, Z289, Z290, Z291, Z292, Z293, Z294, Z295, Z296, Z297, Z298, Z299, Z300, Z301, Z302, Z303, Z304, Z305, Z306, Z307, Z308, Z309, Z310, Z311, Z312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z207, Z208 and/or Z216, Z217 and/or Z229, Z230 and/or Z236, Z237 and/or Z245, Z246 and/or Z255, Z256 and/or Z260, Z261 and/or Z277, Z278 and/or Z286, Z287 and/or Z289, Z290 and/or Z292, Z293 and/or Z295, Z296 and/or Z299, Z300 and/or Z305, Z306 and/or Z308, Z309 and/or Z311, Z312 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ401, —NZ402Z403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z404, —C(O)O—Z405, —C(O)NH—Z406, —C(O)NZ407Z408, —O—Z409, —O(—Z410-O)e—H (e=1, 2, 3, 4, 5), —O(—Z411-O)rZ412 (f=1, 2, 3, 4, 5), —OC(O)—Z413, —OC(O)—O—Z414, —OC(O)—NHZ415, —O—C(O)—NZ416Z417, —OP(O)(OZ418)(OZ419), —OSi(Z420)(Z421)(Z422), —OS(O2)—Z423, —NHC(O)—NH2, —NHC(O)—Z424, —NZ425C(O)—Z426, —NH—C(O)—O—Z427, —NH—C(O)—NH—Z428, —NH—C(O)—NZ429Z430, —NZ431-C(O)—O—Z432, —NZ433-C(O)—NH—Z434, —NZ435-C(O)—NZ436Z437, —NHS(O2)—Z438, —NZ439S(O2)—Z440, —S—Z441, —S(O)—Z442, —S(O2)—Z443, —S(O2)NH—Z444, —S(O2)NZ445Z446, —S(O2)O—Z447, —P(O)(OZ448)(OZ449), —Si(Z450)(Z451)(Z452), —C(NH)—NH2, —C(NZ453)-NH2, —C(NH)—NHZ454, —C(NH)—NZ455Z456, —C(NZ457)-NHZ458, —C(NZ459)-NZ460Z461, —NH—C(O)—NH—O—Z462, —NH—C(O)—NZ463-O—Z464, —NZ465-C(O)—NZ466-O—Z467, —N(—C(O)—NH—O—Z468)2, —N(—C(O)—NZ469-O—Z470)2, —N(—C(O)—NH—O—Z471)(—C(O)—NZ472-O—Z473), —C(S)—Z474, —C(S)—O—Z475, —C(S)—NH—Z476, —C(S)—NZ477Z478, —C(O)—NH—O—Z479, —C(O)—NZ480-O—Z481, —C(S)—NH—O—Z482, —C(S)—NZ483-O—Z484, —C(O)—NH—NH—Z485, —C(O)—NH—NZ486Z487, —C(O)—NZ488-NZ489Z490, —C(S)—NH—NH—Z491, —C(S)—NH—NZ492Z493, —C(S)—NZ494-NZ495Z496, —C(O)—C(O)—O—Z497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ498, —C(O)—C(O)—NZ499Z500, —C(S)—C(O)—O—Z501, —C(O)—C(S)—O—Z502, —C(S)—C(S)—O—Z503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ504, —C(S)—C(O)—NZ505Z506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ507, —C(S)—C(S)—NZ508Z509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ510, —C(O)—C(S)—NZ511Z512”;
          •  wherein Z401, Z402, Z403, Z404, Z405, Z406, Z407, Z408, Z409, Z410, Z411, Z412, Z413, Z414, Z415, Z416, Z417, Z418, Z419, Z420, Z421, Z422, Z423, Z424, Z425, Z426, Z427, Z428, Z429, Z430, Z431, Z432, Z433, Z434, Z435, Z436, Z437, Z438, Z439, Z440, Z441, Z442, Z443, Z444, Z445, Z446, Z447, Z448, Z449, Z450, Z451, Z452, Z453, Z454, Z455, Z456, Z457, Z458, Z459, Z460, Z461, Z462, Z463, Z464, Z465, Z466, Z467, Z468, Z469, Z470, Z471, Z472, Z473, Z474, Z475, Z476, Z477, Z478, Z479, Z480, Z481, Z482, Z483, Z484, Z485, Z486, Z487, Z488, Z489, Z490, Z491, Z492, Z493, Z494, Z495, Z496, Z497, Z498, Z499, Z500, Z501, Z502, Z503, Z504, Z505, Z506, Z507, Z508, Z509, Z510, Z511, Z512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z407, Z408 and/or Z416, Z417 and/or Z429, Z430 and/or Z436, Z437 and/or Z445, Z446 and/or Z455, Z456 and/or Z460, Z461 and/or Z477, Z478 and/or Z486, Z487 and/or Z489, Z490 and/or Z492, Z493 and/or Z495, Z496 and/or Z499, Z500 and/or Z505, Z506 and/or Z508, Z509 and/or Z511, Z512 and/or respectively together can also form “heterocyclyl”;
          •  wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          •  (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHZ601, —NZ602Z603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—Z604, —C(O)O—Z605, —C(O)NH—Z606, —C(O)NZ607Z608, —O—Z609, —O(—Z610-O)e—H (e=1, 2, 3, 4, 5), —O(—Z611-O)f—Z612 (f=1, 2, 3, 4, 5), —OC(O)—Z613, —OC(O)—O—Z614, —OC(O)—NHZ615, —O—C(O)—NZ616Z617, —OP(O)(OZ618)(OZ619), —OSi(Z620)(Z621)(Z622), —OS(O2)—Z623, —NHC(O)—NH2, —NHC(O)—Z624, —NZ625C(O)—Z626, —NH—C(O)—O—Z627, —NH—C(O)—NH—Z628, —NH—C(O)—NZ629Z630, —NZ631-C(O)—O—Z632, —NZ633-C(O)—NH—Z634, —NZ635-C(O)—NZ636Z637, —NHS(O2)—Z638, —NZ639S(O2)—Z640, —S—Z641, —S(O)—Z642, —S(O2)—Z643, —S(O2)NH—Z644, —S(O2)NZ645Z646, —S(O2O—Z647, —P(O)(OZ648)(OZ649), —Si(Z650)(Z651)(Z652), —C(NH)—NH2, —C(NZ653)-NH2, —C(NH)—NHZ654, —C(NH)—NZ655Z656, —C(NZ657)-NHZ658, —C(NZ659)-NZ660Z661, —NH—C(O)—NH—O—Z662, —NH—C(O)—NZ663-O—Z664, —NZ665-C(O)—NZ666-O—Z667, —N(—C(O)—NH—O—Z668)2, —N(—C(O)—NZ669-O—Z670)2, —N(—C(O)—NH—O—Z671)(—C(O)—NZ672-O—Z673), —C(S)—Z674, —C(S)—O—Z675, —C(S)—NH—Z676, —C(S)—NZ677Z678, —C(O)—NH—O—Z679, —C(O)—NZ680-O—Z681, —C(S)—NH—O—Z682, —C(S)—NZ683-O—Z684, —C(O)—NH—NH—Z685, —C(O)—NH—NZ686Z687, —C(O)—NZ688-NZ689Z690, —C(S)—NH—NH—Z691, —C(S)—NH—NZ692Z693, —C(S)—NZ694-NZ695Z696, —C(O)—C(O)—O—Z697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHZ698, —C(O)—C(O)—NZ699Z700, —C(S)—C(O)—O—Z701, —C(O)—C(S)—O—Z702, —C(S)—C(S)—O—Z703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHZ704, —C(S)—C(O)—NZ705Z706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHZ707, —C(S)—C(S)—NZ708Z709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHZ710, —C(O)—C(S)—NZ711 Z712”;
          •  wherein Z601, Z602, Z603, Z604, Z605, Z606, Z607, Z608, Z609, Z610, Z611, Z612, Z613, Z614, Z615, Z616, Z617, Z618, Z619, Z620, Z621, Z622, Z623, Z624, Z625, Z626, Z627, Z628, Z629, Z630, Z631, Z632, Z633, Z634, Z635, Z636, Z637, Z638, Z639, Z640, Z641, Z642, Z643, Z644, Z645, Z646, Z647, Z648, Z649, Z650, Z651, Z652, Z653, Z654, Z655, Z656, Z657, Z658, Z659, Z660, Z661, Z662, Z663, Z664, Z665, Z666, Z667, Z668, Z669, Z670, Z671, Z672, Z673, Z674, Z675, Z676, Z677, Z678, Z679, Z680, Z681, Z682, Z683, Z684, Z685, Z686, Z687, Z688, Z689, Z690, Z691, Z692, Z693, Z694, Z695, Z696, Z697, Z698, Z699, Z700, Z701, Z702, Z703, Z704, Z705, Z706, Z707, Z708, Z709, Z710, Z711, Z712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively Z607, Z608 and/or Z616, Z617 and/or Z629, Z630 and/or Z636, Z637 and/or Z645, Z646 and/or Z655, Z656 and/or Z660, Z661 and/or Z677, Z678 and/or Z686, Z687 and/or Z689, Z690 and/or Z692, Z693 and/or Z695, Z696 and/or Z699, Z700 and/or Z705, Z706 and/or Z708, Z709 and/or Z711, Z712 and/or respectively together can also form “heterocyclyl”;
      • with the proviso that radical R16 is not “indol-yl”;

    • (d) “—S(O2)—R18”;
      • wherein radical R18 is independently selected from the group consisting of:
      • (III) “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW1, —NW2W3, —NO2, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W4, —C(O)O—W5, —C(O)NH—W6, —C(O)NW7W8, —O—W9, —O(—W10-O)a—H (a=1, 2, 3, 4, 5), —O(—W11-O)b—W12 (b=1, 2, 3, 4, 5), —OC(O)—W13, —OC(O)—O—W14, —OC(O)—NHW15, —O—C(O)—NW16W17, —OP(O)(OW18)(OW19), —OSi(W20)(W21)(W22), —OS(O2)—W23, —NHC(O)—NH2, —NHC(O)—W24, —NW25C(O)—W26, —NH—C(O)—O—W27, —NH—C(O)—NH—W28, —NH—C(O)—NW29W30, —NW31-C(O)—O—W32, —NW33-C(O)—NH—W34, —NW35-C(O)—NW36W37, —NHS(O2)—W38, —NW39S(O2)—W40, —S—W41, —S(O)—W42, —S(O2)—W43, —S(O2)NH—W44, —S(O2)NW45W46, —S(O2)O—W47, —P(O)(OW48)(OW49), —Si(W50)(W51)(W52), —C(NH)—NH2, —C(NW53)-NH2, —C(NH)—NHW54, —C(NH)—NW55W56, —C(NW57)-NHW58, —C(NW59)-NW60W61, —NH—C(O)—NH—O—W62, —NH—C(O)—NW63-O—W64, —NW65-C(O)—NW66-O—W67, —N(—C(O)—NH—O—W68)2, —N(—C(O)—NW69-O—W70)2, —N(—C(O)—NH—O—W71)(—C(O)—NW72-O—W73), —C(S)—W74, —C(S)—O—W75, —C(S)—NH—W76, —C(S)—NW77W78, —C(O)—NH—O—W79, —C(O)—NW80-O—W81, —C(S)—NH—O—W82, —C(S)—NW83-O—W84, —C(O)—NH—NH—W85, —C(O)—NH—NW86W87, —C(O)—NW88-NW89W90, —C(S)—NH—NH—W91, —C(S)—NH—NW92W93, —C(S)—NW94-NW95W96, —C(O)—C(O)—O—W97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW98, —C(O)—C(O)—NW99W100, —C(S)—C(O)—O—W101, —C(O)—C(S)—O—W102, —C(S)—C(S)—O—W103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW104, —C(S)—C(O)—NW105W106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW107, —C(S)—C(S)—NW108W109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW110, —C(O)—C(S)—NW111W112”;
        • wherein W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15, W16, W17, W18, W19, W20, W21, W22, W23, W24, W25, W26, W27, W28, W29, W30, W31, W32, W33, W34, W35, W36, W37, W38, W39, W40, W41, W42, W43, W44, W45, W46, W47, W48, W49, W50, W51, W52, W53, W54, W55, W56, W57, W58, W59, W60, W61, W62, W63, W64, W65, W66, W67, W68, W69, W70, W71, W72, W73, W74, W75, W76, W77, W78, W79, W80, W81, W82, W83, W84, W85, W86, W87, W88, W89, W90, W91, W92, W93, W94, W95, W96, W97, W98, W99, W100, W101, W102, W103, W104, W105, W106, W107, W108, W109, W110, W111, W112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W7, W8 and/or W16, W17 and/or W29, W30 and/or W36, W37 and/or W45, W46 and/or W55, W56 and/or W60, W61 and/or W77, W78 and/or W86, W87 and/or W89, W90 and/or W92, W93 and/or W95, W96 and/or W99, W100 and/or W105, W106 and/or W108, W109 and/or W111, W112 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (III) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW201, —NW202W203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W204, —C(O)O—W205, —C(O)NH—W206, —C(O)NW207W208, —O—W209, —O(—W210-O), —H (c=1, 2, 3, 4, 5), —O(—W211-O)d—W212 (d=1, 2, 3, 4, 5), —OC(O)—W213, —OC(O)—O—W214, —OC(O)—NHW215, —O—C(O)—NW216W217, —OP(O)(OW218)(OW219), —OSi(W220)(W221)(W222), —OS(O2)—W223, —NHC(O)—NH2, —NHC(O)—W224, —NW225C(O)—W226, —NH—C(O)—O—W227, —NH—C(O)—NH—W228, —NH—C(O)—NW229W230, —NW231-C(O)—O—W232, —NW233-C(O)—NH—W234, —NW235-C(O)—NW236W237, —NHS(O2)—W238, —NW239S(O2)—W240, —S—W241, —S(O)—W242, —S(O2)—W243, —S(O2)NH—W244, —S(O2)NW245W246, —S(O2)O—W247, —P(O)(OW248)(OW249), —Si(W250)(W251)(W252), —C(NH)—NH2, —C(NW253)-NH2, —C(NH)—NHW254, —C(NH)—NW255W256, —C(NW257)-NHW258, —C(NW259)-NW260W261, —NH—C(O)—NH—O—W262, —NH—C(O)—NW263-O—W264, —NW265-C(O)—NW266-O—W267, —N(—C(O)—NH—O—W268)2, —N(—C(O)—NW269-O—W270)2, —N(—C(O)—NH—O—W271)(—C(O)—NW272-O—W273), —C(S)—W274, —C(S)—O—W275, —C(S)—NH—W276, —C(S)—NW277W278, —C(O)—NH—O—W279, —C(O)—NW280-O—W281, —C(S)—NH—O—W282, —C(S)—NW283-O—W284, —C(O)—NH—NH—W285, —C(O)—NH—NW286W287, —C(O)—NW288-NW289W290, —C(S)—NH—NH—W291, —C(S)—NH—NW292W293, —C(S)—NW294-NW295W296, —C(O)—C(O)—O—W297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW298, —C(O)—C(O)—NW299W300, —C(S)—C(O)—O—W301, —C(O)—C(S)—O—W302, —C(S)—C(S)—O—W303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW304, —C(S)—C(O)—NW305W306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW307, —C(S)—C(S)—NW308W309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW310, —C(O)—C(S)—NW311W312”;
          • wherein W201, W202, W203, W204, W205, W206, W207, W208, W209, W210, W211, W212, W213, W214, W215, W216, W217, W218, W219, W220, W221, W222, W223, W224, W225, W226, W227, W228, W229, W230, W231, W232, W233, W234, W235, W236, W237, W238, W239, W240, W241, W242, W243, W244, W245, W246, W247, W248, W249, W250, W251, W252, W253, W254, W255, W256, W257, W258, W259, W260, W261, W262, W263, W264, W265, W266, W267, W268, W269, W270, W271, W272, W273, W274, W275, W276, W277, W278, W279, W280, W281, W282, W283, W284, W285, W286, W287, W288, W289, W290, W291, W292, W293, W294, W295, W296, W297, W298, W299, W300, W301, W302, W303, W304, W305, W306, W307, W308, W309, W310, W311, W312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W207, W208 and/or W216, W217 and/or W229, W230 and/or W236, W237 and/or W245, W246 and/or W255, W256 and/or W260, W261 and/or W277, W278 and/or W286, W287 and/or W289, W290 and/or W292, W293 and/or W295, W296 and/or W299, W300 and/or W305, W306 and/or W308, W309 and/or W311, W312 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW401, —NW402W403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W404, —C(O)O—W405, —C(O)NH—W406, —C(O)NW407W408, —O—W409, —O(—W410-O)e—H (e=1, 2, 3, 4, 5), —O(—W411-O)rW412 (f=1, 2, 3, 4, 5), —OC(O)—W413, —OC(O)—O—W414, —OC(O)—NHW415, —O—C(O)—NW416W417, —OP(O)(OW418)(OW419), —OSi(W420)(W421)(W422), —OS(O2)—W423, —NHC(O)—NH2, —NHC(O)—W424, —NW425C(O)—W426, —NH—C(O)—O—W427, —NH—C(O)—NH—W428, —NH—C(O)—NW429W430, —NW431-C(O)—O—W432, —NW433-C(O)—NH—W434, —NW435-C(O)—NW436W437, —NHS(O2)—W438, —NW439S(O2)—W440, —S—W441, —S(O)—W442, —S(O2)—W443, —S(O2)NH—W444, —S(O2)NW445W446, —S(O2)O—W447, —P(O)(OW448)(OW449), —Si(W450)(W451)(W452), —C(NH)—NH2, —C(NW453)-NH2, —C(NH)—NHW454, —C(NH)—NW455W456, —C(NW457)-NHW458, —C(NW459)-NW460W461, —NH—C(O)—NH—O—W462, —NH—C(O)—NW463-O—W464, —NW465-C(O)—NW466-O—W467, —N(—C(O)—NH—O—W468)2, —N(—C(O)—NW469-O—W470)2, —N(—C(O)—NH—O—W471)(—C(O)—NW472-O—W473), —C(S)—W474, —C(S)—O—W475, —C(S)—NH—W476, —C(S)—NW477W478, —C(O)—NH—O—W479, —C(O)—NW480-O—W481, —C(S)—NH—O—W482, —C(S)—NW483-O—W484, —C(O)—NH—NH—W485, —C(O)—NH—NW486W487, —C(O)—NW488-NW489W490, —C(S)—NH—NH—W491, —C(S)—NH—NW492W493, —C(S)—NW494-NW495W496, —C(O)—C(O)—O—W497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW498, —C(O)—C(O)—NW499W500, —C(S)—C(O)—O—W501, —C(O)—C(S)—O—W502, —C(S)—C(S)—O—W503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW504, —C(S)—C(O)—NW505W506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW507, —C(S)—C(S)—NW508W509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW510, —C(O)—C(S)—NW511W512”;
          •  wherein W401, W402, W403, W404, W405, W406, W407, W408, W409, W410, W411, W412, W413, W414, W415, W416, W417, W418, W419, W420, W421, W422, W423, W424, W425, W426, W427, W428, W429, W430, W431, W432, W433, W434, W435, W436, W437, W438, W439, W440, W441, W442, W443, W444, W445, W446, W447, W448, W449, W450, W451, W452, W453, W454, W455, W456, W457, W458, W459, W460, W461, W462, W463, W464, W465, W466, W467, W468, W469, W470, W471, W472, W473, W474, W475, W476, W477, W478, W479, W480, W481, W482, W483, W484, W485, W486, W487, W488, W489, W490, W491, W492, W493, W494, W495, W496, W497, W498, W499, W500, W501, W502, W503, W504, W505, W506, W507, W508, W509, W510, W511, W512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W407, W408 and/or W416, W417 and/or W429, W430 and/or W436, W437 and/or W445, W446 and/or W455, W456 and/or W460, W461 and/or W477, W478 and/or W486, W487 and/or W489, W490 and/or W492, W493 and/or W495, W496 and/or W499, W500 and/or W505, W506 and/or W508, W509 and/or W511, W512 and/or respectively together can also form “heterocyclyl”;
          •  wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          •  (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHW601, —NW602W603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—W604, —C(O)O—W605, —C(O)NH—W606, —C(O)NW607W608, —O—W609, —O(—W610-O)e—H (e=1, 2, 3, 4, 5), —O(—W611-O)—W612 (f=1, 2, 3, 4, 5), —OC(O)—W613, —OC(O)—O—W614, —OC(O)—NHW615, —O—C(O)—NW616W617, —OP(O)(OW618)(OW619), —OSi(W620)(W621)(W622), —OS(O2)—W623, —NHC(O)—NH2, —NHC(O)—W624, —NW625C(O)—W626, —NH—C(O)—O—W627, —NH—C(O)—NH—W628, —NH—C(O)—NW629W630, —NW631-C(O)—O—W632, —NW633-C(O)—NH—W634, —NW635-C(O)—NW636W637, —NHS(O2)—W638, —NW639S(O2)—W640, —S—W641, —S(O)—W642, —S(O2)—W643, —S(O2)NH—W644, —S(O2)NW645W646, —S(O2)O—W647, —P(O)(OW648)(OW649), —Si(W650)(W651)(W652), —C(NH)—NH2, —C(NW653)-NH2, —C(NH)—NHW654, —C(NH)—NW655W656, —C(NW657)-NHW658, —C(NW659)-NW660W661, —NH—C(O)—NH—O—W662, —NH—C(O)—NW663-O—W664, —NW665-C(O)—NW666-O—W667, —N(—C(O)—NH—O—W668)2, —N(—C(O)—NW669-O—W670)2, —N(—C(O)—NH—O—W671)(—C(O)—NW672-O—W673), —C(S)—W674, —C(S)—O—W675, —C(S)—NH—W676, —C(S)—NW677W678, —C(O)—NH—O—W679, —C(O)—NW680-O—W681, —C(S)—NH—O—W682, —C(S)—NW683-O—W684, —C(O)—NH—NH—W685, —C(O)—NH—NW686W687, —C(O)—NW688-NW689W690, —C(S)—NH—NH—W691, —C(S)—NH—NW692W693, —C(S)—NW694-NW695W696, —C(O)—C(O)—O—W697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHW698, —C(O)—C(O)—NW699W700, —C(S)—C(O)—O—W701, —C(O)—C(S)—O—W702, —C(S)—C(S)—O—W703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHW704, —C(S)—C(O)—NW705W706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHW707, —C(S)—C(S)—NW708W709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHW710, —C(O)—C(S)—NW711W712”;
          •  wherein W601, W602, W603, W604, W605, W606, W607, W608, W609, W610, W611, W612, W613, W614, W615, W616, W617, W618, W619, W620, W621, W622, W623, W624, W625, W626, W627, W628, W629, W630, W631, W632, W633, W634, W635, W636, W637, W638, W639, W640, W641, W642, W643, W644, W645, W646, W647, W648, W649, W650, W651, W652, W653, W654, W655, W656, W657, W658, W659, W660, W661, W662, W663, W664, W665, W666, W667, W668, W669, W670, W671, W672, W673, W674, W675, W676, W677, W678, W679, W680, W681, W682, W683, W684, W685, W686, W687, W688, W689, W690, W691, W692, W693, W694, W695, W696, W697, W698, W699, W700, W701, W702, W703, W704, W705, W706, W707, W708, W709, W710, W711, W712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively W607, W608 and/or W616, W617 and/or W629, W630 and/or W636, W637 and/or W645, W646 and/or W655, W656 and/or W660, W661 and/or W677, W678 and/or W686, W687 and/or W689, W690 and/or W692, W693 and/or W695, W696 and/or W699, W700 and/or W705, W706 and/or W708, W709 and/or W711, W712 and/or respectively together can also form “heterocyclyl”;
      • with the first proviso that radical R18 is not selected from the group consisting of: “—O-alkyl, —O—(C9-C30)alkyl, —O-aryl, —O-arylalkyl, —O-heteroaryl, —O-heteroarylalkyl, —O-cycloalkyl, —O-cycloalkylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl”;
      • with the second proviso that, if radical R18 independently is selected from the group consisting of: “—NRaRb”, with Ra, Rb independently from each other being selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl”, radical R1 is not selected from the group consisting of: “heterocyclylalkyl being substituted with ═O, where heterocyclyl is 5-membered; alkyl being substituted with heterocyclyl, where heterocyclyl is 5-membered and substituted with ═O”;

    • and one of radicals R3, R4 or neither of radicals R3, R4 independently is selected from the group consisting of:

    • (2) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA1, —NA2A3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A4, —C(O)O-A5, —C(O)NH-A6, —C(O)NA7A8, —O-A9, —O(-A10-O), —H (a=1, 2, 3, 4, 5), —O(-A11-O)b-A12 (b=1, 2, 3, 4, 5), —OC(O)-A13, —OC(O)—O-A14, —OC(O)—NHA15, —O—C(O)—NA16A17, —OP(O)(OA18)(OA19), —OSi(A20)(A21)(A22), —OS(O2)-A23, —NHC(O)—NH2, —NHC(O)-A24, —NA25C(O)-A26, —NH—C(O)—O-A27, —NH—C(O)—NH-A28, —NH—C(O)—NA29A30, —NA31-C(O)—O-A32, —NA33-C(O)—NH-A34, —NA35-C(O)—NA36A37, —NHS(O2)-A38, —NA39S(O2)-A40, —S-A41, —S(O)-A42, —S(O2)— A43, —S(O2)NH-A44, —S(O2)NA45A46, —S(O2)O-A47, —P(O)(OA48)(OA49), —Si(A50)(A51)(A52), —C(NH)—NH2, —C(NA53)-NH2, —C(NH)—NHA54, —C(NH)—NA55A56, —C(NA57)-NHA58, —C(NA59)-NA60A61, —NH—C(O)—NH—O-A62, —NH—C(O)—NA63-O-A64, —NA65-C(O)—NA66-O-A67, —N(—C(O)—NH—O-A68)2, —N(—C(O)—NA69-O-A70)2, —N(—C(O)—NH—O-A71)(—C(O)—NA72-O-A73), —C(S)-A74, —C(S)—O-A75, —C(S)—NH-A76, —C(S)—NA77A78, —C(O)—NH—O-A79, —C(O)—NA80-O-A81, —C(S)—NH—O-A82, —C(S)—NA83-O-A84, —C(O)—NH—NH-A85, —C(O)—NH—NA86A87, —C(O)—NA88-NA89A90, —C(S)—NH—NH-A91, —C(S)—NH—NA92A93, —C(S)—NA94-NA95A96, —C(O)—C(O)—O-A97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA98, —C(O)—C(O)—NA99A100, —C(S)—C(O)—O-A101, —C(O)—C(S)—O-A102, —C(S)—C(S)—O-A103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA104, —C(S)—C(O)—NA105A106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA107, —C(S)—C(S)—NA108A109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA110, —C(O)—C(S)—NA111A112”;
      • wherein A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, All, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32, A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43, A44, A45, A46, A47, A48, A49, A50, A51, A52, A53, A54, A55, A56, A57, A58, A59, A60, A61, A62, A63, A64, A65, A66, A67, A68, A69, A70, A71, A72, A73, A74, A75, A76, A77, A78, A79, A80, A81, A82, A83, A84, A85, A86, A87, A88, A89, A90, A91, A92, A93, A94, A95, A96, A97, A98, A99, A100, A101, A102, A103, A104, A105, A106, A107, A108, A109, A110, A111, A112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A7, A8 and/or A16, A17 and/or A29, A30 and/or A36, A37 and/or A45, A46 and/or A55, A56 and/or A60, A61 and/or A77, A78 and/or A86, A87 and/or A89, A90 and/or A92, A93 and/or A95, A96 and/or A99, A100 and/or A105, A106 and/or A108, A109 and/or A111, A112 and/or respectively together can also form “heterocyclyl”;
      • wherein optionally above substituents of substituents group (2)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
      • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA201, —NA202A203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A204, —C(O)O-A205, —C(O)NH-A206, —C(O)NA207A208, —O-A209, —O(-A210-O)c—H (c=1, 2, 3, 4, 5), —O(-A211-O)d-A212 (d=1, 2, 3, 4, 5), —OC(O)-A213, —OC(O)—O-A214, —OC(O)—NHA215, —O—C(O)—NA216A217, —OP(O)(OA218)(OA219), —OSi(A220)(A221)(A222), —OS(O2)— A223, —NHC(O)—NH2, —NHC(O)-A224, —NA225C(O)-A226, —NH—C(O)—O-A227, —NH—C(O)—NH-A228, —NH—C(O)—NA229A230, —NA231-C(O)—O-A232, —NA233-C(O)—NH-A234, —NA235-C(O)—NA236A237, —NHS(O2)— A238, —NA239S(O2)-A240, —S-A241, —S(O)-A242, —S(O2)-A243, —S(O2)NH-A244, —S(O2)NA245A246, —S(O2)O-A247, —P(O)(OA248)(OA249), —Si(A250)(A251)(A252), —C(NH)—NH2, —C(NA253)-NH2, —C(NH)—NHA254, —C(NH)—NA255A256, —C(NA257)-NHA258, —C(NA259)-NA260A261, —NH—C(O)—NH—O-A262, —NH—C(O)—NA263-O-A264, —NA265-C(O)—NA266-O-A267, —N(—C(O)—NH—O-A268)2, —N(—C(O)—NA269-O-A270)2, —N(—C(O)—NH—O-A271)(—C(O)—NA272-O-A273), —C(S)-A274, —C(S)—O-A275, —C(S)—NH-A276, —C(S)—NA277A278, —C(O)—NH—O-A279, —C(O)—NA280-O-A281, —C(S)—NH—O-A282, —C(S)—NA283-O-A284, —C(O)—NH—NH-A285, —C(O)—NH—NA286A287, —C(O)—NA288-NA289A290, —C(S)—NH—NH-A291, —C(S)—NH—NA292A293, —C(S)—NA294-NA295A296, —C(O)—C(O)—O-A297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA298, —C(O)—C(O)—NA299A300, —C(S)—C(O)—O-A301, —C(O)—C(S)—O-A302, —C(S)—C(S)—O-A303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA304, —C(S)—C(O)—NA305A306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA307, —C(S)—C(S)—NA308A309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA310, —C(O)—C(S)—NA311A312”;
        • wherein A201, A202, A203, A204, A205, A206, A207, A208, A209, A210, A211, A212, A213, A214, A215, A216, A217, A218, A219, A220, A221, A222, A223, A224, A225, A226, A227, A228, A229, A230, A231, A232, A233, A234, A235, A236, A237, A238, A239, A240, A241, A242, A243, A244, A245, A246, A247, A248, A249, A250, A251, A252, A253, A254, A255, A256, A257, A258, A259, A260, A261, A262, A263, A264, A265, A266, A267, A268, A269, A270, A271, A272, A273, A274, A275, A276, A277, A278, A279, A280, A281, A282, A283, A284, A285, A286, A287, A288, A289, A290, A291, A292, A293, A294, A295, A296, A297, A298, A299, A300, A301, A302, A303, A304, A305, A306, A307, A308, A309, A310, A311, A312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A207, A208 and/or A216, A217 and/or A229, A230 and/or A236, A237 and/or A245, A246 and/or A255, A256 and/or A260, A261 and/or A277, A278 and/or A286, A287 and/or A289, A290 and/or A292, A293 and/or A295, A296 and/or A299, A300 and/or A305, A306 and/or A308, A309 and/or A311, A312 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA401, —NA402A403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A404, —C(O)O-A405, —C(O)NH-A406, —C(O)NA407A408, —O-A409, —O(-A410-O)e—H (e=1, 2, 3, 4, 5), —O(-A411-O)r-A412 (f=1, 2, 3, 4, 5), —OC(O)-A413, —OC(O)—O-A414, —OC(O)—NHA415, —O—C(O)—NA416A417, —OP(O)(OA418)(OA419), —OSi(A420)(A421)(A422), —OS(O2)-A423, —NHC(O)—NH2, —NHC(O)-A424, —NA425C(O)-A426, —NH—C(O)—O-A427, —NH—C(O)—NH-A428, —NH—C(O)—NA429A430, —NA431-C(O)—O-A432, —NA433-C(O)—NH-A434, —NA435-C(O)—NA436A437, —NHS(O2)-A438, —NA439S(O2)— A440, —S-A441, —S(O)-A442, —S(O2)-A443, —S(O2)NH-A444, —S(O2)NA445A446, —S(O2)O-A447, —P(O)(OA448)(OA449), —Si(A450)(A451)(A452), —C(NH)—NH2, —C(NA453)-NH2, —C(NH)—NHA454, —C(NH)—NA455A456, —C(NA457)-NHA458, —C(NA459)-NA460A461, —NH—C(O)—NH—O-A462, —NH—C(O)—NA463-O-A464, —NA465-C(O)—NA466-O-A467, —N(—C(O)—NH—O-A468)2, —N(—C(O)—NA469-O-A470)2, —N(—C(O)—NH—O-A471)(—C(O)—NA472-O-A473), —C(S)-A474, —C(S)—O-A475, —C(S)—NH-A476, —C(S)—NA477A478, —C(O)—NH—O-A479, —C(O)—NA480-O-A481, —C(S)—NH—O-A482, —C(S)—NA483-O-A484, —C(O)—NH—NH-A485, —C(O)—NH—NA486A487, —C(O)—NA488-NA489A490, —C(S)—NH—NH-A491, —C(S)—NH—NA492A493, —C(S)—NA494-NA495A496, —C(O)—C(O)—O-A497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA498, —C(O)—C(O)—NA499A500, —C(S)—C(O)—O-A501, —C(O)—C(S)—O-A502, —C(S)—C(S)—O-A503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA504, —C(S)—C(O)—NA505A506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA507, —C(S)—C(S)—NA508A509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA510, —C(O)—C(S)—NA511A512”;
          • wherein A401, A402, A403, A404, A405, A406, A407, A408, A409, A410, A411, A412, A413, A414, A415, A416, A417, A418, A419, A420, A421, A422, A423, A424, A425, A426, A427, A428, A429, A430, A431, A432, A433, A434, A435, A436, A437, A438, A439, A440, A441, A442, A443, A444, A445, A446, A447, A448, A449, A450, A451, A452, A453, A454, A455, A456, A457, A458, A459, A460, A461, A462, A463, A464, A465, A466, A467, A468, A469, A470, A471, A472, A473, A474, A475, A476, A477, A478, A479, A480, A481, A482, A483, A484, A485, A486, A487, A488, A489, A490, A491, A492, A493, A494, A495, A496, A497, A498, A499, A500, A501, A502, A503, A504, A505, A506, A507, A508, A509, A510, A511, A512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A407, A408 and/or A416, A417 and/or A429, A430 and/or A436, A437 and/or A445, A446 and/or A455, A456 and/or A460, A461 and/or A477, A478 and/or A486, A487 and/or A489, A490 and/or A492, A493 and/or A495, A496 and/or A499, A500 and/or A505, A506 and/or A508, A509 and/or A511, A512 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHA601, —NA602A603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)-A604, —C(O)O-A605, —C(O)NH-A606, —C(O)NA607A608, —O-A609, —O(-A610-O)e—H (e=1, 2, 3, 4, 5), —O(-A611-O)rA612 (f=1, 2, 3, 4, 5), —OC(O)-A613, —OC(O)—O-A614, —OC(O)—NHA615, —O—C(O)—NA616A617, —OP(O)(OA618)(OA619), —OSi(A620)(A621)(A622), —OS(O2)-A623, —NHC(O)—NH2, —NHC(O)-A624, —NA625C(O)-A626, —NH—C(O)—O-A627, —NH—C(O)—NH-A628, —NH—C(O)—NA629A630, —NA631-C(O)—O-A632, —NA633-C(O)—NH-A634, —NA635-C(O)—NA636A637, —NHS(O2)-A638, —NA639S(O2)-A640, —S-A641, —S(O)-A642, —S(O2)-A643, —S(O2)NH-A644, —S(O2)NA645A646, —S(O2)O-A647, —P(O)(OA648)(OA649), —Si(A650)(A651)(A652), —C(NH)—NH2, —C(NA653)-NH2, —C(NH)—NHA654, —C(NH)—NA655A656, —C(NA657)-NHA658, —C(NA659)-NA660A661, —NH—C(O)—NH—O-A662, —NH—C(O)—NA663-O-A664, —NA665-C(O)—NA666-O-A667, —N(—C(O)—NH—O-A668)2, —N(—C(O)—NA669-O-A670)2, —N(—C(O)—NH—O-A671)(—C(O)—NA672-O-A673), —C(S)-A674, —C(S)—O-A675, —C(S)—NH-A676, —C(S)—NA677A678, —C(O)—NH—O-A679, —C(O)—NA680-O-A681, —C(S)—NH—O-A682, —C(S)—NA683-O-A684, —C(O)—NH—NH-A685, —C(O)—NH—NA686A687, —C(O)—NA688-NA689A690, —C(S)—NH—NH-A691, —C(S)—NH—NA692A693, —C(S)—NA694-NA695A696, —C(O)—C(O)—O-A697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHA698, —C(O)—C(O)—NA699A700, —C(S)—C(O)—O-A701, —C(O)—C(S)—O-A702, —C(S)—C(S)—O-A703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHA704, —C(S)—C(O)—NA705A706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHA707, —C(S)—C(S)—NA708A709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHA710, —C(O)—C(S)—NA711A712”;
          •  wherein A601, A602, A603, A604, A605, A606, A607, A608, A609, A610, A611, A612, A613, A614, A615, A616, A617, A618, A619, A620, A621, A622, A623, A624, A625, A626, A627, A628, A629, A630, A631, A632, A633, A634, A635, A636, A637, A638, A639, A640, A641, A642, A643, A644, A645, A646, A647, A648, A649, A650, A651, A652, A653, A654, A655, A656, A657, A658, A659, A660, A661, A662, A663, A664, A665, A666, A667, A668, A669, A670, A671, A672, A673, A674, A675, A676, A677, A678, A679, A680, A681, A682, A683, A684, A685, A686, A687, A688, A689, A690, A691, A692, A693, A694, A695, A696, A697, A698, A699, A700, A701, A702, A703, A704, A705, A706, A707, A708, A709, A710, A711, A712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively A607, A608 and/or A616, A617 and/or A629, A630 and/or A636, A637 and/or A645, A646 and/or A655, A656 and/or A660, A661 and/or A677, A678 and/or A686, A687 and/or A689, A690 and/or A692, A693 and/or A695, A696 and/or A699, A700 and/or A705, A706 and/or A708, A709 and/or A711, A712 and/or respectively together can also form “heterocyclyl”;

    • and radicals R1, R2, R5 independently from each other are selected from the group consisting of:

    • (3) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB1, —NB2B3, —NO2, —OH, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B4, —C(O)O—B5, —C(O)NH—B6, —C(O)NB7B8, —O—B9, —O(—B10-O)a—H (a=1, 2, 3, 4, 5), —O(—B11-O)b—B12 (b=1, 2, 3, 4, 5), —OC(O)—B13, —OC(O)—O—B14, —OC(O)—NHB15, —O—C(O)—NB16B17, —OP(O)(OB18)(OB19), —OSi(B20)(B21)(B22), —OS(O2)—B23, —NHC(O)—NH2, —NHC(O)—B24, —NB25C(O)—B26, —NH—C(O)—O—B27, —NH—C(O)—NH—B28, —NH—C(O)—NB29B30, —NB31-C(O)—O—B32, —NB33-C(O)—NH—B34, —NB35-C(O)—NB36B37, —NHS(O2)—B38, —NB39S(O2)—B40, —S—B41, —S(O)—B42, —S(O2)— B43, —S(O2)NH—B44, —S(O2)NB45B46, —S(O2)O—B47, —P(O)(OB48)(OB49), —Si(B50)(B51)(B52), —C(NH)—NH2, —C(NB53)-NH2, —C(NH)—NHB54, —C(NH)—NB55B56, —C(NB57)-NHB58, —C(NB59)-NB60B61, —NH—C(O)—NH—O—B62, —NH—C(O)—NB63-O—B64, —NB65-C(O)—NB66-O—B67, —N(—C(O)—NH—O—B68)2, —N(—C(O)—NB69-O—B70)2, —N(—C(O)—NH—O—B71)(—C(O)—NB72-O—B73), —C(S)—B74, —C(S)—O—B75, —C(S)—NH—B76, —C(S)—NB77B78, —C(O)—NH—O—B79, —C(O)—NB80-O—B81, —C(S)—NH—O—B82, —C(S)—NB83-O—B84, —C(O)—NH—NH—B85, —C(O)—NH—NB86B87, —C(O)—NB88-NB89B90, —C(S)—NH—NH—B91, —C(S)—NH—NB92B93, —C(S)—NB94-NB95B96, —C(O)—C(O)—O—B97, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB98, —C(O)—C(O)—NB99B100, —C(S)—C(O)—O—B101, —C(O)—C(S)—O—B102, —C(S)—C(S)—O—B103, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB104, —C(S)—C(O)—NB105B106, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB107, —C(S)—C(S)—NB108B109, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB110, —C(O)—C(S)—NB111B112”;
      • wherein B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, B32, B33, B34, B35, B36, B37, B38, B39, B40, B41, B42, B43, B44, B45, B46, B47, B48, B49, B50, B51, B52, B53, B54, B55, B56, B57, B58, B59, B60, B61, B62, B63, B64, B65, B66, B67, B68, B69, B70, B71, B72, B73, B74, B75, B76, B77, B78, B79, B80, B81, B82, B83, B84, B85, B86, B87, B88, B89, B90, B91, B92, B93, B94, B95, B96, B97, B98, B99, B100, B101, B102, B103, B104, B105, B106, B107, B108, B109, B110, B111, B112 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B2, B3 and/or B7, B8 and/or B16, B17 and/or B29, B30 and/or B36, B37 and/or B45, B46 and/or B55, B56 and/or B60, B61 and/or B77, B78 and/or B86, B87 and/or B89, B90 and/or B92, B93 and/or B95, B96 and/or B99, B100 and/or B105, B106 and/or B108, B109 and/or B111, B112 and/or respectively together can also form “heterocyclyl”;
      • wherein optionally above substituents of substituents group (3)—if not hydrogen—can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
      • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB201, —NB202B203, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B204, —C(O)O—B205, —C(O)NH—B206, —C(O)NB207B208, —O—B209, —O(—B210-O), —H (c=1, 2, 3, 4, 5), —O(—B211-O)d—B212 (d=1, 2, 3, 4, 5), —OC(O)—B213, —OC(O)—O—B214, —OC(O)—NHB215, —O—C(O)—NB216B217, —OP(O)(OB218)(OB219), —OSi(B220)(B221)(B222), —OS(O2)— B223, —NHC(O)—NH2, —NHC(O)—B224, —NB225C(O)—B226, —NH—C(O)—O—B227, —NH—C(O)—NH—B228, —NH—C(O)—NB229B230, —NB231-C(O)—O—B232, —NB233-C(O)—NH—B234, —NB235-C(O)—NB236B237, —NHS(O2)— B238, —NB239S(O2)—B240, —S—B241, —S(O)—B242, —S(O2)—B243, —S(O2)NH—B244, —S(O2)NB245B246, —S(O2)O—B247, —P(O)(OB248)(OB249), —Si(B250)(B251)(B252), —C(NH)—NH2, —C(NB253)-NH2, —C(NH)—NHB254, —C(NH)—NB255B256, —C(NB257)-NHB258, —C(NB259)-NB260B261, —NH—C(O)—NH—O—B262, —NH—C(O)—NB263-O—B264, —N 8B265-C(O)—NB266-O—B267, —N(—C(O)—NH—O—B268)2, —N(—C(O)—NB269-O—B270)2, —N(—C(O)—NH—O—B271)(—C(O)—NB272-O—B273), —C(S)—B274, —C(S)—O—B275, —C(S)—NH—B276, —C(S)—NB277B278, —C(O)—NH—O—B279, —C(O)—NB280-O—B281, —C(S)—NH—O—B282, —C(S)—NB283-O—B284, —C(O)—NH—NH—B285, —C(O)—NH—NB286B287, —C(O)—NB288-NB289B290, —C(S)—NH—NH—B291, —C(S)—NH—NB292B293, —C(S)—NB294-NB295B296, —C(O)—C(O)—O—B297, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB298, —C(O)—C(O)—NB299B300, —C(S)—C(O)—O—B301, —C(O)—C(S)—O—B302, —C(S)—C(S)—O—B303, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB304, —C(S)—C(O)—NB305B306, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB307, —C(S)—C(S)—NB308B309, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB310, —C(O)—C(S)—NB3118B312”;
        • wherein B201, B202, B203, B204, B205, B206, B207, B208, B209, B210, B211, B212, B213, B214, B215, B216, B217, B218, B219, B220, B221, B222, B223, B224, B225, B226, B227, B228, B229, B230, B231, B232, B233, B234, B235, B236, B237, B238, B239, B240, B241, B242, B243, B244, B245, B246, B247, B248, B249, B250, B251, B252, B253, B254, B255, B256, B257, B258, B259, B260, B261, B262, B263, B264, B265, B266, B267, B268, B269, B270, B271, B272, B273, B274, B275, B276, B277, B278, B279, B280, B281, B282, B283, B284, B285, B286, B287, B288, B289, B290, B291, B292, B293, B294, B295, B296, B297, B298, B299, B300, B301, B302, B303, B304, B305, B306, B307, B308, B309, B310, B311, B312 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B207, B208 and/or B216, B217 and/or B229, B230 and/or B236, B237 and/or B245, B246 and/or B255, B256 and/or B260, B261 and/or B277, B278 and/or B286, B287 and/or B289, B290 and/or B292, B293 and/or B295, B296 and/or B299, B300 and/or B305, B306 and/or B308, B309 and/or B311, B312 and/or respectively together can also form “heterocyclyl”;
        • wherein optionally above substituents of substituents group (i) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
        • (ii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB401, —NB402B403, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B404, —C(O)O—B405, —C(O)NH—B406, —C(O)NB407B408, —O—B409, —O(—B410-O)e—H (e=1, 2, 3, 4, 5), —O(—B411-O)r—B412 (f=1, 2, 3, 4, 5), —OC(O)—B413, —OC(O)—O—B414, —OC(O)—NHB415, —O—C(O)—NB416B417, —OP(O)(OB418)(OB419), —OSi(B420)(B421)(B422), —OS(O2)—B423, —NHC(O)—NH2, —NHC(O)—B424, —NB425C(O)—B426, —NH—C(O)—O—B427, —NH—C(O)—NH—B428, —NH—C(O)—NB429B430, —NB431-C(O)—O—B432, —NB433-C(O)—NH—B434, —NB435-C(O)—NB436B437, —NHS(O2)—B438, —NB439S(O2)— B440, —S—B441, —S(O)—B442, —S(O2)—B443, —S(O2)NH—B444, —S(O2)NB445B446, —S(O2)O—B447, —P(O)(OB448)(OB449), —Si(B450)(B451)(B452), —C(NH)—NH2, —C(NB453)-NH2, —C(NH)—NHB454, —C(NH)—NB455B456, —C(NB457)-NHB458, —C(NB459)-NB460B461, —NH—C(O)—NH—O—B462, —NH—C(O)—NB463-O—B464, —NB465-C(O)—NB466-O—B467, —N(—C(O)—NH—O—B468)2, —N(—C(O)—NB469-O—B470)2, —N(—C(O)—NH—O—B471)(—C(O)—NB472-O—B473), —C(S)—B474, —C(S)—O—B475, —C(S)—NH—B476, —C(S)—NB477B478, —C(O)—NH—O—B479, —C(O)—NB480-O—B481, —C(S)—NH—O—B482, —C(S)—NB483-O—B484, —C(O)—NH—NH—B485, —C(O)—NH—NB486B487, —C(O)—NB488-NB489B490, —C(S)—NH—NH—B491, —C(S)—NH—NB492B493, —C(S)—NB494-NB495B496, —C(O)—C(O)—O—B497, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB498, —C(O)—C(O)—NB499B500, —C(S)—C(O)—O—B501, —C(O)—C(S)—O—B502, —C(S)—C(S)—O—B503, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB504, —C(S)—C(O)—NB505B506, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB507, —C(S)—C(S)—NB508B509, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB510, —C(O)—C(S)—NB511B512”;
          • wherein B401, B402, B403, B404, B405, B406, B407, B408, B409, B410, B411, B412, B413, B414, B415, B416, B417, B418, B419, B420, B421, B422, B423, B424, B425, B426, B427, B428, B429, B430, B431, B432, B433, B434, B435, B436, B437, B438, B439, B440, B441, B442, B443, B444, B445, B446, B447, B448, B449, B450, B451, B452, B453, B454, B455, B456, B457, B458, B459, B460, B461, B462, B463, B464, B465, B466, B467, B468, B469, B470, B471, B472, B473, B474, B475, B476, B477, B478, B479, B480, B481, B482, B483, B484, B485, B486, B487, B488, B489, B490, B491, B492, B493, B494, B495, B496, B497, B498, B499, B500, B501, B502, B503, B504, B505, B506, B507, B508, B509, B510, B511, B512 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B407, B408 and/or B416, B417 and/or B429, B430 and/or B436, B437 and/or B445, B446 and/or B455, B456 and/or B460, B461 and/or B477, B478 and/or B486, B487 and/or B489, B490 and/or B492, B493 and/or B495, B496 and/or B499, B500 and/or B505, B506 and/or B508, B509 and/or B511, B512 and/or respectively together can also form “heterocyclyl”;
          • wherein optionally above substituents of substituents group (ii) can in turn independently from each other be substituted with at least one substituent, identical or different, selected from the group consisting of:
          • (iii) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NHB601, —NB602B603, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —C(O)—B604, —C(O)O—B605, —C(O)NH—B606, —C(O)NB607B608, —O—B609, —O(—B610-O)e—H (e=1, 2, 3, 4, 5), —O(—B611-O)rB612 (f=1, 2, 3, 4, 5), —OC(O)—B613, —OC(O)—O—B614, —OC(O)—NHB615, —O—C(O)—NB616B617, —OP(O)(OB618)(OB619), —OSi(B620)(B621)(B622), —OS(O2)—B623, —NHC(O)—NH2, —NHC(O)—B624, —NB625C(O)—B626, —NH—C(O)—O—B627, —NH—C(O)—NH—B628, —NH—C(O)—NB629B630, —NB631-C(O)—O—B632, —NB633-C(O)—NH—B634, —NB635-C(O)—NB636B637, —NHS(O2)—B638, —NB639S(O2)—B640, —S—B641, —S(O)—B642, —S(O2)—B643, —S(O2)NH—B644, —S(O2)NB645B646, —S(O2)O—B647, —P(O)(OB648)(OB649), —Si(B650)(B651)(B652), —C(NH)—NH2, —C(NB653)-NH2, —C(NH)—NHB654, —C(NH)—NB655B656, —C(NB657)-NHB658, —C(NB659)-NB660B661, —NH—C(O)—NH—O—B662, —NH—C(O)—NB663-O—B664, —NB665-C(O)—NB666-O—B667, —N(—C(O)—NH—O—B668)2, —N(—C(O)—NB669-O—B670)2, —N(—C(O)—NH—O—B671)(—C(O)—NB672-O—B673), —C(S)—B674, —C(S)—O—B675, —C(S)—NH—B676, —C(S)—NB677B678, —C(O)—NH—O—B679, —C(O)—NB680-O—B681, —C(S)—NH—O—B682, —C(S)—NB683-O—B684, —C(O)—NH—NH—B685, —C(O)—NH—NB686B687, —C(O)—NB688-NB689B690, —C(S)—NH—NH—B691, —C(S)—NH—NB692B693, —C(S)—NB694-NB695B696, —C(O)—C(O)—O—B697, —C(O)—C(O)—NH2, —C(O)—C(O)—NHB698, —C(O)—C(O)—NB699B700, —C(S)—C(O)—O—B701, —C(O)—C(S)—O—B702, —C(S)—C(S)—O—B703, —C(S)—C(O)—NH2, —C(S)—C(O)—NHB704, —C(S)—C(O)—NB705B706, —C(S)—C(S)—NH2, —C(S)—C(S)—NHB707, —C(S)—C(S)—NB708B709, —C(O)—C(S)—NH2, —C(O)—C(S)—NHB710, —C(O)—C(S)—NB711B712”;
          •  wherein B601, B602, B603, B604, B605, B606, B607, B608, B609, B610, B611, B612, B613, B614, B615, B616, B617, B618, B619, B620, B621, B622, B623, B624, B625, B626, B627, B628, B629, B630, B631, B632, B633, B634, B635, B636, B637, B638, B639, B640, B641, B642, B643, B644, B645, B646, B647, B648, B649, B650, B651, B652, B653, B654, B655, B656, B657, B658, B659, B660, B661, B662, B663, B664, B665, B666, B667, B668, B669, B670, B671, B672, B673, B674, B675, B676, B677, B678, B679, B680, B681, B682, B683, B684, B685, B686, B687, B688, B689, B690, B691, B692, B693, B694, B695, B696, B697, B698, B699, B700, B701, B702, B703, B704, B705, B706, B707, B708, B709, B710, B711, B712 are independently from each other selected from the group consisting of: “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl” and wherein alternatively B607, B608 and/or B616, B617 and/or B629, B630 and/or B636, B637 and/or B645, B646 and/or B655, B656 and/or B660, B661 and/or B677, B678 and/or B686, B687 and/or B689, B690 and/or B692, B693 and/or B695, B696 and/or B699, B700 and/or B705, B706 and/or B708, B709 and/or B711, B712 and/or respectively together can also form “heterocyclyl”.





In order to avoid ambiguities, the cases (1)(a) to (d) detailed above for the general formula (I) are to establish novelty over the prior art as follows: novelty is established by the fact that at least one of radicals R3, R4 must be one of the substituents as illustrated under (1) (a), (b), (c) and (d), whereas the other one of radicals R3, R4 can be either one of the substituents as illustrated under (1) (a), (b), (c) and (d) or it can be one of the substituents as illustrated under (2). Radicals R1, R2 and R5 can in all cases be one of the substituents as illustrated under (3).


In a preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to above general formula (I) are provided, wherein:

    • radical R1 independently is selected from the group consisting of:
    • (i) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, —NH-alkyl, —NH—(C9-C30)alkyl, —NH-cycloalkyl, —NH-cycloalkylalkyl, —NH-aryl, —NH-arylalkyl, —NH-heteroaryl, —NH-heteroarylalkyl, —NH-heterocyclyl, —NH-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R2 independently is “hydrogen”;
    • radical R3 independently is selected from the group consisting of:
    • (i) “—NH—C(O)—NH—C(O)—O-alkyl, —NH—C(O)—NH—C(O)—O—(C9-C30)alkyl, —NH—C(O)—NH—C(O)—O-cycloalkyl, —NH—C(O)—NH—C(O)—O-cycloalkylalkyl, —NH—C(O)—NH—C(O)—O-aryl, —NH—C(O)—NH—C(O)—O-arylalkyl, —NH—C(O)—NH—C(O)—O-heteroaryl, —NH—C(O)—NH—C(O)—O-heteroarylalkyl, —NH—C(O)—NH—C(O)—O-heterocyclyl, —NH—C(O)—NH—C(O)—O-heterocyclylalkyl-NH—C(S)—NH-alkyl, —NH—C(S)—NH—(C9-C30)alkyl, —NH—C(S)—NH-cycloalkyl, —NH—C(S)—NH-cycloalkylalkyl, —NH—C(S)—NH-aryl, —NH—C(S)—NH-arylalkyl, —NH—C(S)—NH-heteroaryl, —NH—C(S)—NH-heteroarylalkyl, —NH—C(S)—NH-heterocyclyl, —NH—C(S)—NH-heterocyclylalkyl, —NH—C(═NH)-alkyl, —NH—C(═NH)—(C9-C30)alkyl, —NH—C(═NH)-cycloalkyl, —NH—C(═NH)-cycloalkylalkyl, —NH—C(═NH)-aryl, —NH—C(═NH)-arylalkyl, —NH—C(═NH)-heteroaryl, —NH—C(═NH)-heteroarylalkyl, —NH—C(═NH)-heterocyclyl, —NH—C(═NH)-heterocyclylalkyl, —NH—C(O)—C(O)-alkyl, —NH—C(O)—C(O)—(C9-C30)alkyl, —NH—C(O)—C(O)-cycloalkyl, —NH—C(O)—C(O)-cycloalkylalkyl, —NH—C(O)—C(O)-aryl, —NH—C(O)—C(O)-arylalkyl, —NH—C(O)—C(O)-heteroaryl, —NH—C(O)—C(O)-heteroarylalkyl, —NH—C(O)—C(O)-heterocyclyl, —NH—C(O)—C(O)-heterocyclylalkyl”
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R4 independently is selected from the group consisting of:
    • (i) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, —NH-alkyl, —NH—(C9-C30)alkyl, —NH-cycloalkyl, —NH-cycloalkylalkyl, —NH-aryl, —NH-arylalkyl, —NH-heteroaryl, —NH-heteroarylalkyl, —NH-heterocyclyl, —NH-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R5 independently is “hydrogen”.


In a further preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to above general formula (I) are provided, wherein:

    • radical R1 independently is selected from the group consisting of:
    • (i) “hydrogen, methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl, —NH—Rx1” with Rx1 being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R2 independently is “hydrogen”;
    • radical R3 independently is selected from the group consisting of:
    • (i) “—NH—C(O)—NH—C(O)—O—Rx2, —NH—C(S)—NH—Rx3, —NH—C(═NH)—Rx4, —NH—C(O)—C(O)—Rx5”, with Rx2, Rx3, Rx4, Rx5 independently from each other being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R4 independently is selected from the group consisting of:
    • (i) “hydrogen, methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl, —NH—Rx6” with Rx6 being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R5 independently is “hydrogen”.


In a further preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to above general formula (I) and preferred embodiments and subsets are provided, wherein:

    • radical R1 independently is selected from the group consisting of:
    • (i) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, —NH-alkyl, —NH—(C9-C30)alkyl, —NH-cycloalkyl, —NH-cycloalkylalkyl, —NH-aryl, —NH-arylalkyl, —NH-heteroaryl, —NH-heteroarylalkyl, —NH-heterocyclyl, —NH-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R2 independently is “hydrogen”;
    • radical R3 independently is selected from the group consisting of:
    • (i) “—NH—C(O)—NH2, —NH—C(O)—NH-alkyl, —NH—C(O)—NH—(C9-C30)alkyl, —NH—C(O)—NH-cycloalkyl, —NH—C(O)—NH-cycloalkylalkyl, —NH—C(O)—NH-aryl, —NH—C(O)—NH-arylalkyl, —NH—C(O)—NH-heteroaryl, —NH—C(O)—NH-heteroarylalkyl, —NH—C(O)—NH-heterocyclyl, —NH—C(O)—NH-heterocyclylalkyl, —NH—C(O)—O-alkyl, —NH—C(O)—O—(C9-C30)alkyl, —NH—C(O)—O-cycloalkyl, —NH—C(O)—O-cycloalkylalkyl, —NH—C(O)—O-aryl, —NH—C(O)—O-arylalkyl, —NH—C(O)—O-heteroaryl, —NH—C(O)—O-heteroarylalkyl, —NH—C(O)—O-heterocyclyl, —NH—C(O)—O-heterocyclylalkyl, —NH—C(O)-alkyl, —NH—C(O)—(C9-C30)alkyl, —NH—C(O)-cycloalkyl, —NH—C(O)-cycloalkylalkyl, —NH—C(O)-aryl, —NH—C(O)-arylalkyl, —NH—C(O)-heteroaryl, —NH—C(O)-heteroarylalkyl, —NH—C(O)-heterocyclyl, —NH—C(O)-heterocyclylalkyl, —NH—S(O2)-alkyl, —NH—S(O2)—(C9-C30)alkyl, —NH—S(O2)-cycloalkyl, —NH—S(O2)-cycloalkylalkyl, —NH—S(O2)-aryl, —NH—S(O2)-arylalkyl, —NH—S(O2)-heteroaryl, —NH—S(O2)-heteroarylalkyl, —NH—S(O2)-heterocyclyl, —NH—S(O2)-heterocyclylalkyl;
      • where above substituents of substituents group (i)—if not hydrogen, nitrogen or sulphur—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R4 independently is selected from the group consisting of:
    • (i) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, —NH-alkyl, —NH—(C9-C30)alkyl, —NH-cycloalkyl, —NH-cycloalkylalkyl, —NH-aryl, —NH-arylalkyl, —NH-heteroaryl, —NH-heteroarylalkyl, —NH-heterocyclyl, —NH-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R5 independently is selected from the group consisting of:
    • (i) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”.


In a yet further preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to above general formula (I) and preferred embodiments and subsets are provided, wherein:

    • radical R1 independently is selected from the group consisting of:
    • (i) “hydrogen, methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl, —NH—Ry1” with Ry1 being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R2 independently is “hydrogen”;
    • radical R3 independently is selected from the group consisting of:
    • (i) “—NH—C(O)—NH2, —NH—C(O)—NH—Ry2, —NH—C(O)—O—Ry3, —NH—C(O)—Ry4, —NH—S(O2)—Ry5”;
      • with Ry2, Ry3, Ry4, Ry5 independently from each other being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen, nitrogen or sulphur—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R4 independently is selected from the group consisting of:
    • (i) “hydrogen, methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl, —NH—Ry6” with Ry6 being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R5 independently is selected from the group consisting of:
    • (i) “hydrogen, methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;


In another preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to above general formula (I) and preferred embodiments and subsets are provided, wherein:

    • radical R1 independently is selected from the group consisting of:
    • (i) “—NH—C(O)—NH2, —NH—C(S)—NH2, —NH—C(O)—NH-alkyl, —NH—C(O)—NH—(C9-C30)alkyl, —NH—C(O)—NH-cycloalkyl, —NH—C(O)—NH-cycloalkylalkyl, —NH—C(O)—NH-aryl, —NH—C(O)—NH-arylalkyl, —NH—C(O)—NH-heteroaryl, —NH—C(O)—NH-heteroarylalkyl, —NH—C(O)—NH-heterocyclyl, —NH—C(O)—NH-heterocyclylalkyl, —NH—C(S)—NH-alkyl, —NH—C(S)—NH—(C9-C30)alkyl, —NH—C(S)—NH-cycloalkyl, —NH—C(S)—NH-cycloalkylalkyl, —NH—C(S)—NH-aryl, —NH—C(S)—NH-arylalkyl, —NH—C(S)—NH-heteroaryl, —NH—C(S)—NH-heteroarylalkyl, —NH—C(S)—NH-heterocyclyl, —NH—C(S)—NH-heterocyclylalkyl, —NH—C(O)-alkyl, —NH—C(O)—(C9-C30)alkyl, —NH—C(O)-cycloalkyl, —NH—C(O)-cycloalkylalkyl, —NH—C(O)-aryl, —NH—C(O)-arylalkyl, —NH—C(O)-heteroaryl, —NH—C(O)-heteroarylalkyl, —NH—C(O)-heterocyclyl, —NH—C(O)-heterocyclylalkyl, —NH—C(S)-alkyl, —NH—C(S)—(C9-C30)alkyl, —NH—C(S)-cycloalkyl, —NH—C(S)-cycloalkylalkyl, —NH—C(S)-aryl, —NH—C(S)-arylalkyl, —NH—C(S)-heteroaryl, —NH—C(S)-heteroarylalkyl, —NH—C(S)-heterocyclyl, —NH—C(S)-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen, nitrogen or sulphur—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R2 independently is “hydrogen”;
    • radical R3 independently is selected from the group consisting of:
    • (i) “alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, —NH-alkyl, —NH—(C9-C30)alkyl, —NH-cycloalkyl, —NH-cycloalkylalkyl, —NH-aryl, —NH-arylalkyl, —NH-heteroaryl, —NH-heteroarylalkyl, —NH-heterocyclyl, —NH-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R4 independently is selected from the group consisting of:
    • (i) “hydrogen, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, —NH-alkyl, —NH—(C9-C30)alkyl, —NH-cycloalkyl, —NH-cycloalkylalkyl, —NH-aryl, —NH-arylalkyl, —NH-heteroaryl, —NH-heteroarylalkyl, —NH-heterocyclyl, —NH-heterocyclylalkyl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R5 independently is “hydrogen”.


In yet another preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to above general formula (I) and preferred embodiments and subsets are provided, wherein:

    • radical R1 independently is selected from the group consisting of:
    • (i) “—NH—C(O)—NH2, —NH—C(S)—NH2, —NH—C(O)—NH—Rz1, —NH—C(S)—NH—Rz2, —NH—C(O)—Ry3, —NH—C(S)—NH—Rz4”, with Rz1, Rz2, Rz3, Rz4 independently from each other being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen, nitrogen or sulphur—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R2 independently is “hydrogen”;
    • radical R3 independently is selected from the group consisting of:
    • (i) “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl, —NH—Rz5” with Rz5 being selected from the group consisting of: “methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R4 independently is selected from the group consisting of:
    • (i) “hydrogen, methyl, ethyl, propyl, isopropyl, tert-butyl, hexyl, allyl, propenyl, prop-2-en-1-yl, cyclopropyl, cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclohexylbutyl, phenyl, naphthalenyl, naphthalen-1-yl, naphthalen-2-yl, benzyl, phenyl-ethyl, isoxazol, pyridinyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrazolyl, pyrazol-3-yl, pyrazol-4-yl, quinolinyl, quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-8-yl, thiophenyl, thiophen-2-yl, thiophen-3-yl, furanyl, furan-2-yl, furan-3-yl, pyrimidinyl, pyrimidin-5-yl, imidazolyl, imidazol-4-yl, imidazol-3-yl, pyrrolo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridin-5-yl, indolyl, 1H-indol-2-yl, dibenzofuranyl, dibenzofuran-4-yl, piperidinyl, piperidinylmethyl, piperidinylethyl, piperidinylpropyl, piperidinylbutyl, piperidin-1-yl, piperidin-3-yl, piperidin-4-yl, piperazinyl, piperazinylmethyl, piperazinylethyl, piperazinylpropyl, piperazinylbutyl, piperazin-1-yl, diazepanyl, diazepanylmethyl, diazepanylethyl, diazepanylpropyl, diazepanylbuytl, diazepan-1-yl, morpholinyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, morpholinylbuytyl, morpholin-4-yl, 2-morpholin-4-yl-ethyl, 1,2,3,4-tetrahydro-isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinylmethyl, 1,2,3,4-tetrahydro-isoquinolinylethyl, 1,2,3,4-tetrahydro-isoquinolinylpropyl, 1,2,3,4-tetrahydro-isoquinolinylbutyl, 1,2,3,4-tetrahydro-isoquinolin-7-yl, benzo[1,3]dioxolyl, benzo[1,3]dioxolylmethyl, benzo[1,3]dioxolylethyl, benzo[1,3]dioxolylpropyl, benzo[1,3]dioxolylbutyl, benzo[1,3]dioxol-5-yl, benzo[1,4]oxazinyl, benzo[1,4]oxazinylmethyl, benzo[1,4]oxazinylethyl, benzo[1,4]oxazinylpropyl, benzo[1,4]oxazinylbutyl, benzo[1,4]oxazin-6-yl”;
      • where above substituents of substituents group (i)—if not hydrogen or nitrogen—may, optionally, additionally be substituted with at least one substituent selected from the group consisting of: “—F, —Cl, —Br, —I, —CN, —CF3, —N3, —NH2, —NO2, —OH, ═O, —OCF3, —OCHF2, —SH, —O—SO3H, —OP(O)(OH)2, —CHO, —COOH, —C(O)NH2, —SO3H, —P(O)(OH)2, —NHC(O)—NH2, —C(NH)—NH2, —C(O)—C(O)—NH2, —C(O)—CF3, alkyl, (C9-C30)alkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkyl-OH, alkyl-CN, alkyl-COOH, alkyl-P(O)(O-alkyl)2, cycloalkyl-CN, aryl-OH, aryl(—OH)(-alkyl), —C(O)-alkyl, —C(O)-heterocyclyl, —C(O)—O-alkyl, —C(O)—O-heterocyclyl, —P(O)(O-alkyl-O—C(O)-alkyl)2, —OP(O)(O-alkyl)2, —OS(O2)-alkyl, —S-alkyl, —O-alkyl, —O-aryl, —O-arylalkyl, —O-heterocyclyl, —O-heterocyclylalkyl, —O-arylalkyl-(O-alkyl)2, —O-alkyl-O-alkyl, —O-alkyl-N(alkyl)2, —O-alkyl-halogen, —O-alkyl-Cl, —O-alkyl-F, —O-alkyl-Br, —O-alkyl-I, —OC(O)-alkyl, —OC(O)—N(alkyl)2, —OC(O)—NH-alkyl, —OC(O)—(C9-C30)alkyl, —OC(O)—O-alkyl, —OC(O)—O-alkyl-O-alkyl, —OC(O)—O-aryl, —N(alkyl)2, —N(aryl)2, —NHC(O)-alkyl, —NHC(O)-alkyl-NH-alkyl, —NHC(O)-alkyl-C(O)—O-alkyl, —NHC(O)—O-alkyl, —NHC(O)—O-alkyl-O-alkyl, —NHC(O)—O-alkyl-O-alkyl-O-alkyl-O-alkyl, —NHC(O)—NH-alkyl, —NHC(O)—NH-aryl, —NHC(O)—NH-heteroaryl, —NHC(O)—NH-heterocyclyl, —NHC(O)—NH-heterocyclylalkyl, —NHC(O)—NH-alkyl-halogen, —NHC(O)—NH-alkyl-Cl, —NHC(O)—N(alkyl)2, —NHS(O2)-alkyl”;
    • radical R5 independently is “hydrogen”.


In another preferred embodiment, pyrido[2,3-b]pyrazine derivatives according to general formula (I) and above preferred embodiments and subsets are provided that are selected from the group consisting of:














Compound
Structure
Name







 1


embedded image


1-Ethyl-3-(6-p- tolylamino-pyrido[2,3- b]pyrazin-3-yl)-urea





 2


embedded image


1-[6-(4-Amino-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





 3


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenyl-urea





 4


embedded image


1-Ethyl-3-(6-phenyl- pyrido[2,3-b]pyrazin- 3-yl)-urea





 5


embedded image


1-Ethyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 6


embedded image


1-[6-(4-Chloro- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-urea





 7


embedded image


1-Ethyl-3-(6-pyridin- 4-yl-pyrido[2,3- b]pyrazin-3-yl)-urea





 8


embedded image


1-[6-(3-Chloro-4- hydroxy-5-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-urea





 9


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





 10


embedded image


1-Ethyl-3-[6-(1- methyl-1H-pyrazol-4- yl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 11


embedded image


1-Ethyl-3-[6-(4- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





 12


embedded image


1-Ethyl-3-[6-(3- isopropoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





 13


embedded image


1-Ethyl-3-(6- phenylamino- pyrido[2,3-b]pyrazin- 3-yl)-urea





 14


embedded image


1-Phenyl-3-(6- phenylamino- pyrido[2,3-b]pyrazin- 3-yl)-urea





 15


embedded image


1-[6-(3,5-Dichloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





 16


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-propyl-urea





 17


embedded image


1-Cyclohexyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 18


embedded image


1-Allyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 19


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-isopropyl-urea





 20


embedded image


1-Cyclopentyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 21


embedded image


1-Ethyl-3-[6-(4- hydroxy-3-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





 22


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-urea





 23


embedded image


1-Ethyl-3-[6-(3,4,5- trimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





 24


embedded image


1-Ethyl-3-[6-(4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





 25


embedded image


1-Ethyl-3-(6-p- tolylamino-pyrido[2,3- b]pyrazin-3-yl)- thiourea





 26


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenethyl- urea





 27


embedded image


1-(3,5-Dimethyl- isoxazol-4-yl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 28


embedded image


1-tert-Butyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 29


embedded image


1-Benzyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





 30


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-[1-(2,2,2- trifluoro-acetyl)- piperidin-4-yl]-urea





 31


embedded image


1-[6-(3-Chloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





 32


embedded image


1-Ethyl-3-[6-(quinolin- 3-ylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





 33


embedded image


2,2-Dimethyl- propionic acid(2,2- dimethyl- propionyloxymeth- oxy)-[4-(3-{3-[4-(2,2- dimethyl-propionyl- oxy)-3-methoxy- phenyl]-pyrido[2,3- b]pyrazin-6-yl}- ureido)-butyl]- phosphinoyloxy- methyl ester





 34


embedded image


Phosphoric acid di- ethyl ester 4-[6-(3- ethyl-ureido)- pyrido[2,3-b]-pyrazin- 3-yl]-2-methoxy- phenyl ester





 35


embedded image


1-Ethyl-3-[3-(4- methyl-3,4-dihydro- 2H-benzo[1,4]oxazin- 6-yl)-pyrido[2, 3-b]pyrazin-6-yl]-urea





 36


embedded image


N-[3-(3-Isopropoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-acetamide





 37


embedded image


Methanesulfonic acid 2-chloro-4-[6-(3-ethyl- ureido)-pyrido[2,3- b]pyrazin-3-yl]-6- methoxy-phenyl ester





 38


embedded image


[3-(3-Isopropoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]carbamic acid ethyl ester





 39


embedded image


1-{3-[4-(2-Chloro- ethoxy)-3-methoxy- phenyl]-pyrido[2,3- b]pyrazin-6-yl}- 3-ethyl-urea





 40


embedded image


{4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-2-methoxy- phenyl}-carbamic acid 2-methoxy-ethyl ester





 41


embedded image


Phosphoric acid mono-{4-[6-(3-ethyl- ureido)-pyrido-[2,3- b]pyrazin-3-yl]-2- methoxy-phenyl}es- ter; sodium salt





 42


embedded image


1-[3-(2,2-Difluoro- benzo[1,3]dioxol-5- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 43


embedded image


Methanesulfonic acid 4-[6-(3-ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-2-methoxy- phenyl ester





 44


embedded image


{4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-2-methoxy- phenyl}-carbamic acid 2-[2-(2-methoxy- ethoxy)-ethoxy]-ethyl ester





 45


embedded image


{3-[6-(3-Ethyl-ureido)- pyrido[2,3-b]-pyrazin- 3-ylamino]-phenyl}- acetic acid





 46


embedded image


1-Ethyl-3-[3-(3- hydroxy-4-methoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 47


embedded image


1-[3-(3-Bromo-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 48


embedded image


1-Ethyl-3-{3-[4- (morpholine-4- carbonyl)- phenylamino]- pyrido[2,3-b]-pyrazin- 6-yl}-urea





 49


embedded image


1-Cyclopropyl-3-[3- (3-isopropoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 50


embedded image


5-[6-(3-Ethyl-ureido)- pyrido[2,3-b]-pyrazin- 3-ylamino]-2-hydroxy- benzoic acid methyl ester





 51


embedded image


1-Ethyl-3-[3-(2- isopropoxy-pyridin-3- yl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 52


embedded image


1-Ethyl-3-[3-(2H- pyrazol-3-yl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 53


embedded image


1-Ethyl-3-[3-(3- methyl-3H-imidazol- 4-yl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 54


embedded image


Acetic acid 4-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-2-methoxy- phenyl ester





 55


embedded image


1-Ethyl-3-[3-(2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 56


embedded image


1-Ethyl-3-[3-(3- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 57


embedded image


1-[3-(2-Benzyloxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 58


embedded image


1-[3-(1-Benzyl-1H- pyrazol-4-yl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 59


embedded image


1-Ethyl-3-[3-(1- isobutyl-1H-pyrazol- 4-yl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 60


embedded image


1-Ethyl-3-{3-[1-(2- morpholin-4-yl-ethyl)- 1H-pyrazol-4-yl]- pyrido[2,3-b]pyrazin- 6-yl}-urea





 61


embedded image


1-Ethyl-3-[3-(1H- pyrrolo[2,3-b]pyridin- 5-yl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 62


embedded image


1-Ethyl-3-[3-(2- isobutoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 63


embedded image


1-Ethyl-3-{3-[3- methoxy-4-(3- morpholin-4-yl- propoxy)-phenyl]- pyrido[2,3-b]pyrazin- 6-yl}-urea





 64


embedded image


1-Ethyl-3-(3- phenylamino-pyrido- [2,3-b]pyrazin-6-yl)- urea





 65


embedded image


1-[3-(3-Isopropoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-(4-morpholin- 4-yl-butyl)-urea





 66


embedded image


2-Acetylamino-N-(3- p-tolylamino-pyrido [2,3-b]pyrazin-6- yl)-acetamide





 67


embedded image


1-[3-(3-Bromo-2- isopropoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 68


embedded image


1-[3-(2,3-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 70


embedded image


1-Ethyl-3-[3-(1H- indol-2-yl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 71


embedded image


1-(3-Dibenzofuran-4- yl-pyrido[2,3- b]pyrazin-6-yl)-3- ethyl-urea





 72


embedded image


1-[3-(2-Amino- pyrimidin-5-yl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 73


embedded image


1-[3-(3- Difluoromethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 74


embedded image


1-{3-[4-(1,1-Dioxo- 1lambda*6*- thiomorpholin-4- ylmethyl)- phenylamino]- pyrido[2,3-b]pyrazin- 6-yl}-3-ethyl-urea





 75


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]- thiourea





 76


embedded image


N-{4-[6-(3-Ethyl- ureido)-pyrido[2,3- b]pyrazin-3-yl]- phenyl}-succinamic acid methyl ester





 77


embedded image


N-{4-[6-(3-Ethyl- ureido)-pyrido[2,3- b]pyrazin-3-yl]-2- methoxy-phenyl}- acetamide





 78


embedded image


1-[3-(4-Amino-3-nitro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 79


embedded image


1-[3-(5-Acetyl-2- fluoro-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 80


embedded image


1-Ethyl-3-[3-(4- methoxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 81


embedded image


1-Ethyl-3-[3-(3,4,5- trifluoro-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 82


embedded image


1-[3-(3,5-Dimethyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 83


embedded image


1-Ethyl-3-[3-(3-fluoro- 4-methyl-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 84


embedded image


1-Ethyl-3-[3-(3-fluoro- biphenyl-4-yl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 85


embedded image


1-Ethyl-3-[3-(4- methyl-3-nitro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 86


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 87


embedded image


4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-2- methoxy-benzoic acid methyl ester





 88


embedded image


1,1′-(3,3′-(4-(2- (dimethyl- amino)ethoxy) phenylazanediyl)bis(pyrido [2,3-b]pyrazine-6,3- diyl))bis(3-ethylurea)





 89


embedded image


1-Ethyl-3-[3-(3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 90


embedded image


1-[3-(3,5-Dichloro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 91


embedded image


1-[3-(5-Chloro-2- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 92


embedded image


1-[3-(2,5-Dichloro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 93


embedded image


1-Ethyl-3-[3-(5-fluoro- 2-methoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





 94


embedded image


1-[3-(3-Bromo-5- methyl-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





 95


embedded image


1-[3-(3,4-Difluoro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 96


embedded image


1-[3-(5-Chloro-2- fluoro-3-methyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





 97


embedded image


1-Ethyl-3-[3-(2- trifluoromethyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 98


embedded image


1-Ethyl-3-[3-(4- methoxy-2-methyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





 99


embedded image


1-[3-(3-Chloro-2- fluoro-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





100


embedded image


1-Ethyl-3-(3-m-tolyl- pyrido[2,3-b]pyrazin- 6-yl)-urea





101


embedded image


1-Ethyl-3-[3-(3-nitro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





102


embedded image


1-[3-(2-Ethoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





103


embedded image


1-Ethyl-3-[3-(2-fluoro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





104


embedded image


1-[3-(2-Chloro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





105


embedded image


1-Ethyl-3-(3-o-tolyl- pyrido[2,3-b]pyrazin- 6-yl)-urea





106


embedded image


1-Ethyl-3-[3-(5-fluoro- 2-methyl-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





107


embedded image


1-[3-(2,3-Dimethyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





108


embedded image


1-[3-(2,3-Dichloro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





109


embedded image


1-[3-(2-Benzyloxy-3- bromo-5-methyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





110


embedded image


1-[3-(3-Bromo-2- methoxy-5-methyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





111


embedded image


1-[3-(3-Chloro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





112


embedded image


1-[3-(2-Ethoxy-4- fluoro-phenyl)-pyrido [2,3-b]pyrazin-6- yl]-3-ethyl-urea





113


embedded image


1-Ethyl-3-[3-(1- methyl-1H-pyrazol-4- yl)-pyrido[2,3- b]pyrazin-6-yl]- thiourea





114


embedded image


1-[3-(3-Cyano- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





115


embedded image


1-Ethyl-3-[3-(3- hydroxymethyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





116


embedded image


1-(3-Biphenyl-3-yl- pyrido[2,3-b]pyrazin- 6-yl)-3-ethyl-urea





117


embedded image


1-Ethyl-3-[3-(3- methylsulfanyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





118


embedded image


1-Ethyl-3-[3-(3- trifluoromethoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





119


embedded image


3-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-benzoic acid ethyl ester





120


embedded image


N-{3-[6-(3-Ethyl- ureido)-pyrido[2,3- b]pyrazin-3-yl]- phenyl}- methanesulfonamide





121


embedded image


1-{3-[3-(3,5- Dimethoxy- benzyloxy)-phenyl]- pyrido[2,3-b]pyrazin- 6-yl}-3-ethyl-urea





122


embedded image


1-[3-(4-Chloro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





123


embedded image


1-(3-Biphenyl-4-yl- pyrido[2,3-b]pyrazin- 6-yl)-3-ethyl-urea





124


embedded image


1-Ethyl-3-(3-p-tolyl- pyrido[2,3-b]pyrazin- 6-yl)-thiourea





125


embedded image


1-Ethyl-3-[3-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]- thiourea





126


embedded image


1-Ethyl-3-(3-p- tolylamino-pyrido[2,3- b]pyrazin-6-yl)- thiourea





127


embedded image


1-Ethyl-3-[3-(3- isopropoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





128


embedded image


1-[3-(4- Diphenylamino- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





129


embedded image


1-Ethyl-3-[3-(3-fluoro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





130


embedded image


1-[3-(3-Ethoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





131


embedded image


1-Ethyl-3-[3-(4-nitro- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





132


embedded image


4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-benzoic acid methyl ester





133


embedded image


1-Ethyl-3-[3-(4- propoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





134


embedded image


1-Ethyl-3-[3-(3,4,5- trimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





135


embedded image


1-Ethyl-3-[3-(2- methylsulfanyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-urea





136


embedded image


1-[3-(3-Cyano- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





137


embedded image


1-[3-(2-Chloro-6- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





138


embedded image


1-[3-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





139


embedded image


1-[3-(3-Chloro-4- hydroxy-5-methoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-thiourea





140


embedded image


1-[3-(4-Amino-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





141


embedded image


1-Ethyl-3-(3- thiophen-3-yl- pyrido[2,3-b]pyrazin- 6-yl)-urea





142


embedded image


1-[3-(3,4-Dimethyl- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





143


embedded image


4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-yl]-2-fluoro-benzoic acid methyl ester





144


embedded image


1-[3-(3- Dimethylamino- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





145


embedded image


1-[3-(2,5-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





146


embedded image


1-[3-(3-Ethoxy-2- fluoro-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





147


embedded image


1-Ethyl-3-[3-(3- hydroxy-4-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





148


embedded image


1-Ethyl-3-(3- phenylamino- pyrido[2,3-b]pyrazin- 6-yl)-thiourea





149


embedded image


1-Ethyl-3-[3-(2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





150


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





151


embedded image


1-Ethyl-3-[3-(3,4,5- trimethyl-phenyl)- pyrido[2,3-b]pyrazin- 6-yl]-urea





152


embedded image


1-Ethyl-3-(3- thiophen-2-yl- pyrido[2,3-b]pyrazin- 6-yl)-urea





153


embedded image


1-Ethyl-3-[3-(2- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





154


embedded image


1-Ethyl-3-[3-(3- hydroxymethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





155


embedded image


1-Ethyl-3-[3-(3- phenoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





156


embedded image


1-Ethyl-3-[3-(3- hydroxy-4-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





157


embedded image


1-[3-(3,5-Dimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





158


embedded image


1-[3-(3-Chloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





159


embedded image


1-[3-(3-Chloro-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





160


embedded image


1-Ethyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





161


embedded image


1-Ethyl-3-[3-(4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





162


embedded image


1-Ethyl-3-[3-(3- methoxy-4-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





163


embedded image


1-Ethyl-3-[3-(3- isopropoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





164


embedded image


1-Ethyl-3-[3-(4- [1,2,4]triazol-1-yl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





165


embedded image


N-{5-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-2-methyl- phenyl}- methanesulfonamide





166


embedded image


1-[3-(3,5-Dichloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





167


embedded image


1-[3-(3-Chloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





168


embedded image


1-Ethyl-3-[3- (naphthalen-2- ylamino)-pyrido[2,3- b]pyrazin-6-yl]- thiourea





169


embedded image


1-[3-(4- Dimethylamino- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





170


embedded image


1-[3-(3-Acetyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





171


embedded image


[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





172


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-methyl-urea





173


embedded image


1-(2-Chloro-ethyl)-3- [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





174


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(2-morpholin- 4-yl-ethyl)-urea





175


embedded image








176


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-pyridin-4-yl- urea





177


embedded image


1-Ethyl-3-[6-(3- isopropoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





178


embedded image


1-Ethyl-3-(6-p-tolyl- pyrido[2,3-b]pyrazin- 3-yl)-urea





179


embedded image


1-[6-(3-Amino- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-urea





180


embedded image


1-[6-(3-Amino-4- methyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





181


embedded image


1-Ethyl-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





182


embedded image


1-Ethyl-3-[6-(4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





183


embedded image


1-[6-(5-Acetyl- thiophen-2-yl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





184


embedded image


1-[6-(5-Acetyl- thiophen-2-yl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





185


embedded image


1-Ethyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





186


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





187


embedded image


1-[6-(3-Chloro-4- hydroxy-5-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-thiourea





188


embedded image


1-Ethyl-3-[6-(3- isopropoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





189


embedded image


1-Ethyl-3-(6-p-tolyl- pyrido[2,3-b]pyrazin- 3-yl)-thiourea





190


embedded image


1-Ethyl-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





191


embedded image


1-Ethyl-3-[6-(3,4,5- trimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





192


embedded image


1-[6-(4-Amino-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





193


embedded image


1-Ethyl-3-[6-(1- methyl-1H-pyrazol-4- yl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





194


embedded image


{3-[3-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 6-ylamino]-phenyl}- acetic acid





195


embedded image


{3-[3-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 6-ylamino]-phenyl}- acetic acid





196


embedded image


1-Ethyl-3-[6-(2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





197


embedded image


1-Ethyl-3-[6-(2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





198


embedded image


1-Ethyl-3-[6-(4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





199


embedded image


1-Ethyl-3-[6-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





200


embedded image


1-Ethyl-3-[6-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





201


embedded image


1-[6-(3-Chloro-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





202


embedded image


1-[6-(3-Chloro-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





203


embedded image


1-Ethyl-3-[6-(4- hydroxy-3-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





204


embedded image


1-Ethyl-3-[6-(3- hydroxy-4-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





205


embedded image


1-Ethyl-3-[6-(3- hydroxy-4-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





206


embedded image


N-{5-[3-(3-Ethyl- ureido)-pyrido[2,3- b]pyrazin-6-ylamino]- 2-methyl-phenyl}- methanesulfonamide





207


embedded image


N-{5-[3-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 6-ylamino]-2-methyl- phenyl}- methanesulfonamide





208


embedded image


1-[6-(3-Chloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





209


embedded image


1-Ethyl-3-[6-(3- methoxy-4-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





210


embedded image


1-Ethyl-3-[6-(3- methoxy-4-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





211


embedded image


1-[6-(3-Amino-5- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





212


embedded image


1-[6-(3-Amino-5- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





213


embedded image


1-Ethyl-3-[6-(quinolin- 3-ylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





214


embedded image


1-Ethyl-3-[6- (naphthalen-2- ylamino)-pyrido[2,3- b]pyrazin-3-yl]-urea





215


embedded image


1-Ethyl-3-[6- (naphthalen-2- ylamino)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





216


embedded image


1-[6-(4-Chloro- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





217


embedded image


1-[6-(4-Chloro- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





218


embedded image


1-Ethyl-3-[6-(4- piperidin-1-ylmethyl- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





219


embedded image


1-Ethyl-3-[6-(4- piperidin-1-ylmethyl- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





220


embedded image


1-Ethyl-3-[6-(3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





221


embedded image


1-Ethyl-3-[6-(3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





222


embedded image


1-[6-(3- Difluoromethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





223


embedded image


1-[6-(3- Difluoromethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





224


embedded image


1-Ethyl-3-(6- phenylamino- pyrido[2,3-b]pyrazin- 3-yl)-thiourea





225


embedded image


1-Ethyl-3-(6- morpholin-4-yl- pyrido[2,3-b]pyrazin- 3-yl)-urea





226


embedded image


1-Ethyl-3-(6- morpholin-4-yl- pyrido[2,3-b]pyrazin- 3-yl)-thiourea





227


embedded image


1-Ethyl-3-[6-(4- methyl-piperazin-1- yl)-pyrido[2,3- b]pyrazin-3-yl]-urea





228


embedded image


1-Ethyl-3-[6-(4- methyl-piperazin-1- yl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





229


embedded image


1-Ethyl-3-[6-(2- methoxy-ethylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





230


embedded image


1-Ethyl-3-[6-(2- methoxy-ethylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





231


embedded image


1-[6- (Cyclopropylmethyl- amino)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-urea





232


embedded image


1-[6- (Cyclopropylmethyl- amino)-pyrido[2,3- b]pyrazin-3-yl]-3- ethyl-thiourea





233


embedded image


1-Ethyl-3-[6-(4- methyl-[1,4]diazepan- 1-yl)-pyrido[2,3- b]pyrazin-3-yl]-urea





234


embedded image


1-Ethyl-3-[6-(4- methyl-[1,4]diazepan- 1-yl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





235


embedded image


1-Ethyl-3-[6-(4- hydroxy-piperidin-1- yl)-pyrido[2,3- b]pyrazin-3-yl]-urea





236


embedded image


1-Ethyl-3-[6-(4- hydroxy-piperidin-1- yl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





237


embedded image


1-Ethyl-3-{6-[4-(4- hydroxy-3-methoxy- phenyl)-piperazin-1- yl]-pyrido[2,3- b]pyrazin-3-yl}-urea





238


embedded image


1-Ethyl-3-{6-[4-(4- hydroxy-3-methoxy- phenyl)-piperazin-1- yl]-pyrido[2,3- b]pyrazin-3-yl}- thiourea





239


embedded image


1-(6-Benzylamino- pyrido[2,3-b]pyrazin- 3-yl)-3-ethyl-urea





240


embedded image


1-(6-Benzylamino- pyrido[2,3-b]pyrazin- 3-yl)-3-ethyl-thiourea





241


embedded image


1-Ethyl-3-[6-(4- methyl-benzylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





242


embedded image


1-Ethyl-3-[6-(4- methyl-benzylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





243


embedded image


1-Ethyl-3-[6-(pyridin- 3-ylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





244


embedded image


1-Ethyl-3-[6-(pyridin- 3-ylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





245


embedded image


1-Ethyl-3-[6-(pyridin- 4-ylamino)- pyrido[2,3-b]pyrazin- 3-yl]-urea





246


embedded image


1-Ethyl-3-[6-(pyridin- 4-ylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





247


embedded image


1-Ethyl-3-(6- phenethylamino- pyrido[2,3-b]pyrazin- 3-yl)-urea





248


embedded image


1-Ethyl-3-(6- phenethylamino- pyrido[2,3-b]pyrazin- 3-yl)-thiourea





249


embedded image


1-Ethyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-urea





250


embedded image


1-Ethyl-3-[7-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-urea





251


embedded image


1-Ethyl-3-[8-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-urea





252


embedded image


1-Ethyl-3-[7-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





253


embedded image


1-Ethyl-3-[8-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





254


embedded image


1-{6-[4-(Cyano- dimethyl-methyl)- phenylamino]- pyrido[2,3-b]pyrazin- 3-yl}-3-ethyl-urea





255


embedded image


1-{6-[4-(Cyano- dimethyl-methyl)- phenylamino]- pyrido[2,3-b]pyrazin- 3-yl}-3-ethyl-thiourea





256


embedded image


1-{6-[4-(1-Cyano- cyclopentyl)- phenylamino]- pyrido[2,3-b]pyrazin- 3-yl}-3-ethyl-urea





257


embedded image


1-{6-[4-(1-Cyano- cyclopentyl)- phenylamino]- pyrido[2,3-b]pyrazin- 3-yl}-3-ethyl-thiourea





258


embedded image


1-[4-(Cyano-dimethyl- methyl)-phenyl]-3-[6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





259


embedded image


1-[4-(Cyano-dimethyl- methyl)-phenyl]-3-[6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





260


embedded image


1-[4-(1-Cyano- cyclopentyl)-phenyl]- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





261


embedded image


1-[4-(1-Cyano- cyclopentyl)-phenyl]- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





262


embedded image


[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-carbamic acid ethyl ester





263


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-propionamidine





264


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-methyl- benzamidine





265


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-furan-2- carboxamidine





266


embedded image


2-(4-Chloro-phenyl)- N-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-acetamidine





267


embedded image


4-Bromo-N-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- benzamidine





268


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-2-phenyl- acetamidine





269


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-methoxy- benzamidine





270


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-benzamidine





271


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-nicotinamidine





272


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]- cyclohexanecarbox- amidine





273


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-methylamino- propionamidine





274


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-quinoline-3- carboxamidine





275


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]- methanesulfonamide





276


embedded image


4-Fluoro-N-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- benzenesulfonamide





277


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-methyl- benzenesulfonamide





278


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-carboxy- benzenesulfonamide





279


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-2,5-dimethoxy- benzenesulfonamide





280


embedded image


C,C,C-Trifluoro-N-[6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]- methanesulfonamide





281


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-methoxy- benzenesulfonamide





282


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]- benzenesulfonamide





283


embedded image


Quinoline-8-sulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





284


embedded image


5-Dimethylamino- naphthalene-1- sulfonic acid[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-amide





285


embedded image


2-Chloro- ethanesulfonic acid[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





286


embedded image


2-Morpholin-4-yl- ethanesulfonic acid[6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





287


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3,4-dimethoxy- benzenesulfonamide





288


embedded image


2-(2,2,2-Trifluoro- acetyl)-1,2,3,4- tetrahydro- isoquinoline-7- sulfonic acid [6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-amide





289


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3,5-bis- trifluoromethyl- benzenesulfonamide





290


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4- trifluoromethoxy- benzenesulfonamide





291


embedded image


Cyclopropanesulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





292


embedded image


Cyclohexanesulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





293


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-methyl- benzenesulfonamide





294


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-C-phenyl- methanesulfonamide





295


embedded image


(E)-2-Phenyl- ethenesulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





296


embedded image


Hexane-1-sulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





297


embedded image


Propane-1-sulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





298


embedded image


Ethanesulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





299


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-isopropyl- benzenesulfonamide





300


embedded image


3-{4-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-ylsulfamoyl]- phenyl}-propionic acid





301


embedded image


C-Cyclopentyl-N-[6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]- methanesulfonamide





302


embedded image


Prop-2-ene-1-sulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





303


embedded image


Pyridine-2-sulfonic acid [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





304


embedded image


N-Ethyl-N′-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- guanidine





305


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-butyramide





306


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-benzamide





307


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-2-phenyl- acetamide





308


embedded image


But-3-enoic acid [6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





309


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenyl- propionamide





310


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-nicotinamide





311


embedded image


Cyclohexanecarbox- ylic acid [6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-amide





312


embedded image


But-3-enoic acid [6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





313


embedded image


Sodium; 2-chloro-4- [3-(3-ethyl-ureido)- pyrido[2,3-b]pyrazin- 6-yl]-6-methoxy- phenolate





314


embedded image


1-Allyl-3-[6-(4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





315


embedded image


Phosphoric acid mono-{4-[3-(3-ethyl- ureido)-pyrido[2,3- b]pyrazin-6-yl]-2- methoxy-phenyl}es- ter





316


embedded image


Carbonic acid 4-[3-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 6-yl]-phenyl ester 2- methoxy-ethyl ester





317


embedded image


1-Ethyl-3-{6-[4-(3- ethyl-ureido)-phenyl]- pyrido[2,3-b]pyrazin- 3-yl}-urea





318


embedded image


N-{5-[3-(3-Ethyl- ureido)-pyrido[2,3- b]pyrazin-6-ylamino]- 2-methyl-phenyl}- methanesulfonamid





319


embedded image


N-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-2-methylamino- acetamide





320


embedded image


1-Ethyl-3-[2-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





321


embedded image


1-Ethyl-3-[2-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





322


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-urea





323


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]- thiourea





324


embedded image


1-Ethyl-3-(2-p- tolylamino-pyrido[2,3- b]pyrazin-3-yl)-urea





325


embedded image


1-Ethyl-3-(3-p- tolylamino-pyrido[2,3- b]pyrazin-2-yl)-urea





326


embedded image


N-[2-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-4-methyl- benzenesulfonamide





327


embedded image


N-[3-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 2-yl]-4-methyl- benzenesulfonamide





328


embedded image


N-Ethyl-N′-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- oxalamide





329


embedded image


1-[3-(3-Chloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





330


embedded image


1-Ethyl-3-[3-(3- phenoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





331


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





332


embedded image


1-Ethyl-3-[3-(2- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





333


embedded image


1-[3-(3-Acetyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





334


embedded image


1-Ethyl-3-[3-(3- hydroxymethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





335


embedded image


1-[3-(4- Dimethylamino- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





336


embedded image


1-[3-(5-tert-Butyl-2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





337


embedded image


1-[3-(5-tert-Butyl-2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





338


embedded image


1-Ethyl-3-[3-(4- hydroxy-biphenyl-3- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-urea





339


embedded image


1-Ethyl-3-[3-(4- hydroxy-biphenyl-3- ylamino)-pyrido[2,3- b]pyrazin-6-yl]- thiourea





340


embedded image


1-Ethyl-3-[3-(2′- hydroxy- [1,1′;3′,1″]terphenyl- 5′-ylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





341


embedded image


1-Ethyl-3-[3-(2′- hydroxy- [1,1′;3′,1″]terphenyl- 5′-ylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





342


embedded image


1-Ethyl-3-[3-(2-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





343


embedded image


1-Ethyl-3-[3-(2-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





344


embedded image


1-[3-(Biphenyl-2- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





345


embedded image


1-[3-(Biphenyl-2- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-thiourea





346


embedded image


1-[3-(2-Acetyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





347


embedded image


1-[3-(2-Acetyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





348


embedded image


1-Ethyl-3-[3-(2- isopropyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





349


embedded image


1-Ethyl-3-[3-(2- isopropyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





350


embedded image


1-Ethyl-3-[3-(2- trifluoromethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





351


embedded image


1-Ethyl-3-[3-(2- trifluoromethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





352


embedded image


1-Ethyl-3-[3-(2- morpholin-4-yl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





353


embedded image


1-Ethyl-3-[3-(2- morpholin-4-yl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





354


embedded image


1-Ethyl-3-[3-(2- ethynyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





355


embedded image


1-Ethyl-3-[3-(2- ethynyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





356


embedded image


1-Ethyl-3-[3-(3-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





357


embedded image


1-Ethyl-3-[3-(3-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





358


embedded image


3-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]- benzamidine





359


embedded image


3-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]- benzamidine





360


embedded image


2-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid methyl ester





361


embedded image


2-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid methyl ester





362


embedded image


4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid ethyl ester





363


embedded image


4-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid ethyl ester





364


embedded image


1-[3-(Biphenyl-4- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-urea





365


embedded image


1-[3-(Biphenyl-4- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-3- ethyl-thiourea





366


embedded image


1-Ethyl-3-[3-(4- trifluoromethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





367


embedded image


1-Ethyl-3-[3-(4- trifluoromethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





368


embedded image


{4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzyl}- phosphonic acid di- ethyl ester





369


embedded image


{4-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzyl}- phosphonic acid di- ethyl ester





370


embedded image


{4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-phenyl}- acetic acid





371


embedded image


{4-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-phenyl}- acetic acid





372


embedded image


1-[3-(2,3-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





373


embedded image


1-[3-(2,3-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





374


embedded image


1-[3-(3- Dimethylamino- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





375


embedded image


1-[3-(3- Dimethylamino- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





376


embedded image


1-Ethyl-3-[3-(2- methyl-3-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





377


embedded image


1-Ethyl-3-[3-(2- methyl-3-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





378


embedded image


1-[3-(2,3-Dimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





379


embedded image


1-[3-(2,3-Dimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





380


embedded image


1-Ethyl-3-[3-(3- hydroxy-2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





381


embedded image


1-Ethyl-3-[3-(3- hydroxy-2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





382


embedded image


2-Chloro-6-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





383


embedded image


2-Chloro-6-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





384


embedded image


1-Ethyl-3-[3-(2-fluoro- 3-trifluoromethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





385


embedded image


1-Ethyl-3-[3-(2-fluoro- 3-trifluoromethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





386


embedded image


1-Ethyl-3-[3-(3- hydroxymethyl-2- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





387


embedded image


1-Ethyl-3-[3-(3- hydroxymethyl-2- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





388


embedded image


1-Ethyl-3-[3-(4- methoxy-2-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





389


embedded image


1-Ethyl-3-[3-(4- methoxy-2-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





390


embedded image


1-[3-(2-Bromo-4- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





391


embedded image


1-[3-(2-Bromo-4- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





392


embedded image


1-[3-(4-Chloro-2- trifluoromethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





393


embedded image


1-[3-(4-Chloro-2- trifluoromethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





394


embedded image


1-Ethyl-3-[3-(4- hydroxy-2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





395


embedded image


1-Ethyl-3-[3-(4- hydroxy-2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





396


embedded image


1-[3-(5-Chloro-2- hydroxymethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





397


embedded image


1-[3-(5-Chloro-2- hydroxymethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





398


embedded image


1-[3-(2,4-Dimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





399


embedded image


1-[3-(2,4-Dimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





400


embedded image


1-Ethyl-3-[3-(2-fluoro- 5-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





401


embedded image


1-Ethyl-3-[3-(2-fluoro- 5-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





402


embedded image


1-[3-(2,5-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





403


embedded image


1-[3-(2,5-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





404


embedded image


4-Chloro-3-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





405


embedded image


4-Chloro-3-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





406


embedded image


1-[3-(5-Chloro-2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





407


embedded image


1-[3-(5-Chloro-2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





408


embedded image


1-[3-(5-tert-Butyl-2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





409


embedded image


1-[3-(5-tert-Butyl-2- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





410


embedded image


1-Ethyl-3-[3-(5-fluoro- 2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





411


embedded image


1-Ethyl-3-[3-(5-fluoro- 2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





412


embedded image


1-[3-(2-Chloro-5- cyano-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





413


embedded image


1-[3-(2-Chloro-5- cyano-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





414


embedded image


1-[3-(5-Chloro-2- phenoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





415


embedded image


1-[3-(5-Chloro-2- phenoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





416


embedded image


4-Chloro-3-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]- benzamide





417


embedded image


4-Chloro-3-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]- benzamide





418


embedded image


1-Ethyl-3-[3-(4- hydroxy-biphenyl-3- ylamino)-pyrido[2,3- b]pyrazin-6-yl]-urea





419


embedded image


1-Ethyl-3-[3-(4- hydroxy-biphenyl-3- ylamino)-pyrido[2,3- b]pyrazin-6-yl]- thiourea





420


embedded image


1-[3-(2-Cyano-5- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





421


embedded image


1-[3-(2-Cyano-5- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





422


embedded image


1-[3-(2-Chloro-5- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





423


embedded image


1-[3-(2-Chloro-5- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





424


embedded image


1-[3-(2-Chloro-6- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





425


embedded image


1-[3-(2-Chloro-6- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





426


embedded image


2-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-3-hydroxy- benzoic acid





427


embedded image


2-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-3-hydroxy- benzoic acid





428


embedded image


1-Ethyl-3-[3-(2- methyl-6-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





429


embedded image


1-Ethyl-3-[3-(2- methyl-6-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





430


embedded image


1-Ethyl-3-[3-(2- hydroxymethyl-6- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





431


embedded image


1-Ethyl-3-[3-(2- hydroxymethyl-6- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





432


embedded image


1-[3-(3,4-Difluoro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





433


embedded image


1-[3-(3,4-Difluoro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





434


embedded image


2-Chloro-5-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





435


embedded image


2-Chloro-5-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





436


embedded image


1-[3-(3-Cyano-4- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





437


embedded image


1-[3-(3-Cyano-4- methyl-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





438


embedded image


2-Chloro-5-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]- benzenesulfonic acid





439


embedded image


2-Chloro-5-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]- benzenesulfonic acid





440


embedded image


1-[3-(3-Chloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





441


embedded image


1-[3-(3-Chloro-4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





442


embedded image


1-[3-(3,5-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





443


embedded image


1-[3-(3,5-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





444


embedded image


2,5-Dichloro-3-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





445


embedded image


2,5-Dichloro-3-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





446


embedded image


1-Ethyl-3-[3-(4- hydroxy-2,5-dimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





447


embedded image


1-Ethyl-3-[3-(4- hydroxy-2,5-dimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





448


embedded image


2-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-4,5- dimethoxy-benzoic acid





449


embedded image


2-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-4,5- dimethoxy-benzoic acid





450


embedded image


1-[3-(2,5-Dichloro-4- nitro-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





451


embedded image


1-[3-(2,5-Dichloro-4- nitro-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





452


embedded image


1-[3-(2,4-Dichloro-5- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





453


embedded image


1-[3-(2,4-Dichloro-5- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





454


embedded image


1-Ethyl-3-[3-(2,4,6- trichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





455


embedded image


1-Ethyl-3-[3-(2,4,6- trichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





456


embedded image


1-Ethyl-3-[3-(2,4,6- trimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





457


embedded image


1-Ethyl-3-[3-(2,4,6- trimethyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





458


embedded image


1-[3-(2-Bromo-4,6- difluoro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





459


embedded image


1-[3-(2-Bromo-4,6- difluoro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





460


embedded image


1-[3-(2-Chloro-6- cyano-4-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





461


embedded image


1-[3-(2-Chloro-6- cyano-4-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





462


embedded image


1-[3-(4-Acetyl-2,6- dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





463


embedded image


1-[3-(4-Acetyl-2,6- dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





464


embedded image


1-Ethyl-3-[3-(3,4,5- trichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





465


embedded image


1-Ethyl-3-[3-(3,4,5- trichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





466


embedded image


1-[3-(4-Acetyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





467


embedded image


1-[3-(4-Acetyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





468


embedded image


1-Ethyl-3-[3-(2- hydroxy-4-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





469


embedded image


1-Ethyl-3-[3-(2- hydroxy-4-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





470


embedded image


1-Ethyl-3-[3-(4- methoxy-2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





471


embedded image


1-Ethyl-3-[3-(4- methoxy-2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





472


embedded image


5-Bromo-2-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid methyl ester





473


embedded image


5-Bromo-2-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid methyl ester





474


embedded image


2-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-5-hydroxy- benzoic acid





475


embedded image


2-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-5-hydroxy- benzoic acid





476


embedded image


1-Ethyl-3-[3-(4- methyl-2-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





477


embedded image


1-Ethyl-3-[3-(4- methyl-2-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





478


embedded image


1-Ethyl-3-[3-(5-fluoro- 2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





479


embedded image


1-Ethyl-3-[3-(5-fluoro- 2-methyl- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





480


embedded image


3-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-4-hydroxy- benzoic acid





481


embedded image


3-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-4-hydroxy- benzoic acid





482


embedded image


1-[3-(2,6-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





483


embedded image


1-[3-(2,6-Dichloro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





484


embedded image


2-Chloro-4-[6-(3- ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





485


embedded image


2-Chloro-4-[6-(3- ethyl-thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-benzoic acid





486


embedded image


4-[6-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-2-hydroxy- benzoic acid





487


embedded image


4-[6-(3-Ethyl- thioureido)- pyrido[2,3-b]pyrazin- 3-ylamino]-2-hydroxy- benzoic acid





488


embedded image


1-Ethyl-3-[3-(4-fluoro- 3-nitro-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





489


embedded image


1-Ethyl-3-[3-(4-fluoro- 3-nitro-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





490


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





491


embedded image


1-Ethyl-3-[3-(4- hydroxy-3-nitro- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





492


embedded image


1-[3-(4,5-Dimethyl-2- nitro-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-urea





493


embedded image


1-[3-(4,5-Dimethyl-2- nitro-phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-ethyl-thiourea





494


embedded image


1-[3-(4-Hydroxy-3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-propyl-urea





495


embedded image


1-[3-(4-Hydroxy-3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-propyl- thiourea





496


embedded image


1-[3-(3-Hydroxy-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-propyl-urea





497


embedded image


1-[3-(3-Hydroxy-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-propyl- thiourea





498


embedded image


1-[3-(4-Hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-propyl-urea





499


embedded image


1-[3-(4-Hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-propyl- thiourea





500


embedded image


1-Propyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





501


embedded image


1-Propyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





502


embedded image


1-Cyclopentyl-3-[3-(4- hydroxy-3-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





503


embedded image


1-Cyclopentyl-3-[3-(4- hydroxy-3-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





504


embedded image


1-Cyclopentyl-3-[3-(3- hydroxy-4-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





505


embedded image


1-Cyclopentyl-3-[3-(3- hydroxy-4-methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





506


embedded image


1-Cyclopentyl-3-[3-(4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





507


embedded image


1-Cyclopentyl-3-[3-(4- hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





508


embedded image


1-Cyclopentyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





509


embedded image


1-Cyclopentyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





510


embedded image


1-[3-(4-Hydroxy-3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-phenyl-urea





511


embedded image


1-[3-(4-Hydroxy-3- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-phenyl- thiourea





512


embedded image


1-[3-(3-Hydroxy-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-phenyl-urea





513


embedded image


1-[3-(3-Hydroxy-4- methoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-phenyl- thiourea





514


embedded image


1-[3-(4-Hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-phenyl-urea





515


embedded image


1-[3-(4-Hydroxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-3-phenyl- thiourea





516


embedded image


1-Phenyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





517


embedded image


1-Phenyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





518


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-propyl- thiourea





519


embedded image


1-Cyclopentyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





520


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenyl- thiourea





521


embedded image


1-Allyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





522


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenethyl- thiourea





523


embedded image


1-Benzyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





524


embedded image


1-Cyclohexyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





525


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-isopropyl- thiourea





526


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-methyl- thiourea





527


embedded image


[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





528


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-pyridin-4-yl- thiourea





529


embedded image


1-(4-Chloro-phenyl)- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





530


embedded image


1-(4-Chloro-phenyl)- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





531


embedded image


1-(3,4-Dichloro- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





532


embedded image


1-(3,4-Dichloro- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





533


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-p-tolyl-urea





534


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-p-tolyl- thiourea





535


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(3-methoxy- phenyl)-urea





536


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(3-methoxy- phenyl)-thiourea





537


embedded image


2-{3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-ureido}-benzoic acid methyl ester





538


embedded image


2-{3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thioureido}- benzoic acid methyl ester





539


embedded image


1-(2-Chloro-phenyl)- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





540


embedded image


1-(2-Chloro-phenyl)- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





541


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4- trifluoromethyl- phenyl)-urea





542


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4- trifluoromethyl- phenyl)-thiourea





543


embedded image


1-(3,5-Dimethyl- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





544


embedded image


1-(3,5-Dimethyl- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





545


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(2,4,6- trichloro-phenyl)-urea





546


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(2,4,6- trichloro-phenyl)- thiourea





547


embedded image


1-(2-Fluoro-5-methyl- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





548


embedded image


1-(2-Fluoro-5-methyl- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





549


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-naphthalen-1- yl-urea





550


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-naphthalen-1- yl-thiourea





551


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-propyl-urea





552


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-isopropyl-urea





553


embedded image


1-tert-Butyl-3-[6-(3,5- dichloro-4-hydroxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





554


embedded image


1-tert-Butyl-3-[6-(3,5- dichloro-4-hydroxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





555


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4- dimethylamino- phenyl)-urea





556


embedded image


1-Cyclooctyl-3-[6-(3,5- dichloro-4-hydroxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





557


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-methyl-urea





558


embedded image


1-Cyclohexyl-3-[6- (3,5-dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





559


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4-fluoro- phenyl)-urea





560


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-thiophen-2-yl- urea





561


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(2-nitro- phenyl)-urea





562


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(3,5-dimethyl- isoxazol-4-yl)-urea





563


embedded image


1-Cyclopentyl-3-[6- (3,5-dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





564


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenethyl-urea





565


embedded image


1-[6-(3,5-Dichloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-[4-(2,5-dioxo- 2,5-dihydro-pyrrol-1- yl)-phenyl]-urea





566


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- methyl-urea





567


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- isopropyl-urea





568


embedded image


1-tert-Butyl-3-[6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





569


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-(4- dimethylamino- phenyl)-urea





570


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- propyl-urea





571


embedded image


1-Cyclohexyl-3-[6- (3,4-dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





572


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-(4- fluoro-phenyl)-urea





573


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-(3,5- dimethyl-isoxazol-4- yl)-urea





574


embedded image


[6-(4-Benzyloxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





575


embedded image


1-Allyl-3-[6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





576


embedded image


1-Cyclopentyl-3-[6- (3,4-dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





577


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- phenethyl-urea





578


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-p- tolyl-urea





579


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-[4- (2,5-dioxo-2,5- dihydro-pyrrol-1-yl)- phenyl]-urea





580


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3- phenyl-urea





581


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-[1- (2,2,2-trifluoro-acetyl)- piperidin-4-yl]-urea





582


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-1,3- diethyl-urea





583


embedded image


1-Ethyl-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





584


embedded image


1-(4-Dimethylamino- phenyl)-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





585


embedded image


1-Cyclohexyl-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





586


embedded image


1-Ethyl-3-[6-(4- methoxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





587


embedded image


1-Allyl-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





588


embedded image


1-[6-(4-Hydroxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenethyl-urea





589


embedded image


1-[6-(4-Hydroxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl-3-[1-(2,2,2- trifluoro-acetyl)- piperidin-4-yl]-urea





590


embedded image


1-(3,5-Dimethyl- isoxazol-4-yl)-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





591


embedded image


1-[6-(4-Hydroxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-methyl-urea





592


embedded image


1-[6-(4-Hydroxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-isopropyl-urea





593


embedded image


1-tert-Butyl-3-[6-(4- hydroxy-3,5-dimethyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





594


embedded image


1-(4-Fluoro-phenyl)-3- [6-(4-hydroxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





595


embedded image


1-[6-(4-Hydroxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-phenyl-urea





596


embedded image


1-[6-(3,5-Di-tert-butyl- 4-hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





597


embedded image


1-Ethyl-3-[6-(4- isopropoxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





598


embedded image


1-[6-(3,5-Dimethyl-4- propoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





599


embedded image


1-[6-(4-Butoxy-3,5- dimethyl-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





600


embedded image


1-(4-Fluoro-phenyl)-3- [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





601


embedded image


4-{3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-ureido}-benzoic acid ethyl ester





602


embedded image


1-(4-Dimethylamino- phenyl)-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





603


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-((1R,2S)-2- phenyl-cyclopropyl)- urea





604


embedded image


1-Cyclooctyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





605


embedded image


1-Adamantan-1-yl-3- [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





606


embedded image


4-{3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-ureido}- piperidine-1- carboxylic acid benzyl ester





607


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(2-morpholin-4- yl-pyridin-4-yl)-urea





608


embedded image


1-Cycloheptyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





609


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-thiophen-2-yl- urea





610


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-[1-(2,2,2- trifluoro-acetyl)- piperidin-3-yl]-urea





611


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-pyridin-3-yl- urea





612


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4-methyl- cyclohexyl)-urea





613


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(1,1,3,3- tetramethyl-butyl)- urea





614


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-thiophen-2-yl- urea





615


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4-piperidin-1- yl-phenyl)-urea





616


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4-nitro- phenyl)-urea





617


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(2-nitro- phenyl)-urea





618


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(3-nitro- phenyl)-urea





619


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(3-pyrrol-1-yl- phenyl)-urea





620


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-[4-(4-methyl- piperazin-1-yl)- phenyl]-urea





621


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(1-methyl-1H- indol-4-yl)-urea





622


embedded image


1-[4-(2,5-Dioxo-2,5- dihydro-pyrrol-1-yl)- phenyl]-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





623


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4-pyrrol-1-yl- phenyl)-urea





624


embedded image


1-(4-Ethoxy-phenyl)- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





625


embedded image


1-(4-Methoxy-phenyl)- 3-[6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





626


embedded image


1-(4-Cyano-phenyl)-3- [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





627


embedded image


1-Hexyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





628


embedded image


1-Cyclododecyl-3-[6- (4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





629


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(3-phenyl- propyl)-urea





630


embedded image


1-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-(4-phenyl- butyl)-urea





631


embedded image


1-Butyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





632


embedded image


1,1-Diethyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





633


embedded image


3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-1,1-diphenyl- urea





634


embedded image


3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-1-methyl-1-(4- trifluoromethyl- phenyl)-urea





635


embedded image


3-[6-(4-Hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-1-(4-isopropyl- phenyl)-1-methyl-urea





636


embedded image


1-(4-Chloro-phenyl)-3- [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-1-methyl-urea





637


embedded image


1-[6-(3-Chloro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





638


embedded image


1-Ethyl-3-[6-(3- hydroxy-4-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





639


embedded image


1-[6-(3-Bromo-2- methoxy-5-methyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-ethyl- urea





640


embedded image


1-Ethyl-3-[6-(3-fluoro- 4-trifluoromethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-urea





641


embedded image


1-[6-(3-Bromo-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





642


embedded image


1-[6-(3-Chloro-4- hydroxy-5-methyl- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-ethyl- urea





643


embedded image


1-[6-(3,5-Di-tert-butyl- 4-hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





644


embedded image


4-[3-(3-Ethyl-ureido)- pyrido[2,3-b]pyrazin- 6-yl]-2-hydroxy- benzoic acid methyl ester





645


embedded image


1-[6-(3,5-Di-bromo-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





646


embedded image


1-[6-(3,5-Di-fluoro-4- hydroxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





647


embedded image


1-Ethyl-3-(6-phenyl- pyrido[2,3-b]pyrazin- 3-yl)-thiourea





648


embedded image


1-[6-(4-Amino-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-thiourea





649


embedded image


1-Ethyl-3-[6-(3- isopropoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





650


embedded image


1-Ethyl-3-[6-(3,4,5- trimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





651


embedded image


1-Ethyl-3-(6-p-tolyl- pyrido[2,3-b]pyrazin- 3-yl)-thiourea





652


embedded image


1-tert-Butyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





653


embedded image


1-Cyclooctyl-3-[6-(4- hydroxy-3-methoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- thiourea





654


embedded image


1-Adamantan-1-yl-3- [6-(4-hydroxy-3- methoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





655


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-3-ethyl- urea





656


embedded image


1-[7-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-3-ethyl- urea





657


embedded image


1-[8-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-2-yl]-3-ethyl- urea





658


embedded image


1-Ethyl-3-[7-(3,4- Dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





659


embedded image


1-Ethyl-3-[8-(3,4- Dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-urea





660


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- benzamide





661


embedded image


Cyclohexanecarbox- ylic acid [6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





662


embedded image


[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- carbamic acid ethyl ester





663


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- propionamide





664


embedded image


[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- carbamic acid phenyl ester





665


embedded image


[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- carbamic acid benzyl ester





666


embedded image


[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- carbamic acid allyl ester





667


embedded image


[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- carbamic acid methyl ester





668


embedded image


[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- carbamic acid cyclopentyl ester





669


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- benzenesulfonamide





670


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-C- phenyl- methanesulfonamide





671


embedded image


Cyclohexanesulfonic acid [6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





672


embedded image


Hexane-1-sulfonic acid [6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





673


embedded image


Prop-2-ene-1-sulfonic acid [6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





674


embedded image


Cyclopropanesulfonic acid [6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-amide





675


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-4- methyl- benzenesulfonamide





676


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- acetamidine





677


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- benzamidine





678


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- cyclohexanecarboxamidine





679


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-2,2- dimethyl- propionamidine





680


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- isobutyramidine





681


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-2- phenyl-acetamidine





682


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-4- hydroxy-benzamidine





683


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- guanidine





684


embedded image


N-Cyclohexyl-N′-[6- (3,4-dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]- guanidine





685


embedded image


N-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-N′- ethyl-guanidine





686


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-ethyl- 1-methyl-urea





687


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-1,3,3- trimethyl-urea





688


embedded image


1-Benzyl-1-[6-(3,4- dimethoxy-phenyl)- pyrido[2,3-b]pyrazin- 3-yl]-3-ethyl-urea





689


embedded image


1-[6-(3,4-Dimethoxy- phenyl)-pyrido[2,3- b]pyrazin-3-yl]-3-ethyl- 1-phenethyl-urea





690


embedded image


1-Cyclohexyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





691


embedded image


1-Cyclooctyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





692


embedded image


1-Methyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





693


embedded image


1-Allyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





694


embedded image


1-tert-Butyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





695


embedded image


1-(3,5-Dimethyl- isoxazol-4-yl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





696


embedded image


1-Cyclohexylmethyl-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





697


embedded image


1-Benzyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





698


embedded image


1-(4-Methyl-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





699


embedded image


1-Phenethyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





700


embedded image


1-(2-Piperidin-1-yl- ethyl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





701


embedded image


1-(4-Fluoro-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





702


embedded image


1-Pentyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





703


embedded image


1-(2-Morpholin-4-yl- ethyl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





704


embedded image


1-(3-Phenyl-propyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





705


embedded image


1-(2-Methoxy-ethyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





706


embedded image


1-Ethyl-3-{3-[methyl- (3,4,5-trimethoxy- phenyl)-amino]- pyrido[2,3-b]pyrazin- 6-yl}-thiourea





707


embedded image


1-Cyclopropyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





708


embedded image


1-Furan-2-ylmethyl-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





709


embedded image


3-{3-[3-(3,4,5- Trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thioureido}- propionic acid ethyl ester





710


embedded image


1-(3-Methoxy-propyl)- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





711


embedded image


1-(1-Phenyl-ethyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





712


embedded image


1-(1,1,3,3- Tetramethyl-butyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





713


embedded image


1-Prop-2-ynyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





714


embedded image


1-(1-Ethyl-propyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





715


embedded image


1-(2-Chloro-ethyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





716


embedded image


1-(2-Bromo-ethyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





717


embedded image


1-Methoxymethyl-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





718


embedded image


1-Cyclopropylmethyl- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





719


embedded image


1-(3-Diethylamino- propyl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





720


embedded image


1-Ethyl-3-[2-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





721


embedded image


1-Ethyl-3-[2-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 7-yl]-thiourea





722


embedded image


1-Ethyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 7-yl]-thiourea





723


embedded image


1-Ethyl-3-[2-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 8-yl]-thiourea





724


embedded image


1-Ethyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 8-yl]-thiourea





725


embedded image


1-Ethyl-3-[2-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 3-yl]-thiourea





726


embedded image


1-Ethyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 2-yl]-thiourea





727


embedded image


1-Ethyl-1-methyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





728


embedded image


3-Ethyl-1-methyl-1-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





729


embedded image


1-Ethyl-1,3-dimethyl- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





730


embedded image


1-Ethyl-1,3-dimethyl- 3-{3-[methyl-(3,4,5- trimethoxy-phenyl)- amino]-pyrido[2,3- b]pyrazin-6-yl}- thiourea





731


embedded image


N-[3-(3,4,5- Trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-propionamide





732


embedded image


N-[3-(3,4,5- Trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-benzamide





733


embedded image


N*6*-Ethyl-N*3*- (3,4,5-trimethoxy- phenyl)-pyrido[2,3- b]pyrazine-3,6- diamine





734


embedded image


N-[3-(3,4,5- Trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]- benzenesulfonamide





735


embedded image


Cyclohexanesulfonic acid [3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-amide





736


embedded image


Propane-1-sulfonic acid [3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-amide





737


embedded image


N-Ethyl-N′-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-guanidine





738


embedded image


1-Phenyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





739


embedded image


1-(4-Fluoro-phenyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





740


embedded image


1-(3-Methyl-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





741


embedded image


1-(3-Methoxy-benzyl)- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





742


embedded image


1-(3-Fluoro-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





743


embedded image


1-(3-Chloro-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





744


embedded image


1-(2-Methyl-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





745


embedded image


1-(2-Fluoro-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





746


embedded image


1-(2-Chloro-benzyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





747


embedded image


1-(2-Methoxy-benzyl)- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





748


embedded image


1-(3,4-Dimethoxy- benzyl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





749


embedded image


1-(2,3-Dimethoxy- benzyl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





750


embedded image


1-Benzo[1,3]dioxol-5- ylmethyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





751


embedded image


1-(3,4-Dichloro- benzyl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





752


embedded image


1-(2-Fluoro-propyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





753


embedded image


1-(3-Fluoro-propyl)-3- [3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





754


embedded image


1-(2-Fluoro- cyclobutyl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





755


embedded image


1-Cyclobutyl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





756


embedded image


1-(2-Fluoro- cyclopentyl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





757


embedded image


1-(2-Fluoro- cyclohexyl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





758


embedded image


1-Piperidin-4-yl-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





759


embedded image


1-(1-Methyl-piperidin- 4-yl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





760


embedded image


1-(3-Fluoro-piperidin- 4-yl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





761


embedded image


1-(3-Fluoro-1-methyl- piperidin-4-yl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





762


embedded image


[3-(3,4,5-Trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





763


embedded image


1-Octyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





764


embedded image


1-Decyl-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





765


embedded image


1-Ethyl-3-{3-[methyl- (3,4,5-trimethoxy- phenyl)-amino]- pyrido[2,3-b]pyrazin- 6-yl}-thiourea





766


embedded image


Namensgebung mit Autonom nicht möglich





767


embedded image


1-(1-Oxy-piperidin-4- yl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





768


embedded image


1-(1-Methyl-1-oxy- piperidin-4-yl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





769


embedded image


1-(3-Fluoro-1-oxy- piperidin-4-yl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





770


embedded image


1-(3-Fluoro-1-methyl- 1-oxy-piperidin-4-yl)- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-thiourea





771


embedded image


1-(1-Oxy-piperidin-4- yl)-3-[3-(3,4,5- trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





772


embedded image


1-(1-Methyl-1-oxy- piperidin-4-yl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





773


embedded image


1-(3-Fluoro-1-oxy- piperidin-4-yl)-3-[3- (3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea





774


embedded image


1-(3-Fluoro-1-methyl- 1-oxy-piperidin-4-yl)- 3-[3-(3,4,5-trimethoxy- phenylamino)- pyrido[2,3-b]pyrazin- 6-yl]-urea










For the avoidance of doubt, if chemical name and chemical structure of the above illustrated compounds do not correspond by mistake, the chemical structure is regarded to unambiguously define the compound.


All the above generically or explicitly disclosed pyrido[2,3-b]pyrazine derivatives, including preferred subsets/embodiments of general formula (I) and Compounds 1 to 774 are hereinafter referred to as compounds of the (present) invention.


The terms indicated for explanation of the above compounds of the invention always, unless indicated otherwise in the description or in the claims, have the following meanings:


The term “unsubstituted” means that the corresponding radical, group or moiety has no substituents.


The term “substituted” means that the corresponding radical, group or moiety has one or more substituents. Where a radical has a plurality of substituents, and a selection of various substituents is specified, the substituents are selected independently of one another and do not need to be identical.


The term “alkyl” for the purposes of this invention refers to acyclic saturated or unsaturated hydrocarbon radicals which may be branched or straight-chain and have 1 to 8 carbon atoms, i.e. C1-8-alkanyls, C2-8-alkenyls and C2-8-alkynyls. Alkenyls have at least one C—C double bond and alkynyls at least one C—C triple bond. Alkynyls may additionally also have at least one C—C double bond. Examples of suitable alkyl radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-pentyl, 2- or 3-methyl-pentyl, n-hexyl, 2-hexyl, isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, n-icosanyl, n-docosanyl, ethylenyl (vinyl), propenyl (—CH2CH═CH2; —CH═CH—CH3, —C(═CH2)—CH3), butenyl, pentenyl, hexenyl, heptenyl, octenyl, octadienyl, octadecenyl, octadec-9-enyl, icosenyl, icos-11-enyl, (Z)-icos-11-enyl, docosnyl, docos-13-enyl, (Z)-docos-13-enyl, ethynyl, propynyl (—CH2—C≡CH, —C≡C—CH3), butynyl, pentynyl, hexynyl, heptynyl, octynyl.


The term “(C9-C30)alkyl” for the purposes of this invention refers to acyclic saturated or unsaturated hydrocarbon radicals which may be branched or straight-chain and have 9 to 30 carbon atoms, i.e. C9-30-alkanyls, C9-30-alkenyls and C9-30-alkynyls. C9-30-Alkenyls have at least one C—C double bond and C9-30-alkynyls at least one C—C triple bond. C9-30-Alkynyls may additionally also have at least one C—C double bond. Examples of suitable (C9-C30)alkyl radicals are tetradecyl, hexadecyl, octadecyl, eicosanyl, cis-13-docosenyl (erucyl), trans-13-docosenyl (brassidyl), cis-15-tetracosenyl (nervonyl) and trans-15-tetracosenyl.


The term “cycloalkyl” for the purposes of this invention refers to saturated and partially unsaturated non-aromatic cyclic hydrocarbon groups/radicals, having 1 to 3 rings, that contain 3 to 20, preferably 3 to 12, most preferably 3 to 8 carbon atoms. The cycloalkyl radical may also be part of a bi- or polycyclic system, where, for example, the cycloalkyl radical is fused to an aryl, heteroaryl or heterocyclyl radical as defined herein by any possible and desired ring member(s). The bonding to the compounds of the general formula (I) can be effected via any possible ring member of the cycloalkyl radical. Examples of suitable cycloalkyl radicals are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclohexenyl, cyclopentenyl and cyclooctadienyl.


The term “heterocyclyl” for the purposes of this invention refers to a mono- or polycyclic system of 3 to 20, preferably 5 or 6 to 14 ring atoms comprising carbon atoms and 1, 2, 3, 4, or 5 heteroatoms, in particular nitrogen, oxygen and/or sulfur which are identical or different. The cyclic system may be saturated, mono- or polyunsaturated but may not be aromatic. In the case of a cyclic system consisting of at least two rings the rings may be fused or spiro- or otherwise connected. Such “heterocyclyl” radicals can be linked via any ring member. The term “heterocyclyl” also includes systems in which the heterocycle is part of a bi- or polycyclic saturated, partially unsaturated and/or aromatic system, such as where the heterocycle is fused to an “aryl”, “cycloalkyl”, “heteroaryl” or “heterocyclyl” group as defined herein via any desired and possible ring member of the heterocycyl radical. The bonding to the compounds of the general formula (I) can be effected via any possible ring member of the heterocycyl radical. Examples of suitable “heterocyclyl” radicals are pyrrolidinyl, thiapyrrolidinyl, piperidinyl, piperazinyl, oxapiperazinyl, oxapiperidinyl, oxadiazolyl, tetrahydrofuryl, imidazolidinyl, thiazolidinyl, tetrahydropyranyl, morpholinyl, tetrahydrothiophenyl, dihydropyranyl.


The term “aryl” for the purposes of this invention refers to aromatic hydrocarbon systems having 3 to 14, preferably 5 to 14, more preferably 6 to 14 carbon atoms. The term “aryl” also includes systems in which the aromatic cycle is part of a bi- or polycyclic saturated, partially unsaturated and/or aromatic system, such as where the aromatic cycle is fused to an “aryl”, “cycloalkyl”, “heteroaryl” or “heterocyclyl” group as defined herein via any desired and possible ring member of the aryl radical. The bonding to the compounds of the general formula (I) can be effected via any possible ring member of the aryl radical. Examples of suitable “aryl” radicals are phenyl, biphenyl, naphthyl and anthracenyl, but likewise indanyl, indenyl, or 1,2,3,4-tetrahydronaphthyl.


The term “heteroaryl” for the purposes of this invention refers to a 3 to 14, preferably 5 to 14, more preferably 5-, 6- or 7-membered cyclic aromatic hydrocarbon radical which comprises at least 1, where appropriate also 2, 3, 4 or 5 heteroatoms, preferably nitrogen, oxygen and/or sulfur, where the heteroatoms are identical or different. The number of nitrogen atoms is preferably 0, 1, 2, or 3, and that of the oxygen and sulfur atoms is independently 0 or 1. The term “heteroaryl” also includes systems in which the aromatic cycle is part of a bi- or polycyclic saturated, partially unsaturated and/or aromatic system, such as where the aromatic cycle is fused to an “aryl”, “cycloalkyl”, “heteroaryl” or “heterocyclyl” group as defined herein via any desired and possible ring member of the heteroaryl radical. The bonding to the compounds of the general formula (I) can be effected via any possible ring member of the heteroaryl radical. Examples of suitable “heteroaryl” are pyrrolyl, thienyl, furyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, isoxazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, indolyl, quinolinyl, isoquinolinyl, imidazolyl, triazolyl, triazinyl, tetrazolyl, phthalazinyl, indazolyl, indolizinyl, quinoxalinyl, quinazolinyl, pteridinyl, carbazolyl, phenazinyl, phenoxazinyl, phenothiazinyl, acridinyl.


For the purposes of the present invention, the terms “alkyl-cycloalkyl”, “cycloalkylalkyl”, “alkyl-heterocyclyl”, “heterocyclylalkyl”, “alkyl-aryl”, “arylalkyl”, “alkyl-heteroaryl” and “heteroarylalkyl” mean that alkyl, cycloalkyl, heterocycl, aryl and heteroaryl are each as defined above, and the cycloalkyl, heterocyclyl, aryl and heteroaryl radical is bonded to the compounds of the general formula (I) via an alkyl radical, preferably C1-C8-alkyl radical, more preferably C1-C4-alkyl radical.


The term “halogen”, “halogen atom” or “halogen substituent” (Hal-) for the purposes of this invention refers to one, where appropriate, a plurality of fluorine (F, fluoro), bromine (Br, bromo), chlorine (Cl, chloro), or iodine (I, iodo) atoms. The designations “dihalogen”, “trihalogen” and “perhalogen” refer respectively to two, three and four substituents, where each substituent can be selected independently from the group consisting of fluorine, chlorine, bromine and iodine. “Halogen” preferably means a fluorine, chlorine or bromine atom.


All stereoisomers of the compounds of the invention are contemplated, either in a mixture or in pure or substantially pure form. The compounds of the invention can have asymmetric centers at any of the carbon atoms. Consequently, they can exist in the form of their racemates, in the form of the pure enantiomers and/or diastereomers or in the form of mixtures of these enantiomers and/or diastereomers. The mixtures may have any desired mixing ratio of the stereoisomers.


Thus, for example, the compounds of the invention which have one or more centers of chirality and which occur as racemates or as diastereomer mixtures can be fractionated by methods known per se into their optical pure isomers, i.e. enantiomers or diastereomers. The separation of the compounds of the invention can take place by column separation on chiral or nonchiral phases or by recrystallization from an optionally optically active solvent or with use of an optically active acid or base or by derivatization with an optically active reagent such as, for example, an optically active alcohol, and subsequent elimination of the radical.


The compounds of the invention may be present in the form of their double bond isomers as “pure” E or Z isomers, or in the form of mixtures of these double bond isomers.


Where possible, the compounds of the invention may be in the form of the tautomers.


It is likewise possible for the compounds of the invention to be in the form of any desired prodrugs such as, for example, esters, carbonates, carbamates, ureas, amides, N-oxides or phosphates, in which cases the actually biologically active form is released only through metabolism. Any compound that can be converted in vivo to provide the bioactive agent (i.e. compounds of the invention) is a prodrug within the scope and spirit of the invention.


Various forms of prodrugs are well known in the art and are described for instance in:

    • (i) Wermuth C G et al., Chapter 31: 671-696, The Practice of Medicinal Chemistry, Academic Press 1996;
    • (ii) Bundgaard H, Design of Prodrugs, Elsevier 1985; and
    • (iii) Bundgaard H, Chapter 5: 131-191, A Textbook of Drug Design and Development, Harwood Academic Publishers 1991.


Said references are incorporated herein by reference.


It is further known that chemical substances are converted in the body into metabolites which may where appropriate likewise elicit the desired biological effect—in some circumstances even in more pronounced form.


Any biologically active compound that was converted in vivo by metabolism from any of the compounds of the invention is a metabolite within the scope and spirit of the invention.


Corresponding prodrugs and metabolites of the compounds of the invention should be considered to be part of the invention.


The compounds of the invention can, if they have a sufficiently basic group such as, for example, a secondary or tertiary amine, be converted with inorganic and organic acids into salts. The pharmaceutically acceptable salts of the compounds of the invention are preferably formed with hydrochloric acid, hydrobromic acid, iodic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, carbonic acid, formic acid, acetic acid, sulfoacetic acid, trifluoroacetic acid, oxalic acid, malonic acid, maleic acid, succinic acid, tartaric acid, racemic acid, malic acid, embonic acid, mandelic acid, fumaric acid, lactic acid, citric acid, taurocholic acid, glutaric acid, stearic acid, glutamic acid or aspartic acid. The salts which are formed are, inter alia, hydrochlorides, chlorided, hydrobromides, bromides, iodides, sulfates, phosphates, methanesulfonates, tosylates, carbonates, bicarbonates, formates, acetates, sulfoacetates, triflates, oxalates, malonates, maleates, succinates, tartrates, malates, embonates, mandelates, fumarates, lactates, citrates, glutarates, stearates, aspartates and glutamates. The stoichiometry of the salts formed from the compounds of the invention may moreover be an integral or non-integral multiple of one.


The compounds of the invention can, if they contain a sufficiently acidic group such as, for example, the carboxy, sulfonic acid, phosphoric acid or a phenolic group, be converted with inorganic and organic bases into their physiologically tolerated salts. Examples of suitable inorganic bases are ammonium, sodium hydroxide, potassium hydroxide, calcium hydroxide, and of organic bases are ethanolamine, diethanolamine, triethanolamine, ethylenediamine, t-butylamine, t-octylamine, dehydroabietylamine, cyclohexylamine, dibenzylethylene-diamine and lysine. The stoichiometry of the salts formed from the compounds of the invention can moreover be an integral or non-integral multiple of one.


It is likewise possible for the compounds of the invention to be in the form of their solvates and, in particular, hydrates which can be obtained for example by crystallization from a solvent or from aqueous solution. It is moreover possible for one, two, three or any number of solvate or water molecules to combine with the compounds of the invention to give solvates and hydrates.


It is known that chemical substances form solids which exist in different order states which are referred to as polymorphic forms or modifications. The various modifications of a polymorphic substance may differ greatly in their physical properties. The compounds of the invention can exist in various polymorphic forms and certain modifications may moreover be metastable. All these polymorphic forms of the compounds are to be regarded as belonging to the invention.


It has now been found in a surprising and advantageous manner that the compounds of the invention can also act, i.e. have a modulating or inhibiting effect, on two or more signal transduction pathways or enzymes of such pathways. It has been found that the compounds of the invention act, i.e. modulate or inhibit, with high selectivity.


Such a simultaneous, for example dual, modulation or inhibition of two or more signal transduction pathways, for example ras-Raf-Mek-Erk signal pathway, PI3K-Akt signal pathway and/or SAPK signal pathway, more specifically Erk1/Erk2 and/or PI3K and/or Jnk and/or p38, is advantageous over the only single modulation or inhibition of one signal transduction pathway, since synergistic therapeutic effects can be brought about, for example enhanced apoptosis and more rapid and efficient tumor regression.


The surprising advantageous effects of the compounds of the invention enable multiple therapeutic approaches to be pursued in the physiological and/or pathophysiological states or conditions which are sensitive to the treatment or modulation of, or are mediated by, two or more signal transduction pathways.


It has also been found in a surprising and advantageous manner that the compounds of the invention can also act, i.e. have modulating or inhibiting action, with high selectivity on the ras-Raf-Mek-Erk signal transduction pathway or enzymes thereof, and that the multiple mechanisms of action and therapeutic approaches detailed above can also find use with this signal pathway or enzymes.


It has also been found in a surprising and advantageous manner that the compounds of the invention can also act, i.e. have modulating or inhibiting action, with high selectivity on the PI3K-Akt signal transduction pathway or enzymes thereof, and that the multiple mechanisms of action and therapeutic approaches detailed above can also find use with this signal pathway or enzymes.


It has also been found in a surprising and advantageous manner that the compounds of the invention can also act, i.e. have modulating or inhibiting action, with high selectivity on the SAPK signal transduction pathway or enzymes thereof, and that the multiple mechanisms of action and therapeutic approaches detailed above can also find use with this signal pathway or enzymes.


It has additionally been found in a surprising and advantageous manner that the compounds of the invention can also act, i.e. have a modulating or inhibiting action, with high selectivity on enzymes such as ATM, ATR, mTOR, DNA-PK and/or hSMG-1, and that the multiple mechanisms of action and therapeutic approaches detailed above can also find use with these enzymes.


According to the invention, the term “modulation” is understood to mean the following: “activation, partial activation, inhibition, partial inhibition”. It is within the technical knowledge of the average person skilled in the art to measure and to determine such an activation, partial activation, inhibition or partial inhibition by means of the customary measurement and determination methods. For example, a partial activation can be measured and determined in relation to a full activation; and likewise a partial inhibition in relation to a full inhibition.


According to the invention, the term “inhibition” is understood to mean the following: “partial or full inhibition”. It is within the technical knowledge of the average person skilled in the art to measure and to determine such a partial or full inhibition by means of the customary measurement and determination methods. For example, partial inhibition can be measured and determined in relation to full inhibition.


The terms “modulation” and “inhibition” relate, in connection with “enzymes” and/or “kinases” in the context of this invention, both to the inactive form (enzymatically inactive) and/or active form (enzymatically active) of the particular enzyme and/or kinase. This means in the context of this invention that a compound of the invention can display its modulating action on the inactive form, active form or both forms of the enzyme and/or kinase.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the present invention or pharmaceutical compositions as described herein for use as a medicament.


In another aspect, the object of the present invention has surprisingly been solved by providing the use of the compounds of the invention or pharmaceutical compositions as described herein for the manufacture of a medicament for the treatment or prophylaxis of the physiological and/or pathological conditions described herein.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for modulating misdirected cellular signal transduction processes, especially for influencing the function of active and inactive receptor tyrosine kinases, and also cytoplasmic tyrosine, serine/threonine and lipid kinases, such as c-Raf, B-Raf, Mek, MAPKs, PDGFRbeta, Flt-3, IGF1R, PI3K, PKB/Akt1, c-Kit, c-Abl, FGFR1 and KDR.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, that are mediated by one or more signal transduction pathways selected from the group consisting of: “ras-Raf-Mek-Erk signal transduction pathway, PI3K-Akt signal transduction pathway and/or SAPK signal transduction pathway”.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals mediated by one or more enzymes selected from the group consisting of: “ATM, ATR, mTOR, DNA-PK, hSMG-1”.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the treatment or prophylaxis is brought about by modification of one or more enzymes selected from the group consisting of: “ATM, ATR, mTOR, DNA-PK, hSMG-1”.


In a preferred embodiment, the compounds of the invention are provided for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions mediated by ras-Raf-Mek-Erk signal transduction pathway and PI3K-Akt signal transduction pathway in mammals, and/or for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the treatment or prophylaxis is brought about by modulation of ras-Raf-Mek-Erk signal transduction pathway and of PI3K-Akt signal transduction pathway.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions mediated by ras-Raf-Mek-Erk signal transduction pathway in mammals.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions mediated by PI3K-Akt signal transduction pathway in mammals.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the treatment or prophylaxis is brought about by modulation of PI3K-Akt signal transduction pathway.


In a preferred embodiment, the compounds of the invention are provided for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions mediated by SAPK signal transduction pathway and PI3K-Akt signal transduction pathway in mammals, and/or for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the treatment or prophylaxis is brought about by modulation of SAPK signal transduction pathway and of PI3K-Akt signal transduction pathway.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions mediated by SAPK signal transduction pathway in mammals.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the treatment or prophylaxis is brought about by modulation of SAPK signal transduction pathway.


In a preferred embodiment, the compounds of the invention are provided for the uses detailed above, where the modulation of ras-Raf-Mek-Erk signal transduction pathway is brought about by modulation of one or more enzymes selected from the group consisting of: “tyrosine kinase, serine/threonine kinase, receptor tyrosine kinase, cytoplasmic tyrosine kinase, cytoplasmic serine/threonine kinase” and preferably selected from the group consisting of “Erk, Erk1, Erk2”.


In a further preferred embodiment, the compounds of the invention are provided for the uses as detailed above, where the modulation of PI3K-Akt signal transduction pathway is brought about by modulation of one or more enzymes selected from the group consisting of “lipid kinases” and preferably selected from the group consisting of: “PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, PI3K-Vps34p”.


In a further preferred embodiment, the compounds of the invention are provided for the uses as detailed above, where the modulation of SAPK signal transduction pathway is brought about by modulation of one or more enzymes selected from the group consisting of: “tyrosine kinase, serine/threonine kinase, receptor tyrosine kinase, cytoplasmatic tyrosine kinase, cytoplasmatic serine/threonine kinase” and preferably selected from the group consisting of: “Jnk, Jnk1, Jnk2, Jnk3, p38, p38alpha, p38beta, p38gamma, p38delta”.


In a further aspect, the object of the invention has surprisingly been solved by providing a process of manufacturing the compounds of the invention.


In a further aspect, the object of the invention has surprisingly been solved by providing the compounds of the invention according to the aspects, preferred embodiments and uses detailed above for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the treatment or prophylaxis is brought about by modulation of two or more enzymes.


In a more preferred embodiment, the compounds of the invention are provided for the uses detailed above, where at least one enzyme in the treatment or prophylaxis brought about by modulation of two or more enzymes is selected from the group consisting of: “Erk, Erk1, Erk2” and at least one enzyme is selected from the group consisting of: “PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, PI3K-Vps34p”.


In a more preferred embodiment, the compounds of the invention are provided for the uses detailed above, where at least one enzyme in the treatment or prophylaxis brought about by modulation of two or more enzymes is selected from the group consisting of: “Jnk, Jnk1, Jnk2, Jnk3, p38, p38alpha, p38beta, p38gamma, p38delta” and at least one enzyme is selected from the group consisting of: “PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, PI3K-Vps34p”.


In a more preferred embodiment, the compounds of the invention are provided for the uses detailed above, where at least one enzyme in the treatment or prophylaxis brought about by modulation of two or more enzymes is selected from the group consisting of: “Erk, Erk1, Erk2” and at least one enzyme is selected from the group consisting of: “ATM, ATR, mTOR, DNA-PK, hSMG-1”.


In a more preferred embodiment, the compounds of the invention are provided for the uses detailed above, where at least one enzyme in the treatment or prophylaxis brought about by modulation of two or more enzymes is selected from the group consisting of: “Jnk, Jnk1, Jnk2, Jnk3, p38, p38alpha, p38beta, p38gamma, p38delta” and at least one enzyme is selected from the group consisting of: “ATM, ATR, mTOR, DNA-PK, hSMG-1”.


In a more preferred embodiment, the compounds of the invention are provided for the uses detailed above, where at least one enzyme in the treatment or prophylaxis brought about by modulation of two or more enzymes is selected from the group consisting of: “PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, PI3K-Vps34p” and at least one enzyme is selected from the group consisting of: “ATM, ATR, mTOR, DNA-PK, hSMG-1”.


In another preferred embodiment, the compounds of the invention are provided for the uses detailed above, where the modulation is an inhibition.


Likewise, corresponding medicaments comprising at least one compound of the invention or at least one pharmaceutical composition as described herein for use in the treatment or prophylaxis of the herein disclosed physiological and/or pathological conditions are also comprised by the present invention.


For the purpose of the present invention, the compounds of the invention may be administered to all known mammals, especially to the human, for treatment and/or prophylaxis.


Preferably, such mammals are selected from the group consisting of “human, domestic animals, cattle, livestock, pets, cow, sheep, pig, goat, horse, pony, donkey, hinny, mule, hare, rabbit, cat, dog, guinea pig, hamster, rat, mouse”. More preferably, such mammals are human.


For the purpose of the present invention, the compounds of the invention may be used for the treatment or prophylaxis of all known physiological and/or pathophysiological conditions.


In a preferred embodiment, the compounds of the invention are provided for the uses detailed above, where the physiological and/or pathophysiological conditions are selected from the group consisting of: “malignant tumors, benign tumors, inflammatory disorders, inflammations, pain, rheumatic disorders, arthritic disorders, HIV infections, neurological or neurodegenerative disorders, rheumatism, arthritis, AIDS, ARC (AIDS related complex), Kaposi's sarcoma, tumors originating in the brain and/or nervous system and/or meninges (refer to WO 99/01764), dementia, Alzheimer's disease, hyperproliferative disorders, psoriasis, endometriosis, scar formation, benign prostate hyperplasia (BPH), disorders of the immune system, autoimmune disorders, immune deficiency disorders, colon tumor, stomach tumor, intestine tumor, lung tumor, pancreas tumor, ovarian tumor, prostate tumor, leukemia, melanoma, liver tumor, kidney tumor, head tumor, throat tumor, glioma, breast tumor, uterine cancer, endometrial cancer, cervical cancer, brain tumor, adenocanthoma, bladder cancer, colorectal tumor, esophageal cancer, gynecological tumor, ovarian tumor, thyroid cancer, lymphoma, chronic leukemia, acute leukemia, restenosis, diabetes, diabetic nephropathy, fibrotic disorders, cystic fibrosis, malignant nephrosclerosis, thrombotic microangiopathy syndrome, organ transplant rejection, glomerulopathies, disorders of the metabolism, solid tumors, rheumatic arthritis, diabetic retinopathy, asthma, allergies, allergic disorders, chronic obstructive pulmonary disorders, inflammatory bowel disorder, fibrosis, atherosclerosis, cardiac disorders, cardiovascular disorders, disorders of the heart muscle, vascular disorders, angiogenetic disorders, kidney disorders, rhinitis, Grave's disease, focal ischemia, heart failure, ischemia, cardiac hypertrophy, kidney failure, cardiac myocyte dysfunction, high blood pressure, vascular constriction, stroke, anaphylactic shock, blood platelet agglutination, skeletal muscular atrophy, obesity, excess weight, glucose homeostasis, congestive heart failure, angina, heart attack, myocardial infarction, hyperglycemia, hypoglycemia, hypertension”.


In a further aspect of the present invention, the object of the invention has surprisingly been solved by providing the compounds of the invention according to the aspects, preferred embodiments and uses detailed above for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the medicament comprises at least one further pharmacologically active substance.


In a further aspect of the present invention, the object of the invention has surprisingly been solved by providing the compounds of the invention according to the aspects, preferred embodiments and uses detailed above for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the medicament is administered before and/or during and/or after the treatment with at least one further pharmacologically active substance.


In a further aspect of the present invention, the object of the invention has surprisingly been solved by providing the compounds of the invention according to the aspects, preferred embodiments and uses detailed above for use in the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, where the medicament is administered before and/or during and/or after the treatment with radiation therapy and/or surgery.


In the context of the present invention, the compounds of the invention may be administered with all known pharmacologically active substances in a combination therapy as detailed.


In a preferred embodiment, the compounds of the invention are provided for the uses detailed above, where the further pharmacologically active substance is selected from the group consisting of: “DNA topoisomerase I and/or II inhibitors, DNA intercalators, alkylating agents, microtubuli destabilizers, hormone and/or growth factor receptor agonists and/or antagonists, antibodies against growth factors and their receptors, kinase inhibitors, antimetabolites”.


In a preferred embodiment, the compounds of the invention are provided for the above uses, where the further pharmacologically active substance is selected from the group consisting of: “asparaginase, bleomycin, carboplatin, carmustine, chlorambucil, cisplatin, colaspase, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin (adriamycin), epirubicin, etoposide, 5-fluorouracil, hexamethylmelamine, hydroxyurea, ifosfamide, irinotecan, leucovorin, lomustine mechlorethamine, 6-mercaptopurine, mesna, methotrexate, mitomycin C, mitoxantrone, prednisolone, prednisone, procarbazine, raloxifen, streptozocin, tamoxifen, thioguanine, topotecan, vinblastine, vincristine, vindesine, aminoglutethimide, L-asparaginase, azathioprine, 5-azacytidine cladribine, busulfan, diethylstilbestrol, 2′,2′-difluorodeoxycytidine, docetaxel, erythrohydroxynonyladenine, ethynylestradiol, 5-fluorodeoxyuridine, 5-fluorodeoxyuridine monophosphate, fludarabine phosphate, fluoxymesterone, flutamide, hydroxyprogesterone caproate, idarubicin, interferon, medroxyprogesterone acetate, megestrol acetate, melphalan, mitotane, paclitaxel, oxaliplatin, pentostatin, N-phosphonoacetyl-L-aspartate (PALA), plicamycin, semustine, teniposide, testosterone propionate, thiotepa, trimethylmelamine, uridine, vinorelbine, epothilone, gemcitabine, taxotere, BCNU, CCNU, DTIC, 5-fluorouarcil, herceptin, avastin, erbitux, sorafenib, gleevec, iressa, tarceva, rapamycin, actinomycin D, sunitinib (sutent)”.


The compounds of the present invention and/or where appropriate additional pharmacologically active substances or pharmaceutical compositions as described herein can be administered in a known manner. The route of administration may thereby be any route which effectively transports the active compound to the appropriate or desired site of action, for example orally or non-orally, in particular topically, transdermally, pulmonary, rectally, intravaginally, nasally or parenteral or by implantation. Oral administration is preferred.


The compounds of the present invention and/or where appropriate additional pharmacologically active substances or pharmaceutical compositions as described herein can be administered as liquid, semisolid and solid medicinal forms. This takes place in the manner suitable in each case in the form of aerosols, powders, dusting powders and epipastics, tablets including coated tablets, emulsions, foams, solutions, suspensions, gels, ointments, pastes, pills, pastilles, capsules or suppositories. They can be administered in a suitable dosage form to the skin, epicutaneously as solution, suspension, emulsion, foam, ointment, paste or plaster; via the oral and lingual mucosa, buccally, lingually or sublingually as tablet, pastille, coated tablet, linctus or gargle; via the gastric and intestinal mucosa, enterally as tablet, coated tablet, capsule, solution, suspension or emulsion; via the rectal mucosa, rectally as suppository, rectal capsule or ointment; via the nasal mucosa, nasally as drops, ointments or spray; via the bronchial and alveolar epithelium, by the pulmonary route or by inhalation as aerosol or inhalant; via the conjunctiva, conjunctivally as eyedrops, eye ointment, eye tablets, lamellae or eye lotion; via the mucosa of the genital organs, intravaginally as vaginal suppositories, ointments and douche, by the intrauterine route as uterine pessary; via the urinary tract, intraurethrally as irrigation, ointment or bougie; into an artery, intraarterially as injection; into a vein, intravenously as injection or infusion; into the skin, intracutaneously as injection or implant; under the skin, subcutaneously as injection or implant; into the muscle, intramuscularly as injection or implant; into the abdominal cavity, intraperitoneally as injection or infusion.


As already explained above, the compounds of the invention can also be combined with other pharmaceutically active substances. It is possible for the purpose of a combination therapy to administer the individual active ingredients simultaneously or separately, in particular either by the same route (for example orally) or by separate routes (for example orally and as injection). They may be present and administered in identical or different amounts in a unit dose. It is also possible to use a particular dosage regimen when this appears appropriate. It is also possible in this way to combine a plurality of the novel compounds according to the invention with one another.


The compounds of the invention and/or where appropriate additional pharmacologically active substances are converted into a form which can be administered and are mixed where appropriate with pharmaceutically acceptable carriers and/or auxiliaries and/or diluents. Suitable excipients and carriers are described for example in Zanowiak P, Ullmann's Encyclopedia of Industrial Chemistry 2005, Pharmaceutical Dosage Forms, 1-33; Spiegel A J et al., Journal of Pharmaceutical Sciences 1963, 52: 917-927; Czetsch-Lindenwald H, Pharm. Ind. 1961, 2: 72-74; Fiedler H P, Lexikon der Hilfsstoffe für Pharmazie, Kosmetik and angrenzende Gebiete 2002, Editio Cantor Verlag, p65-68.


Oral administration can take place for example in solid form as tablet, capsule, gel capsule, coated tablet, granulation or powder, but also in the form of a drinkable solution or emulsion. The compounds of the invention can for oral administration be combined with known and ordinarily used, physiologically acceptable auxiliaries and carriers, such as, for example, gum arabic, talc, starch, sugars such as, for example, mannitol, methylcellulose, lactose, gelatin, surface-active agents, magnesium stearate, cyclodextrins, aqueous or nonaqueous carriers, diluents, dispersants, emulsifiers, lubricants, preservatives and flavorings (e.g. essential oils). The compounds of the invention can also be dispersed in a microparticulate, e.g. nanoparticulate, composition.


Non-oral administration can take place for example by intravenous, subcutaneous, intramuscular injection of sterile aqueous or oily solutions, suspensions or emulsions, by means of implants or by ointments, creams or suppositories. Administration as sustained release form is also possible where appropriate. Implants may comprise inert materials, e.g. biodegradable polymers or synthetic silicones such as, for example, silicone rubber. Intravaginal administration is possible for example by means of vaginal rings. Intrauterine administration is possible for example by means of diaphragms or other suitable intrauterine devices. Transdermal administration is additionally provided, in particular by means of a formulation suitable for this purpose and/or suitable means such as, for example, patches.


The dosage may vary within a wide range depending on type and/or severity of the disease, physiological and/or pathological condition, the mode of administration, the age, gender, bodyweight and sensitivity of the subject to be treated. It is within the ability of a skilled worker to determine a “pharmacologically effective amount” of a compound of the invention and/or additional pharmacologically active substance. Administration can take place in a single dose or a plurality of separate dosages.


A suitable unit dose is, for example, from 0.001 mg to 100 mg of the active ingredient, i.e. at least one compound of the invention and, where appropriate, at least one additional pharmacologically active substance, per kg of a patient's bodyweight.


In another aspect, the present invention relates to a pharmaceutical composition comprising a pharmacologically active amount of at least one compound of the invention, preferably a compound of the invention selected from the group consisting of:

  • compound 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773 and/or compound 774.


In a further aspect, such a pharmaceutical composition additionally comprises at least one pharmaceutically acceptable carrier and/or auxiliary and/or comprises at least one further pharmacologically active substance.


In a preferred embodiment, such further pharmacologically active substance is selected from the group consisting of: “DNA topoisomerase I and/or II inhibitors, DNA intercalators, alkylating agents, microtubuli destabilizers, hormone and/or growth factor receptor agonists and/or antagonists, antibodies against growth factors and their receptors, kinase inhibitors, antimetabolites” and preferably is selected from the group consisting of: “asparaginase, bleomycin, carboplatin, carmustine, chlorambucil, cisplatin, colaspase, cyclophosphamide, cytarabine, dacarbazine, dactinomycin, daunorubicin, doxorubicin (adriamycin), epirubicin, etoposide, 5-fluorouracil, hexamethylmelamine, hydroxyurea, ifosfamide, irinotecan, leucovorin, lomustine mechlorethamine, 6-mercaptopurine, mesna, methotrexate, mitomycin C, mitoxantrone, prednisolone, prednisone, procarbazine, raloxifen, streptozocin, tamoxifen, thioguanine, topotecan, vinblastine, vincristine, vindesine, aminoglutethimide, L-asparaginase, azathioprine, 5-azacytidine cladribine, busulfan, diethylstilbestrol, 2′,2′-difluorodeoxycytidine, docetaxel, erythrohydroxynonyladenine, ethynylestradiol, 5-fluorodeoxyuridine, 5-fluorodeoxyuridine monophosphate, fludarabine phosphate, fluoxymesterone, flutamide, hydroxyprogesterone caproate, idarubicin, interferon, medroxyprogesterone acetate, megestrol acetate, melphalan, mitotane, paclitaxel, oxaliplatin, pentostatin, N-phosphonoacetyl-L-aspartate (PALA), plicamycin, semustine, teniposide, testosterone propionate, thiotepa, trimethylmelamine, uridine, vinorelbine, epothilone, gemcitabine, taxotere, BCNU, CCNU, DTIC, 5-fluorouarcil, herceptin, avastin, erbitux, sorafenib, gleevec, iressa, tarceva, rapamycin, actinomycin D, sunitinib (sutent)”.


Concerning the pharmaceutical compositions of the invention, at least one of the compounds of the invention is present in a pharmacologically effective amount, preferably in a unit dose, e.g. the aforementioned unit dose, specifically and preferably in an administration form which makes oral administration possible. Furthermore, reference may be made to that already said in connection with the possible uses and administrations of the compounds of the invention.


In a further aspect of the present invention, the object of the invention has surprisingly been solved by providing a kit comprising a pharmacologically active amount of at least one compound of the invention as detailed above and/or at least one pharmaceutical composition as detailed above and a pharmacologically active amount of at least one further pharmacologically active substance as defined above.


General Synthesis Methods for the Compounds of the Invention:


The processes for preparing the substituted pyrido[2,3-b]pyrazine compounds of the invention are illustrated below.


The compounds of the invention are obtainable according to the following schemes (schemes 1-12) and corresponding processes known to those skilled in the art:


The definition of the R1 to R18 and X2, X3, X9 and X41 radicals shown in the following schemes corresponds to the substituents defined above in connection with the general formula (I), for example Z radicals, R radicals, X radicals, Y radicals, etc. The individual assignment can be accomplished in a simple manner by the person skilled in the art on the basis of his or her average technical knowledge.




embedded image


Precursors for selected examples of the compounds of the invention in which the substituent R6 is not to be H are, for example, obtainable by the process in scheme 2 or a corresponding process known to those skilled in the art.




embedded image


The precursors 5a, 5b, 6a and 6b from schemes 1 and 2 can be converted to the compounds of the invention, for example, by the process in schemes 3 and 4 or a corresponding process known to those skilled in the art.




embedded image




embedded image



Selected examples of the compounds of the invention in which the substituents R1, R2 and/or R5 may be selected substituted aryl, heteroaryl, alkyl, alkenyl or alkynyl radicals are, for example, obtainable by the process in scheme 5 or corresponding processes known to those skilled in the art.




embedded image


Selected examples of the compounds of the invention in which the substituents R1, R2 and/or R5 may be selected NH2 or NX2X3-substituted radicals are, for example, obtainable by the process in scheme 6 or corresponding processes known to those skilled in the art.




embedded image


Selected examples of the compounds of the invention in which the substituents R1 may be selected O—X9 or S—X41-substituted radicals are, for example, obtainable by the process in scheme 7 or corresponding processes known to those skilled in the art.




embedded image


Precursors for selected examples of the compounds of the invention in which the substituents R3 and R4 are to be substituted by hydrogen are, for example, obtainable by the process in scheme 8 or a corresponding process known to those skilled in the art.




embedded image


The precursors 36a and 36b from scheme 8 can be converted to the compounds of the invention, for example, by the process in schemes 9-12 or a corresponding process known to those skilled in the art.




embedded image




embedded image




embedded image




embedded image


The starting compounds and intermediates are either commercially available or can be prepared by procedures known per se or known to those skilled in the art. The reactants 5-18 and 36-48 are valuable intermediates for the preparation of the compounds of the invention.


For the preparation of the starting compounds, intermediates and the compounds of the invention, reference is made inter alia to the patents WO 2004/104002 and WO 2004/104003, and also, for example, to the following primary literature whose contents are hereby incorporated into the disclosure of the present application:

  • 1) Houben-Weyl, Methoden der Organischen Chemie, volume 4/1a, pp 343-350
  • 2) Houben-Weyl, Methoden der Organischen Chemie, 4th ed., volume E 7b (part 2), p. 579
  • 3) GB 1184848
  • 4) EP 0 735 025
  • 5) D. Catarzi, et al.; J. Med. Chem. 1996, 1330-1336
  • 6) J. K. Seydel, et al.; J. Med. Chem. 1994, 3016-3022
  • 7) Houben-Weyl, Methods of Organic Chemistry, Volume E 9c, pp. 231-235
  • 8) Houben-Weyl/Science of Synthesis, Volume 16, p. 1269
  • 9) C. L. Leese, H. N. Rydon J. Chem. Soc. 1955, 303-309;
  • 10) T. S. Osdene, G. M. Timmis J. Chem. Soc. 1955, 2033-2035
  • 11) W. He, et al. Bioorg. Med. Chem. Lett. 2003, 13, 3097-3100
  • 12) M. S. A. El-Gaby, et al. Indian J. Chem. Sect. B 2001, 40, 195-200
  • 13) M. R. Myers, et al. Bioorg. Med. Chem. Lett. 2003, 13, 3091-3096
  • 14) A. R. Renslo, et al. J. Amer. Chem. Soc. 1999, 121, 7459-7460
  • 15) C. O. Okafor, et al. J. Heterocyclic Chem. 1983, 20, 199-203
  • 16) C. R. Hopkins, et al. Tet. Lett. 2004, 45, 8631-8633
  • 17) J. Yin, et al. Org. Lett. 2002, 4, 3481-3484
  • 18) O. A. El-Sayed, et al. Arch. Pharm. 2002, 335, 403-410
  • 19) C. Temple, et al. J. Med. Chem. 1992, 35, 988-993
  • 20) A. M. Thompson, et al. J. Med. Chem. 2000, 43, 4200-4211
  • 21) N. A. Dales, et al. Org. Lett. 2001, 2313-2316
  • 22) G. Dannhardt, et al. Arch. Pharm. 2000, 267-274
  • 23) G. S. Poindexter, et al. Bioorg. Med. Chem. 2004, 12, 507-521
  • 24) J.-M. Receveur, et al. Bioorg. Med. Chem. Lett. 2004, 14, 5075-5080
  • 25) G. Heinisch, et al. Arch. Pharm. 1997, 207-210
  • 26) K. Matsuno, et al. J. Med. Chem. 2002, 45, 4513-4523
  • 27) A. M. Papini, et al. J. Med. Chem. 2004, 47, 5224-5229
  • 28) J. Mindl, et al. Collect. Czech. Chem. Commun. 1983, 48, 900-905
  • 29) S. Sasaki, et al. J. Med. Chem. 2003, 46, 113-124
  • 30) B.-B. Zeng, et al. Bioorg. Med. Chem. Lett. 2004, 14, 5565-5568
  • 31) Q. Wang, et al. Synthetic Commun. 2004, 34, 255-264
  • 32) W. Mederski, et al. Bioorg. Med. Chem. Lett. 2003, 13, 13715-3718
  • 33) R. J. Brown, et al. Tetrahedron 2004, 60, 4361-4375
  • 34) L. Mao, et al. Synthesis 2004, 15, 2535-2539
  • 35) M. Darabantu, et al. Tetrahedron 2005, 61, 2897-2905
  • 36) E. Ford, et al. Tet. Lett. 2000, 41, 3197-3198
  • 37) T. Shiota, et al. J. Org. Chem. 1999, 64, 453-457
  • 38) E. C. Taylor, et al. Synthetic Commun. 1987, 17, 1865-1868
  • 39) G. A. Molander, et al. J. Org. Chem. 2002, 67, 8424-8429
  • 40) G. Hughes, et al. Org. & Biomolecular Chem. 2004, 2, 3363-3367
  • 41) R. P. Tangallapally, et al. J. Med. Chem. 2004, 47, 5276-5283
  • 42) R. H. Bradburry, et al. J. Med. Chem. 1997, 40, 996-1004
  • 43) X. He, et al. Bioorg. Med. Chem. 2004, 12, 4003-4008
  • 44) A. Gopalsamy, et al. Bioorg. Med. Chem. Lett. 2005, 15, 1591-1594
  • 45) J.-F. Cheng, et al. Bioorg. Med. Chem. Lett. 2004, 14, 2411-2416
  • 46) E. R. Parmee, et al. Bioorg. Med. Chem. Lett. 2004, 14, 43-46
  • 47) G. Yang, et al. Synthetic Commun. 2006, 36, 5611-5619
  • 48) H. B. Woo, et al. Bioorg. Med. Chem. Lett. 2005, 15, 3782-3786
  • 49) J. F. Miravet, et al. Org. Lett. 2005, 7, 4791-4794
  • 50) A. L. Castelhano, et al. Bioorg. Med. Chem. Lett. 2005, 15, 1501-1504
  • 51) Y. Lu, et al. Bioorg. Med. Chem. Lett. 2006, 16, 915-919
  • 52) J. W. Szewczyk, et al. Bioorg. Med. Chem. Lett. 2006, 16, 3055-3060
  • 53) J. Li, et al. Bioorg. Med. Chem. Lett. 2006, 14, 2209-2224
  • 54) J. E. Dowling, et al. Bioorg. Med. Chem. Lett. 2005, 16, 4809-4813.


Under some of the reaction conditions specified, OH, SH and NH2 groups may possibly enter into undesired side reactions. It is therefore preferred to provide them with protecting groups or, in the case of NH2, to replace it with NO2, and then to eliminate the protecting group or to reduce the NO2 group. For instance, in a modification of the above-described processes, at least one OH group in the starting compounds can be replaced, for example, by a benzyloxy group, and/or at least one SH group can be replaced, for example, by an S-benzyl group and/or at least one NH2 group can be replaced, for example, by an NH-benzyl group or by an NO2 group. Subsequently, at least one—preferably all—benzyloxy group(s) or NH-benzyl group(s) can be eliminated, for example, with hydrogen and palladium on carbon, and/or at least one—preferably all—S-benzyl group(s) can be eliminated, for example, with sodium in ammonia, and/or at least one—preferably all—NO2 group(s) can be reduced, for example, with hydrogen and Raney nickel to NH2.


Under some of the reaction conditions mentioned, OH, NH2 and COOH groups may possibly enter into undesired side reactions. It is therefore preferred to convert starting compounds and intermediates which contain at least one OH group and/or at least one NH2 group and/or at least one COOH group to corresponding carboxylic ester and carboxamide derivatives. In a modification of the above-described processes, starting compounds and intermediates which have at least one OH group and/or which have at least one NH2 group can be converted to carboxylic ester or carboxamide derivatives by reaction with an activated carboxylic acid group, for example a carbonyl chloride group. In a modification of the above-described processes, starting compounds and intermediates which contain at least one COOH can be converted to carboxylic ester or carboxamide derivatives by reaction with an activating agent, for example thionyl chloride or carbonyldiimidazole, and subsequent reaction with a suitable alcohol or amine. Subsequently, at least one—preferably all—carboxylic ester or carboxamide group(s) in the starting compounds and intermediates can be detached, for example, with dilute aqueous acids or bases, in order to release one—preferably all—OH group(s) and/or NH2 group(s) and/or COOH group(s).


The compounds of the invention were named using the AutoNom 2000 software (ISIS™/Draw 2.5; MDL).


The contents of all cited references are hereby incorporated by reference in their entirety. The invention is explained in more detail by means of the following examples without, however, being restricted thereto.


EXAMPLES

I) Preparation and Physicochemical Characterization of Selected Compounds of the Invention


The general synthesis methods which are based on the synthesis schemes 1-12 were used to synthesize the following compounds of the invention. In addition, their NMR spectroscopy data and mass spectrometry data and melting points are included, respectively.


The precursors used for the preparation of the compounds of the invention can—unless stated otherwise—be synthesized by processes known to those skilled in the art.


The chemicals and solvents used were obtained commercially from the conventional suppliers (Acros, Aldrich, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, etc.) or synthesized.


Example 1
1-(6-Chloro-pyrido[2,3-b]pyrazin-3-yl)-3-ethyl-urea



embedded image


A total of 5.0 g 6-Chloro-pyrido[2,3-b]pyrazin-3-ylamine (27.7 mmol; 1 eq) was suspended in 150 mL of dry 1,4-dioxane. 2.63 g (33.2 mmol; 1.2 eq) ethyl isocyanate was added and the reaction mixture was stirred at 100° C. for 4 hours. Additional 1.97 g (27.7 mmol; 1 eq) of ethyl isocyanate were added and the resulting solution was stirred at 100° C. for further 4 hours. After cooling to room temperature, the precipitate was filtered of and dried in vacuo to afford 6.5 g (93.3% yield) of 1-(6-Chloro-pyrido[2,3-b]pyrazin-3-yl)-3-ethyl-urea.


m.p.: 240° C.


ESI-MS: found: 252.0 (M+H+); calculated: 251.68 g/mol.


1H-NMR (DMSO-d6) δ=10.38 (s, 1H), 9.00 (s, 1H), 8.42 (m, 2H), 7.69 (d, 1H), 3.30 (m, 2H), 1.15 (t, 3H) ppm.


Example 2
1-(6-Chloro-pyrido[2,3-b]pyrazin-3-yl)-3-ethyl-thiourea



embedded image


A total of 5.0 g 6-Chloro-pyrido[2,3-b]pyrazin-3-ylamine (27.7 mmol; 1 eq) was dissolved in 150 mL of dry DMF. 1.32 g NaH (60% dispersion in mineral oil; 33.2 mmol; 1.2 eq) was added and the dark brown solution was stirred at room temperature for 1 hour. 2.4 g (27.7 mmol; 1 eq) ethyl isothiocyanate was then added and the resulting mixture was stirred at room temperature for 3 h. The reaction mixture was then poured into 500 mL of water. The solution was neutralized with 1 N HCl whereas the product crystallizes. The brown solid was filtered of and recrystallised from dichloromethane/diethyl ether to afford 3.6 g (48.5% yield) of 1-(6-Chloro-pyrido[2,3-b]pyrazin-3-yl)-3-ethyl-thiourea.


m.p.: 215° C.


ESI-MS: found: 268.1 (M+H+); calculated: 267.74 g/mol.


1H-NMR (DMSO-d6) δ=11.55 (s, 1H), 1.40 (s, 1H), 8.88 (s, 1H), 8.44 (d, 1H), 7.75 (d, 1H), 3.75 (m, 2H), 1.30 (t, 3H) ppm.


Example 3
4-(3-Amino-pyrido[2,3-b]pyrazin-6-yl)-2-methoxy-phenol



embedded image


To a suspension of 1.13 g 6-Chloro-pyrido[2,3-b]pyrazin-3-ylamine (5.94 mmol; 1 eq) and 1.67 g 2-Methoxy-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenol (6.55 mmol; 1.1 eq.) in ethylene glycol dimethyl ether (45 mL) under Ar, a solution of 6.29 g sodium carbonate (59.3 mmol; 10 eq.) in water (20 mL) and a suspension of 378 mg FluoroFlash catalyst (0.24 mmol; 0.04 eq.) in undecafluoro(trifluoromethyl)cyclohexane (45 mL) were added. The mixture was heated to 75° C. for 5 hours. Additional 0.76 g (2.97 mmol; 0.5 eq) of 2-Methoxy-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenol were added and the resulting mixture was stirred at 75° C. for 7.5 hours. After cooling to room temperature, the aqueous and organic phase were separated from the fluorous phase and concentrated in vacuo. The residue was dissolved in methanol and methylene dichloride and filtered. The black solution was again concentrated in vacuo. The residue was taken up in water and the resulting solution was neutralized with 1 N HCl whereas the product crystallizes. The brown solid was filtered of, washed with water and dried in vacuo to afford 1.5 g (80.2% yield) of 4-(3-Amino-pyrido[2,3-b]pyrazin-6-yl)-2-methoxy-phenol.


ESI-MS: found: 269.0 (M+H+); calculated: 268.28 g/mol.


1H-NMR (DMSO-d6) δ=9.47 (s, 1H), 8.29 (s, 1H), 8.15 (d, 1H), 7.91 (d, 1H), 7.84 (s, 1H), 7.67 (d, 1H), 7.34 (s, 2H), 6.90 (d, 1H), 3.89 (s, 3H) ppm.


Example 4
Compound 1
1-Ethyl-3-(6-p-tolylamino-pyrido[2,3-b]pyrazin-3-yl)-urea

A total of 100 mg 1-(6-Chloro-pyrido[2,3-b]pyrazin-3-yl)-3-ethyl-urea/example 1 (0.40 mmol; 1 eq) was suspended in 3 ml of n-propanole. To this suspension 51 mg p-toluidine (0.48 mmol; 1.2 eq) was added and the reaction mixture was stirred at 100° C. for 5 hours. After cooling to room temperature, the precipitate formed was filtered and washed with diethyl ether. The brown crystals were dissolved in dichloromethane, washed with 0.5 N HCl and NaHCO3. The solution was dried over MgSO4 and the solvent was removed to afford 74 mg (52.4% yield) of 1-Ethyl-3-(6-p-tolylamino-pyrido[2,3-b]pyrazin-3-yl)-urea (compound 1) as yellow powder.


m.p.: 235° C.


ESI-MS: found: 323.0 (M+H+); calculated: 322.37 g/mol.


1H-NMR (DMSO-d6) δ=9.97 (s, 1H), 9.14 (s, 1H), 8.72 (s, 1H), 8.23 (s, 1H), 8.00 (d, 1H), 7.86 (d, 2H), 7.16 (d, 2H), 7.09 (d, 1H), 3.27 (m, 2H), 1.18 (t, 3H) ppm.


Example 5
Compound 2
1-[6-(4-Amino-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

To a suspension of 100 mg 1-(6-Chloro-pyrido[2,3-b]pyrazin-3-yl)-3-ethyl-urea/example 1 (0.39 mmol; 1 eq) and 108 mg 2-Methoxy-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenylamine (0.43 mmol; 1.1 eq.) in ethylene glycol dimethyl ether (4 mL) under Ar, a solution of 414 mg sodium carbonate (3.9 mmol; 10 eq.) in water (1.5 mL) and a suspension of 12 mg FluoroFlash catalyst (0.01 mmol; 0.02 eq.) in undecafluoro(trifluoromethyl)cyclohexane (4 mL) were added. The mixture was heated to 60° C. for 4 hours. After cooling to room temperature, the aqueous and organic phase were separated from the fluorous phase and concentrated in vacuo. The residue was dissolved in methanol and methylene dichloride and filtered. The black solution was again concentrated in vacuo. The residue was taken up in water and the resulting solution was neutralized with 1 N HCl whereas the product crystallizes. The brown solid was filtered of, washed with water and dried in vacuo to afford 120 mg (86.4% yield) of 1-[6-(4-Amino-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea (compound 2).


m.p.: >310° C.


ESI-MS: found: 339.1 (M+H+); calculated: 338.37 g/mol.


1H-NMR (DMSO-d6) δ=10.15 (s, 1H), 8.88 (s, 1H), 8.55 (s, 1H), 8.26 (d, 1H), 8.13 (d, 1H), 7.78 (s, 1H), 7.71 (d, 1H), 6.75 (s, 1H), 5.38 (d, 2H), 3.91 (s, 3H), 3.27 (m, 2H), 1.18 (t, 3H) ppm.


Example 6
Compound 3
1-[6-(4-Hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-phenyl-urea

In dry 1,4-dioxane (6 mL) was stirred 111.3 mg 4-(3-Amino-pyrido[2,3-b]pyrazin-6-yl)-2-methoxy-phenol/example 3 (0.35 mmol; 1 eq.). The mixture was heated to 70° C. 120 mg (0.99 mmol; 2.8 eq) Phenyl isocyanate was added and the reaction mixture was stirred at 70° C. for 4 hours. Additional 64 mg (0.53 mmol; 1.5 eq) of Phenyl isocyanate were added and the resulting mixture was stirred at 70° C. for 4 hours. After cooling to room temperature, the mixture was concentrated in vacuo and the residue was stirred in ethanol. Diethyl ether was added and the product was collected by filtration.


The solid was washed with ethanol, methylene dichloride and diethyl ether and dried in vacuo to afford 92.5 mg (67.7% yield) of 1-[6-(4-Hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-phenyl-urea (compound 3).


m.p.: 240° C.


ESI-MS: found: 388.3 (M+H+); calculated: 387.40 g/mol.


1H-NMR (DMSO-d6) δ=10.98 (s, 1H), 10.45 (s, 1H), 9.62 (s, 1H), 9.07 (s, 1H), 8.40 (d, 1H), 8.26 (d, 1H), 7.96 (s, 1H), 7.82 (d, 1H), 7.61 (d, 2H), 7.39 (t, 2H), 7.11 (t, 1H), 6.96 (d, 1H), 3.94 (s, 3H) ppm.


The following examples were synthesized according to the Compounds 1-3 and the general schemes 1-12:


Example 7
Compound 4
1-Ethyl-3-(6-phenyl-pyrido[2,3-b]pyrazin-3-yl)-urea

ESI-MS: found: 294.1 (M+H+); calculated: 293.0 g/mol



1H-NMR (DMSO-d6) δ=10.27 (s, 1H); 8.97 (s, 1H); 8.65 (s, 1H); 8.45 (d, 1H); 8.29 (dd, 2H); 8.26 (d, 1H); 7.53-7.60 (m, 3H); 3.32-3.36 (m, 2H); 1.20 (t, 3H) ppm.


Example 8
Compound 5
1-Ethyl-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

ESI-MS: found: 340.2 (M+H+); calculated: 339.0 g/mol



1H-NMR (DMSO-d6) δ=10.21 (s, 1H); 9.58 (s, 1H); 8.94 (s, 1H); 8.55 (s, 1H); 8.35 (d, 1H); 8.20 (dd, 1H); 7.89 (d, 1H); 7.78 (dd, 1H); 6.94 (d, 1H); 3.92 (s, 3H); 3.29-3.35 (m, 2H); 1.19 (t, 3H) ppm.


Example 9
Compound 6
1-[6-(4-Chloro-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

m.p.: 276° C.


ESI-MS: found: 328.2 (M+H+); calculated: 327.0 g/mol.



1H-NMR (DMSO-d6) δ=10.29 (s, 1H); 8.97 (s, 1H); 8.65 (s, 1H); 8.45 (d, 1H); 8.33 (dd, 1H); 8.27 (d, 1H); 7.64 (d, 2H); 3.31-3.35 (m, 2H); 1.19 (t, 3H) ppm.


Example 10
Compound 7
1-Ethyl-3-(6-pyridin-4-yl-pyrido[2,3-b]pyrazin-3-yl)-urea

m.p.: 211° C.


ESI-MS: found: 295.2 (M+H+); calculated: 294.0 g/mol.



1H-NMR (DMSO-d6) δ=10.35 (s, 1H); 9.03 (s, 1H); 8.80 (d, 2H); 8.62 (s, 1H); 8.54 (d, 1H); 8.36 (d, 1H); 8.23 (d, 2H); 3.31-3.36 (m, 2H); 1.20 (t, 3H) ppm.


Example 11
Compound 8
1-[6-(3-Chloro-4-hydroxy-5-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

ESI-MS: found: 374.3 (M+H+); calculated: 373.0 g/mol



1H-NMR (DMSO-d6) δ=10.23 (s, 1H); 10.00 (s, 1H); 8.97 (s, 1H); 8.53 (s, 1H); 8.38 (d, 1H); 8.28 (d, 1H); 7.94 (d, 1H); 7.87 (d, 1H); 3.98 (s, 3H); 3.31-3.35 (m, 2H); 1.19 (t, 3H) ppm.


Example 12
Compound 9
1-[6-(3,5-Dichloro-4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

m.p.: >300° C.


ESI-MS: found: 378.4 (M+H+); calculated: 377.0 g/mol.



1H-NMR (DMSO-d6) δ=10.00 (s, 1H); 8.71 (s, 1H); 8.66 (s, 1H); 8.05 (d, 1H); 8.00 (s, 2H); 7.92 (d, 1H); 3.31-3.35 (m, 2H); 1.18 (t, 3H) ppm.


Example 13
Compound 10
1-Ethyl-3-[6-(1-methyl-1H-pyrazol-4-yl)-pyrido[2,3-b]pyrazin-3-yl]urea

m.p.: 211° C.


ESI-MS: found: 298.2 (M+H+); calculated: 297.0 g/mol.



1H-NMR (DMSO-d6) δ=10.17 (s, 1H); 8.85 (s, 1H); 8.65 (s, 1H); 8.51 (s, 1H); 8.29 (d, 1H); 8.19 (s, 1H); 7.91 (d, 1H); 3.94 (s, 3H); 3.31-3.35 (m, 2H); 1.19 (t, 3H) ppm.


Example 14
Compound 11
1-Ethyl-3-[6-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 244° C.


ESI-MS: found: 323.9 (M+H+); calculated: 323.0 g/mol.



1H-NMR (DMSO-d6) δ=10.22 (s, 1H); 8.92 (s, 1H); 8.65 (s, 1H); 8.38 (d, 1H); 8.27 (d, 2H); 8.20 (d, 1H); 7.12 (d, 2H); 3.86 (s, 3H); 3.31-3.36 (m, 2H); 1.19 (t, 3H) ppm.


Example 15
Compound 12
1-Ethyl-3-[6-(3-isopropoxy-phenylamino)-pyrido[2,3-b]pyrazin-3-yl]-urea

ESI-MS: found: 367.0 (M+H+); calculated: 366.0 g/mol



1H-NMR (DMSO-d6) δ=10.02 (s, 1H); 9.77 (s, 1H); 8.67 (s, 1H); 8.47 (s, 1H); 8.03 (d, 1H); 7.97 (s, 1H); 7.20-7.22 (m, 2H); 7.11 (d, 1H); 6.57-6.60 (m, 1H); 4.57-4.63 (m, 1H); 3.26-3.31 (m, 2H); 1.30 (d, 6H); 1.19 (t, 3H) ppm.


Example 16
Compound 13
1-Ethyl-3-(6-phenylamino-pyrido[2,3-b]pyrazin-3-yl)-urea

m.p.: 202° C.


ESI-MS: found: 309.1 (M+H+); calculated: 308.0 g/mol



1H-NMR (DMSO-d6) δ=10.00 (s, 1H); 9.81 (s, 1H); 8.74 (s, 1H); 8.22 (s, 1H); 8.03 (d, 1H); 7.98 (d, 2H); 7.35 (dd, 2H); 7.13 (d, 1H); 7.02 (dd, 1H); 3.24-3.30 (m, 2H); 1.18 (t, 3H) ppm.


Example 17
Compound 14
1-Phenyl-3-(6-phenylamino-pyrido[2,3-b]pyrazin-3-yl)-urea

m.p.: 251° C.


ESI-MS: found: 357.3 (M+H+); calculated: 356.0 g/mol.



1H-NMR (DMSO-d6) δ=11.13 (s, 1H); 10.31 (s, 1H); 9.90 (s, 1H); 8.75 (s, 1H); 8.08 (d, 1H); 8.06 (d, 2); 7.59 (d, 2H); 7.37-7.42 (m, 4H); 7.18 (d, 1H); 7.09 (dd, 1H); 7.06 (dd, 1H) ppm.


Example 18
Compound 15
1-[6-(3,5-Dichloro-4-hydroxy-phenylamino)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

m.p.: 272° C.


ESI-MS: found: 393.3 (M+H+); calculated: 392.0 g/mol.



1H-NMR (DMSO-d6) δ=10.06 (s, 1H); 9.85 (s, 1H); 9.72 (s, 1H); 8.69 (s, 1 H); 8.42 (s, 1H); 8.09 (s, 2H); 8.04 (d, 1H); 7.04 (d, 1H); 3.25-3.30 (m, 2H); 1.22 (t, 3H) ppm.


Example 19
Compound 16
1-[6-(4-Hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-propyl-urea

m.p.: 220-222° C.


ESI-MS: found: 354.1 (M+H+); calculated: 353.38 g/mol



1H-NMR (DMSO-d6) δ=10.25 (s, 1H), 9.59 (s, 1H), 8.90 (bs, 1H), 8.87 (s, 1H), 8.34 (d, 1H), 8.20 (d, 1H), 7.92 (s, 1H), 7.77 (d, 1H), 6.94 (d, 1H), 3.91 (s, 3H), 3.27-3.33 (m, 2H), 1.60 (m, 2H), 1.04 (t, 3H) ppm.


Example 20
Compound 17
1-Cyclohexyl-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 232-235° C.


ESI-MS: found: 394.2 (M+H+); calculated: 393.44 g/mol.



1H-NMR (DMSO-d6) δ=10.19 (s, 1H), 9.60 (s, 1H), 9.10 (bs, 1H), 8.85 (s, 1H), 8.34 (d, 1H), 8.21 (d, 1H), 7.94 (s, 1H), 7.77 (d, 1H), 6.94 (d, 1H), 3.91 (s, 3H), 3.78 (m, 1H), 1.75-1.85 (m, 4H), 1.40-1.54 (m, 6H) ppm.


Example 21
Compound 18
1-Allyl-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 211-213° C.


ESI-MS: found: 352.0 (M+H+); calculated: 351.36 g/mol.



1H-NMR (DMSO-d6) δ=10.33 (s, 1H), 9.59 (s, 1H), 8.94 (bs, 1H), 8.90 (bs, 1H), 8.35 (d, 1H), 8.21 (d, 1H), 7.89 (s, 1H), 7.77 (d, 1H), 6.94 (d, 1H), 6.00 (m, 1H), 5.38 (d, 1H), 5.19 (d, 1H), 3.97 (t, 2H), 3.91 (s, 3H) ppm.


Example 22
Compound 19
1-[6-(4-Hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-isopropyl-urea

m.p.: 212-214° C.


ESI-MS: found: 354.0 (M+H+); calculated: 353.38 g/mol.



1H-NMR (DMSO-d6) δ=10.10 (s, 1H), 9.59 (s, 1H), 8.94 (s, 1H), 8.58 (bs, 1H), 8.34 (d, 1H), 8.21 (d, 1H), 7.92 (s, 1H), 7.77 (d, 1H), 6.94 (d, 1H), 3.92 (m, 1H), 3.91 (s, 3H), 1.24 (d, 6H) ppm.


Example 23
Compound 20
1-Cyclopentyl-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 222-225° C.


ESI-MS: found: 380.1 (M+H+); calculated: 379.42 g/mol.



1H-NMR (DMSO-d6) δ=10.15 (s, 1H), 9.60 (s, 1H), 9.09 (bs, 1H), 8.85 (s, 1H), 8.34 (d, 1H), 8.20 (d, 1H), 7.96 (s, 1H), 7.77 (d, 1H), 6.94 (d, 1H), 4.15 (m, 1H), 3.91 (s, 3H), 1.92 (m, 2H), 1.81 (m, 2H), 1.66 (m, 2H), 1.57 (m, 2H) ppm.


Example 24
Compound 21
1-Ethyl-3-[6-(4-hydroxy-3-methoxy-phenylamino)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 255° C.


ESI-MS: found: 355.0 (M+H+); calculated: 354.37 g/mol.



1H-NMR (DMSO-d6) δ=9.94 (bs, 1H), 9.59 (s, 1H), 8.68 (bs, 2H), 8.55 (s, 1H), 7.95 (d, 1H), 7.83 (s, 1H), 7.19 (d, 1H), 7.04 (d, 1H), 6.75 (d, 1H), 3.82 (s, 3H), 3.27 (m, 2H), 1.15 (t, 3H) ppm.


Example 25
Compound 22
1-[6-(3,4-Dimethoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

m.p.: >235° C.


ESI-MS: found: 354.1 (M+H+); calculated: 353.38 g/mol.



1H-NMR (DMSO-d6) δ=10.23 (s, 1H), 8.98 (s, 1H), 8.53 (bs, 1H), 8.38 (d, 1H), 8.25 (d, 1H), 7.90 (s, 1H), 7.88 (d, 1H), 7.14 (d, 1H), 3.91 (s, 3H), 3.86 (s, 3H), 3.32 (m, 2H), 1.19 (t, 3H) ppm.


Example 26
Compound 23
1-Ethyl-3-[6-(3,4,5-trimethoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: >230° C.


ESI-MS: found: 384.1 (M+H+); calculated: 383.41 g/mol.



1H-NMR (DMSO-d6) δ=10.25 (s, 1H), 9.03 (s, 1H), 8.44 (bs, 1H), 8.42 (d, 1H), 8.32 (d, 1H), 7.60 (s, 2H), 3.93 (s, 6H), 3.76 (s, 3H), 3.32 (m, 2H), 1.19 (t, 3H) ppm.


Example 27
Compound 24
1-Ethyl-3-[6-(4-hydroxy-phenylamino)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 277° C.


ESI-MS: found: 325.1 (M+H+); calculated: 324.34 g/mol.



1H-NMR (DMSO-d6) δ=9.92 (s, 1H), 9.59 (s, 1H), 9.16 (bs, 1H), 8.65 (s, 1H), 8.34 (bs, 1H), 7.94 (d, 1H), 7.70 (d, 2H), 7.04 (d, 1H), 6.76 (d, 2H), 3.26 (m, 2H), 1.16 (t, 3H) ppm.


Example 28
Compound 25
1-Ethyl-3-(6-p-tolylamino-pyrido[2,3-b]pyrazin-3-yl)-thiourea

m.p.: 195° C.


ESI-MS: found: 339.0 (M+H+); calculated: 338.44 g/mol.



1H-NMR (DMSO-d6) δ=11.97 (t, 1H), 11.14 (s, 1H), 9.81 (s, 1H), 8.48 (s, 1H), 8.02 (d, 1H), 7.87 (d, 2H), 7.13-7.15 (d, 3H), 3.67 (m, 2H), 2.29 (s, 3H), 1.36 (t, 3H) ppm.


Example 29
Compound 26
1-[6-(4-Hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-phenethyl-urea

m.p.: 235-237° C.


ESI-MS: found: 416.2 (M+H+); calculated: 415.46 g/mol.


1H-NMR (DMSO-d6) δ=10.26 (s, 1H), 9.59 (s, 1H), 8.89 (s, 1H), 8.74 (s, 1H), 8.35 (d, 1H), 8.22 (d, 1H), 7.93 (s, 1H), 7.80 (d, 1H), 7.44 (d, 2H), 7.27 (t, 2H), 7.18 (t, 1H), 6.95 (d, 1H), 3.88 (s, 3H), 3.53 (m, 2H), 2.92 (t, 2H) ppm.


Example 30
Compound 27
1-(3,5-Dimethyl-isoxazol-4-yl)-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 249-252° C.


ESI-MS: found: 407.2 (M+H+); calculated: 406.40 g/mol.


1H-NMR (DMSO-d6) δ=10.64 (s, 1H), 10.10 (s, 1H), 9.61 (s, 1H), 9.01 (s, 1H), 8.40 (d, 1H), 8.26 (d, 1H), 7.90 (s, 1H), 7.79 (d, 1H), 6.94 (d, 1H), 3.91 (s, 3H), 2.40 (s, 3H), 2.25 (s, 3H) ppm.


Example 31
Compound 28
1-tert-Butyl-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 219-222° C.


ESI-MS: found: 368.1 (M+H+); calculated: 367.41 g/mol.


1H-NMR (DMSO-d6) δ=10.01 (s, 1H), 9.58 (s, 1H), 8.96 (s, 1H), 8.86 (s, 1H), 8.33 (d, 1H), 8.20 (d, 1H), 7.94 (s, 1H), 7.77 (d, 1H), 6.93 (d, 1H), 3.90 (s, 3H), 1.43 (s, 9H) ppm.


Example 32
Compound 29
1-Benzyl-3-[6-(4-hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 229-231° C.


ESI-MS: found: 402.2 (M+H+); calculated: 401.43 g/mol.


1H-NMR (DMSO-d6) δ=10.36 (s, 1H), 9.58 (s, 1H), 9.11 (s, 1H), 8.94 (s, 1H), 8.35 (d, 1H), 8.20 (d, 1H), 7.85 (s, 1H), 7.75 (d, 1H), 7.43 (d, 2H), 7.38 (t, 2H), 7.29 (t, 1H), 6.93 (d, 1H), 4.54 (d, 2H), 3.88 (s, 3H) ppm.


Example 33
Compound 30
1-[6-(4-Hydroxy-3-methoxy-phenyl)-pyrido[2,3-b]pyrazin-3-yl]-3-[1-(2,2,2-trifluoro-acetyl)-piperidin-4-yl]-urea

m.p.: 236-239° C.


ESI-MS: found: 491.2 (M+H+); calculated: 490.45 g/mol.


1H-NMR (DMSO-d6) δ=10.29 (s, 1H), 9.60 (s, 1H), 9.19 (s, 1H), 8.89 (s, 1H), 8.35 (d, 1H), 8.22 (d, 1H), 7.92 (s, 1H), 7.76 (d, 1H), 6.92 (d, 1H), 4.04 (m, 2H), 3.88 (s, 3H), 3.83 (m, 1H), 3.57 (m, 1H), 3.48 (m, 1H), 2.06 (m, 2H), 1.63 (m, 2H) ppm.


Example 34
Compound 31
1-[6-(3-Chloro-4-hydroxy-phenylamino)-pyrido[2,3-b]pyrazin-3-yl]-3-ethyl-urea

m.p: 277-280° C.


ESI-MS: found: 359.1 (M+H+); calculated: 358.79 g/mol.


1H-NMR (DMSO-d6) δ=10.00 (s, 1H), 9.78 (s, 1H), 9.71 (s, 1H), 8.65 (s, 1H), 8.46 (s, 1H), 7.99 (d, 1H), 7.35 (m, 1H), 7.05 (d, 1H), 6.94 (d, 1H), 3.26 (m, 2H), 1.20 (m, 3H) ppm.


Example 35
Compound 32
1-Ethyl-3-[6-(quinolin-3-ylamino)-pyrido[2,3-b]pyrazin-3-yl]-urea

m.p.: 265-270° C.


ESI-MS: found: 360.4 (M+H+); calculated: 359.39 g/mol.


1H-NMR (DMSO-d6) δ=10.31 (s, 1H), 10.09 (s, 1H), 9.34 (d, 1H), 9.05 (d, 1H), 8.75 (s, 1H), 8.52 (s, 1H), 8.14 (d, 1H), 7.96 (d, 1H), 7.84 (d, 1H), 7.60 (m, 2H), 7.25 (d, 1H), 3.33 (m, 2H), 1.26 (m, 3H) ppm.


Example 36
Compound 33

ESI-MS: found: 760.5 (M+H+); calculated: 759.79 g/mol.


Example 37
Compound 34

m.p.: 182-184° C.


ESI-MS: found: 476.3 (M+H+); calculated: 475.44 g/mol.


Example 38
Compound 35

m.p.: 245-247° C.


ESI-MS: found: 365.2 (M+H+); calculated: 364.41 g/mol.


Example 39
Compound 36

m.p.: 177° C.


ESI-MS: found: 338.3 (M+H+); calculated: 337.38 g/mol.


Example 40
Compound 37

m.p.: 247-249° C.


ESI-MS: found: 452.2 (M+H+); calculated: 451.89 g/mol.


Example 41
Compound 38

ESI-MS: found: 368.2 (M+H+); calculated: 367.41 g/mol.


Example 42
Compound 39

ESI-MS: found: 402.2 (M+H+); calculated: 401.85 g/mol.


Example 43
Compound 40

m.p.: >240° C.


ESI-MS: found: 441.4 (M+H+); calculated: 440.46 g/mol.


Example 44
Compound 41

m.p.: >350° C.


ESI-MS: found: 420.3 (M+H+); calculated: 463.30 g/mol.


Example 45
Compound 42

m.p.: 238-241° C.


ESI-MS: found: 389.3 (M+H+); calculated: 388.33 g/mol.


Example 46
Compound 43

m.p.: 246-249° C.


ESI-MS: found: 418.2 (M+H+); calculated: 417.44 g/mol.


Example 47
Compound 44

m.p.: >330° C.


ESI-MS: found: 529.3 (M+H+); calculated: 528.56 g/mol.


Example 48
Compound 45

ESI-MS: found: 367.2 (M+H+); calculated: 366.38 g/mol.


Example 49
Compound 46

m.p.: >270° C.


ESI-MS: found: 340.3 (M+H+); calculated: 339.35 g/mol.


Example 50
Compound 47

m.p.: 337-339° C.


ESI-MS: found: 390.2, 388.3 (M+H+); calculated: 388.22 g/mol.


Example 51
Compound 48

m.p.: 276-279° C.


ESI-MS: found: 422.3 (M+H+); calculated: 421.46 g/mol.


Example 52
Compound 49

m.p.: 134° C.


ESI-MS: found: 379.4 (M+H+); calculated: 378.43 g/mol.


Example 53
Compound 50

m.p.: 195-200° C.


ESI-MS: found: 383.2 (M+H+); calculated: 382.38 g/mol.


Example 54
Compound 51

m.p.: 231-232° C.


ESI-MS: found: 353.1 (M+H+); calculated: 352.40 g/mol.


Example 55
Compound 52

m.p.: 218-220° C.


ESI-MS: found: 284.1 (M+H+); calculated: 283.29 g/mol.


Example 56
Compound 53

m.p.: 257-259° C.


ESI-MS: found: 298.3 (M+H+); calculated: 297.32 g/mol.


Example 57
Compound 54

m.p.: 227-229° C.


ESI-MS: found: 382.1 (M+H+); calculated: 381.39 g/mol.


Example 58
Compound 55

m.p.: 243-246° C.


ESI-MS: found: 325.2 (M+H+); calculated: 324.34 g/mol.


Example 59
Compound 56

m.p.: 270-273° C.


ESI-MS: found: 325.3 (M+H+); calculated: 324.34 g/mol.


Example 60
Compound 57

m.p.: 181-183° C.


ESI-MS: found: 400.3 (M+H+); calculated: 399.45 g/mol.


Example 61
Compound 58

m.p.: 258-261° C.


ESI-MS: found: 374.2 (M+H+); calculated: 373.42 g/mol.


Example 62
Compound 59

m.p.: 189-191° C.


ESI-MS: found: 340.3 (M+H+); calculated: 339.40 g/mol.


Example 63
Compound 60

m.p.: 223-226° C.


ESI-MS: found: 397.3 (M+H+); calculated: 396.45 g/mol.


Example 64
Compound 61

m.p.: 270-274° C.


ESI-MS: found: 334.2 (M+H+); calculated: 333.35 g/mol.


Example 65
Compound 62

m.p.: 179-181° C.


ESI-MS: found: 366.2 (M+H+); calculated: 365.43 g/mol.


Example 66
Compound 63

m.p.: 225-227° C.


ESI-MS: found: 467.3 (M+H+); calculated: 466.54 g/μmol.


Example 67
Compound 64

m.p.: 229-231° C.


ESI-MS: found: 309.2 (M+H+); calculated: 308.34 g/mol.


Example 68
Compound 65

ESI-MS: found: 480.3 (M+H+); calculated: 479.58 g/mol.


Example 69
Compound 66

m.p.: 276-279° C.


ESI-MS: found: 351.2 (M+H+); calculated: 350.38 g/mol.


Example 70
Compound 67

m.p.: 200-202° C.


ESI-MS: found: 432.0 (M+H+); calculated: 430.30 g/mol.


Example 71
Compound 68

m.p.: 182-185° C.


ESI-MS: found: 354.1 (M+H+); calculated: 353.38 g/mol.


Example 73
Compound 70

m.p.: >300° C.


ESI-MS: found: 333.2 (M+H+); calculated: 332.37 g/mol.


Example 74
Compound 71

m.p.: >300° C.


ESI-MS: found: 384.2 (M+H+); calculated: 383.41 g/mol.


Example 75
Compound 72

m.p.: >300° C.


ESI-MS: found: 311.0 (M+H+); calculated: 310.32 g/mol.


Example 76
Compound 73

ESI-MS: found: 375.2 (M+H+); calculated: 374.35 g/mol.


Example 77
Compound 74

ESI-MS: found: 456.2 (M+H+); calculated: 455.54 g/mol.


Example 78
Compound 75

ESI-MS: found: 356.2 (M+H+); calculated: 355.42 g/mol.


Example 79
Compound 76

m.p.: 253° C.


ESI-MS: found: 423.2 (M+H+); calculated: 422.44 g/mol.


Example 80
Compound 77

m.p.: >300° C.


ESI-MS: found: 381.2 (M+H+); calculated: 380.41 g/mol.


Example 81
Compound 78

m.p.: >350° C.


ESI-MS: found: 354.2 (M+H+); calculated: 353.34 g/mol.


Example 82
Compound 79

m.p.: 238.1-241.8° C.


ESI-MS: found: 354.2 (M+H+); calculated: 353.36 g/mol.


Example 83
Compound 80

m.p.: 255.3-258.2° C.


ESI-MS: found: 351.8 (M+H+); calculated: 351.41 g/mol.


Example 84
Compound 81

m.p.: 305.4-307.2° C.


ESI-MS: found: 348.2 (M+H+); calculated: 347.30 g/mol.


Example 85
Compound 82

m.p.: 255.3-257.9° C.


ESI-MS: found: 321.8 (M+H+); calculated: 321.38 g/mol.


Example 86
Compound 83

m.p.: 247.8-252.4° C.


ESI-MS: found: 326.2 (M+H+); calculated: 325.35 g/mol.


Example 87
Compound 84

m.p.: 263.9-265.6° C.


ESI-MS: found: 388.3 (M+H+); calculated: 387.42 g/mol.


Example 88
Compound 85

m.p.: 253.3-256.2° C.


ESI-MS: found: 353.2 (M+H+); calculated: 352.35 g/mol.


Example 89
Compound 86

m.p.: 277-280° C.


ESI-MS: found: 339.3 (M+H+); calculated: 338.37 g/mol.


Example 90
Compound 87

m.p.: 256-259° C.


ESI-MS: found: 397.2 (M+H+); calculated: 396.40 g/mol.


Example 91
Compound 88

m.p.: 240-242° C.


ESI-MS: found: 306.5 (M+H+); calculated: 610.68 g/mol.


Example 92
Compound 89

m.p.: 216-219° C.


ESI-MS: found: 339.0 (M+H+); calculated: 338.37 g/mol.


Example 93
Compound 90

m.p.: 298-305° C.


ESI-MS: found: 362.3 (M+H+); calculated: 362.22 g/mol.


Example 94
Compound 91

m.p.: 254-257° C.


ESI-MS: found: 358.1 (M+H+); calculated: 357.80 g/mol.


Example 95
Compound 92

m.p.: 264-269° C.


ESI-MS: found: 362.2 (M+H+); calculated: 362.22 g/mol.


Example 96
Compound 93

m.p.: 253-258° C.


ESI-MS: found: 342.1 (M+H+); calculated: 341.34 g/mol.


Example 97
Compound 94

m.p.: 270-274° C.


ESI-MS: found: 386.2 (M+H+); calculated: 386.25 g/mol.


Example 98
Compound 95

m.p.: 259-262° C.


ESI-MS: found: 330.3 (M+H+); calculated: 329.31 g/mol.


Example 99
Compound 96

m.p.: 258-259° C.


ESI-MS: found: 360.2 (M+H+); calculated: 359.79 g/mol.


Example 100
Compound 97

m.p.: 240-243° C.


ESI-MS: found: 361.9 (M+H+); calculated: 361.33 g/mol.


Example 101
Compound 98

m.p.: 223-225° C.


ESI-MS: found: 338.0 (M+H+); calculated: 337.38 g/mol.


Example 102
Compound 99

m.p.: 275° C.


ESI-MS: found: 346.2 (M+H+); calculated: 345.76 g/mol.


Example 103
Compound 100

m.p.: 232-234° C.


ESI-MS: found: 307.9 (M+H+); calculated: 307.36 g/mol.


Example 104
Compound 101

m.p.: 249-253° C.


ESI-MS: found: 339.1 (M+H+); calculated: 338.33 g/mol.


Example 105
Compound 102

m.p.: 220-222° C.


ESI-MS: found: 337.8 (M+H+); calculated: 337.38 g/mol.


Example 106
Compound 103

m.p.: 226-228° C.


ESI-MS: found: 311.8 (M+H); calculated: 311.32 g/mol.


Example 107
Compound 104

m.p.: 310° C.


ESI-MS: found: 328.2 (M+H+); calculated: 327.77 g/mol.


Example 108
Compound 105

m.p.: 218-220° C.


ESI-MS: found: 307.9 (M+H+); calculated: 307.36 g/mol.


Example 109
Compound 106

m.p.: 270° C.


ESI-MS: found: 326.0 (M+H+); calculated: 325.35 g/mol.


Example 110
Compound 107

m.p.: 260° C.


ESI-MS: found: 321.9 (M+H+); calculated: 321.38 g/mol.


Example 111
Compound 108

m.p.: >350° C.


ESI-MS: found: 362.2 (M+H+); calculated: 362.22 g/mol.


Example 112
Compound 109

m.p.: 236-238° C.


ESI-MS: found: 494.0, 492.0 (M+H+); calculated: 492.37 g/mol.


Example 113
Compound 110

m.p.: 228-230° C.


ESI-MS: found: 417.9, 416.1 (M+H+); calculated: 416.28 g/mol.


Example 114
Compound 111

m.p.: 262-264° C.


ESI-MS: found: 328.1 (M+H+); calculated: 327.77 g/mol.


Example 115
Compound 112

m.p.: 229-231° C.


ESI-MS: found: 356.1 (M+H+); calculated: 355.37 g/mol.


Example 116
Compound 113

m.p.: 242° C.


ESI-MS: found: 314.2 (M+H+); calculated: 313.39 g/mol.


Example 117
Compound 114

m.p.: 253-257° C.


ESI-MS: found: 318.9 (M+H+); calculated: 318.34 g/mol.


Example 118
Compound 115

m.p.: 200-202° C.


ESI-MS: found: 323.9 (M+H+); calculated: 323.35 g/mol.


Example 119
Compound 116

m.p.: 251-255° C.


ESI-MS: found: 370.3 (M+H+); calculated: 369.43 g/mol.


Example 120
Compound 117

m.p.: 221-224° C.


ESI-MS: found: 340.0 (M+H+); calculated: 339.42 g/mol.


Example 121
Compound 118

m.p.: 239-240° C.


ESI-MS: found: 378.1 (M+H+); calculated: 377.32 g/mol.


Example 122
Compound 119

m.p.: 222-223° C.


ESI-MS: found: 366.0 (M+H+); calculated: 365.39 g/mol.


Example 123
Compound 120

m.p.: 224-228° C.


ESI-MS: found: 387.1 (M+H+); calculated: 386.43 g/mol.


Example 124
Compound 121

m.p.: 212-217° C.


ESI-MS: found: 460.1 (M+H+); calculated: 459.50 g/mol.


Example 125
Compound 122

m.p.: 244-247° C.


ESI-MS: found: 328.0 (M+H+); calculated: 327.77 g/mol.


Example 126
Compound 123

m.p.: 280° C.


ESI-MS: found: 370.2 (M+H+); calculated: 369.43 g/mol.


Example 127
Compound 124

m.p.: 246° C.


ESI-MS: found: 324.0 (M+H+); calculated: 323.42 g/mol.


Example 128
Compound 125

m.p.: 244° C.


ESI-MS: found: 354.2 (M+H+); calculated: 353.45 g/mol.


Example 129
Compound 126

m.p.: 278° C.


ESI-MS: found: 339.1 (M+H+); calculated: 338.44 g/mol.


Example 130
Compound 127

m.p.: 227° C.


ESI-MS: found: 368.0 (M+H+); calculated: 367.47 g/mol.


Example 131
Compound 128

m.p.: 269-273° C.


ESI-MS: found: 461.4 (M+H+); calculated: 460.54 g/mol.


Example 132
Compound 129

m.p.: 283-286° C.


ESI-MS: found: 311.9 (M+H); calculated: 311.32 g/mol.


Example 133
Compound 130

m.p.: 220-223° C.


ESI-MS: found: 337.8 (M+H+); calculated: 337.38 g/mol.


Example 134
Compound 131

m.p.: >350° C.


ESI-MS: found: 339.1 (M+H+); calculated: 338.33 g/mol.


Example 135
Compound 132

m.p.: 260° C.


ESI-MS: found: 351.9 (M+H+); calculated: 351.36 g/mol.


Example 136
Compound 133

m.p.: 258.7° C.


ESI-MS: found: 351.8 (M+H+); calculated: 351.41 g/mol.


Example 137
Compound 134

m.p.: 230° C.


ESI-MS: found: 400.3 (M+H+); calculated: 399.47 g/mol.


Example 138
Compound 135

m.p.: 182-185° C.


ESI-MS: found: 340.0 (M+H+); calculated: 339.42 g/mol.


Example 139
Compound 136

m.p.: 256-260° C.


ESI-MS: found: 319.1 (M+H+); calculated: 318.34 g/mol.


Example 140
Compound 137

m.p.: 236-239° C.


ESI-MS: found: 342.0 (M+H+); calculated: 341.34 g/mol.


Example 141
Compound 138

ESI-MS: found: 394.4 (M+H+); calculated: 394.28 g/mol.


Example 142
Compound 139

ESI-MS: found: 390.3 (M+H+); calculated: 389.87 g/mol.


Example 143
Compound 140

ESI-MS: found: 355.3 (M+H+); calculated: 354.44 g/mol.


Example 144
Compound 141

m.p.: 250° C.


ESI-MS: found: 299.9 (M+H+); calculated: 299.36 g/mol.


Example 145
Compound 142

m.p.: 247-249° C.


ESI-MS: found: 321.9 (M+H+); calculated: 321.38 g/mol.


Example 146
Compound 143

m.p.: 250-252° C.


ESI-MS: found: 370.2 (M+H+); calculated: 369.35 g/mol.


Example 147
Compound 144

m.p.: 240-244° C.


ESI-MS: found: 336.9 (M+H+); calculated: 336.40 g/mol.


Example 148
Compound 145

m.p.: 207-209° C.


ESI-MS: found: 353.9 (M+H+); calculated: 353.38 g/mol.


Example 149
Compound 146

m.p.: 202-204° C.


ESI-MS: found: 356.0 (M+H+); calculated: 355.37 g/mol.


Example 150
Compound 147

m.p.: 272° C.


ESI-MS: found: 371.3 (M+H+); calculated: 370.44 g/mol.


Example 151
Compound 148

m.p.: 285° C.


ESI-MS: found: 325.1 (M+H+); calculated: 324.41 g/mol.


Example 152
Compound 149

m.p.: 280° C.


ESI-MS: found: 341.2 (M+H+); calculated: 340.41 g/mol.


Example 153
Compound 150

m.p.: 269° C.


ESI-MS: found: 371.1 (M+H+); calculated: 370.44 g/mol.


Example 154
Compound 151

m.p.: 228-233° C.


ESI-MS: found: 335.7 (M+H+); calculated: 335.41 g/mol.


Example 155
Compound 152

m.p.: 227-228° C.


ESI-MS: found: 300.0 (M+H+); calculated: 299.36 g/mol.


Example 156
Compound 153

m.p.: 225° C.


ESI-MS: found: 339.0 (M+H+); calculated: 338.37 g/mol.


Example 157
Compound 154

m.p.: 238° C.


ESI-MS: found: 339.0 (M+H+); calculated: 338.37 g/mol.


Example 158
Compound 155

m.p.: 230° C.


ESI-MS: found: 401.0 (M+H+); calculated: 400.44 g/mol.


Example 159
Compound 156

m.p.: 281° C.


ESI-MS: found: 355.1 (M+H+); calculated: 354.37 g/mol.


Example 160
Compound 157

m.p.: 265° C.


ESI-MS: found: 385.1 (M+H+); calculated: 384.46 g/mol.


Example 161
Compound 158

ESI-MS: found: 375.1 (M+H+); calculated: 374.85 g/mol.


Example 162
Compound 159

m.p.: 276° C.


ESI-MS: found: 389.1 (M+H+); calculated: 388.88 g/mol.


Example 163
Compound 160

m.p.: 268° C.


ESI-MS: found: 415.1 (M+H+); calculated: 414.49 g/mol.


Example 164
Compound 161

m.p.: 262° C.


ESI-MS: found: 341.1 (M+H); calculated: 340.41 g/mol.


Example 165
Compound 162

m.p.: 288° C.


ESI-MS: found: 369.1 (M+H+); calculated: 368.46 g/mol.


Example 166
Compound 163

m.p.: 238° C.


ESI-MS: found: 383.1 (M+H+); calculated: 382.49 g/mol.


Example 167
Compound 164

m.p.: 294° C.


ESI-MS: found: 392.2 (M+H+); calculated: 391.46 g/mol.


Example 168
Compound 165

m.p.: 268° C.


ESI-MS: found: 432.2 (M+H+); calculated: 431.54 g/mol.


Example 169
Compound 166

m.p.: 278° C.


ESI-MS: found: 409.4 (M+H+); calculated: 409.30 g/mol.


Example 170
Compound 167

m.p.: 253° C.


ESI-MS: found: 343.0 (M+H+); calculated: 342.79 g/mol.


Example 171
Compound 168

m.p.: 289° C.


ESI-MS: found: 375.4 (M+H+); calculated: 374.47 g/mol.


Example 172
Compound 169

m.p.: 228° C.


ESI-MS: found: 351.8 (M+H+); calculated: 351.41 g/mol.


Example 173
Compound 170

m.p.: 243° C.


ESI-MS: found: 350.9 (M+H+); calculated: 350.38 g/mol.


Example 174
Compound 172

m.p.: 242-244° C.


ESI-MS: found: 326.1 (M+H+); calculated: 325.33 g/mol.


Example 175
Compound 173

m.p.: 215-218° C.


ESI-MS: found: 374.1 (M+H+); calculated: 373.80 g/mol.


Example 176
Compound 176

m.p.: 234-237° C.


ESI-MS: found: 389.2 (M+H+); calculated: 388.39 g/mol.


Example 177
Compound 177

m.p.: 234-237° C.


ESI-MS: found: 351.9 (M+H+); calculated: 351.41 g/mol.


Example 178
Compound 178

m.p.: 227-228° C.


ESI-MS: found: 308.0 (M+H+); calculated: 307.36 g/mol.


Example 179
Compound 179

m.p.: >320° C.


ESI-MS: found: 309.2 (M+H+); calculated: 308.34 g/mol.


Example 180
Compound 180

m.p.: >320° C.


ESI-MS: found: 323.0 (M+H+); calculated: 322.37 g/mol.


Example 181
Compound 181

m.p.: >240° C.


ESI-MS: found: 338.2 (M+H+); calculated: 337.38 g/mol.


Example 182
Compound 182

m.p.: 277-279° C.


ESI-MS: found: 310.2 (M+H+); calculated: 309.33 g/mol.


Example 183
Compound 183

m.p.: >250° C.


ESI-MS: found: 342.8 (M+H+); calculated: 341.39 g/mol.


Example 184
Compound 194

m.p.: 305-308° C.


ESI-MS: found: 367.2 (M+H+); calculated: 366.38 g/mol.


Example 185
Compound 195

m.p.: 248° C.


ESI-MS: found: 383.2 (M+H+); calculated: 382.45 g/mol.


Example 186
Compound 197

m.p.: 211° C.


ESI-MS: found: 341.2 (M+H+); calculated: 340.41 g/mol.


Example 187
Compound 198

m.p.: 258° C.


ESI-MS: found: 341.1 (M+H+); calculated: 340.41 g/mol.


Example 188
Compound 200

m.p.: 238° C.


ESI-MS: found: 415.3 (M+H+); calculated: 414.49 g/mol.


Example 189
Compound 201

m.p.: 260° C.


ESI-MS: found: 373.1 (M+H+); calculated: 372.81 g/mol.


Example 190
Compound 202

m.p.: 225° C.


ESI-MS: found: 389.2 (M+H+); calculated: 388.88 g/mol.


Example 191
Compound 203

m.p.: 166° C.


ESI-MS: found: 371.2 (M+H+); calculated: 370.44 g/mol.


Example 192
Compound 205

m.p.: 166° C.


ESI-MS: found: 371.2 (M+H+); calculated: 370.44 g/mol.


Example 193
Compound 207

m.p.: 236° C.


ESI-MS: found: 432.2 (M+H+); calculated: 431.54 g/mol.


Example 194
Compound 208

m.p.: 203° C.


ESI-MS: found: 375.2 (M+H+); calculated: 374.85 g/mol.


Example 195
Compound 209

m.p.: 255° C.


ESI-MS: found: 353.1 (M+H+); calculated: 352.40 g/mol.


Example 196
Compound 210

m.p.: 148° C.


ESI-MS: found: 369.0 (M+H+); calculated: 368.46 g/mol.


Example 197
Compound 217

m.p.: 185° C.


ESI-MS: found: 359.0 (M+H+); calculated: 358.86 g/mol.


Example 198
Compound 221

m.p.: 189° C.


ESI-MS: found: 355.2 (M+H+); calculated: 354.44 g/mol.


Example 199
Compound 225

m.p.: 243-245° C.


ESI-MS: found: 303.2 (M+H+); calculated: 302.34 g/mol.


Example 200
Compound 227

m.p.: 214-216° C.


ESI-MS: found: 316.3 (M+H+); calculated: 315.34 g/mol.


Example 201
Compound 231

m.p.: 201-203° C.


ESI-MS: found: 287.1 (M+H+); calculated: 286.34 g/mol.


Example 202
Compound 233

m.p.: 199-201° C.


ESI-MS: found: 330.3 (M+H+); calculated: 329.41 g/mol.


Example 203
Compound 235

m.p.: 249-251° C.


ESI-MS: found: 317.2 (M+H+); calculated: 316.36 g/mol.


Example 204
Compound 239

m.p.: 211-213° C.


ESI-MS: found: 323.2 (M+H+); calculated: 322.37 g/mol.


Example 205
Compound 241

ESI-MS: found: 337.2 (M+H+); calculated: 336.40 g/mol.


Example 206
Compound 255

ESI-MS: found: 392.4 (M+H+); calculated: 391.50 g/mol.


Example 207
Compound 257

m.p.: 216° C.


ESI-MS: found: 418.1 (M+H+); calculated: 417.54 g/mol.


Example 208
Compound 329

m.p.: >220° C.


ESI-MS: found: 359.3 (M+H+); calculated: 358.86 g/mol.


Example 209
Compound 331

m.p.: 258° C.


ESI-MS: found: 355.3 (M+H+); calculated: 354.44 g/mol.


Example 210
Compound 332

m.p.: 232° C.


ESI-MS: found: 355.1 (M+H+); calculated: 354.44 g/mol.


Example 211
Compound 336

m.p.: 255° C.


ESI-MS: found: 381.2 (M+H+)—free Base; calculated: 416.91 g/mol.


Example 212
Compound 341

m.p.: 235° C.


ESI-MS: found: 477.4 (M+H+)—free base; calculated: 513.00 g/mol.


Example 213
Compound 374

m.p.: 215° C.


ESI-MS: found: 352.0 (M+H+); calculated: 351.41 g/mol.


Example 214
Compound 378

m.p.: 225° C.


ESI-MS: found: 336.8 (M+H+); calculated: 336.44 g/mol.


Example 215
Compound 380

ESI-MS: found: 339.2 (M+H+); calculated: 338.37 g/mol.


Example 216
Compound 394

m.p.: 272° C.


ESI-MS: found: 339.2 (M+H+); calculated: 338.37 g/mol.


Example 217
Compound 398

m.p.: 210° C.


ESI-MS: found: 336.8 (M+H+); calculated: 336.40 g/mol.


Example 218
Compound 399

m.p.: 215° C.


ESI-MS: found: 353.1 (M+H+); calculated: 352.46 g/mol.


Example 219
Compound 433

m.p.: 265° C.


ESI-MS: found: 361.2 (M+H+); calculated: 360.39 g/mol.


Example 220
Compound 434

m.p.: 324-329° C.


ESI-MS: found 387.1 (M+H+); calculated: 386.80 g/mol.


Example 221
Compound 441

m.p.: 220° C.


ESI-MS: found: 375.3 (M+H+); calculated: 374.85 g/mol.


Example 222
Compound 443

m.p.: 270° C.


ESI-MS: found: 394.1 (M+H); calculated: 393.30 g/mol.


Example 223
Compound 446

m.p.: 222° C.


ESI-MS: found: 353.0 (M+H+); calculated: 352.40 g/mol.


Example 224
Compound 465

m.p.: 277° C.


ESI-MS: found: 428.3 (M+H+); calculated: 427.75 g/mol.


Example 225
Compound 467

m.p.: 232° C.


ESI-MS: found: 367.1 (M+H+); calculated: 366.45 g/mol.


Example 226
Compound 489

m.p.: 260° C.


ESI-MS: found: 388.2 (M+H+); calculated: 387.40 g/mol.


Example 227
Compound 491

m.p.: 250° C.


ESI-MS: found: 386.4 (M+H+); calculated: 385.41 g/mol.


Example 228
Compound 501

m.p.: 243° C.


ESI-MS: found: 429.2 (M+H+); calculated: 428.51 g/mol.


Example 229
Compound 509

m.p.: 246° C.


ESI-MS: found: 455.1 (M+H+); calculated: 454.55 g/mol.


Example 230
Compound 518

m.p.: 245-238° C.


ESI-MS: found: 370.4 (M+H+); calculated: 369.45 g/mol.


Example 231
Compound 519

m.p.: 233-235° C.


ESI-MS: found: 396.3 (M+H+); calculated: 395.48 g/mol.


Example 232
Compound 521

m.p.: 261-262° C.


ESI-MS: found: 368.2 (M+H+); calculated: 367.43 g/mol.


Example 233
Compound 524

m.p.: 253-254° C.


ESI-MS: found: 410.4 (M+H+); calculated: 409.51 g/mol.


Example 234
Compound 526

m.p.: 279-280° C.


ESI-MS: found: 342.0 (M+H+); calculated: 341.39 g/mol.


Example 235
Compound 529

m.p.: 224-226° C.


ESI-MS: found: 422.3 (M+H+); calculated: 421.84 g/mol.


Example 236
Compound 533

ESI-MS: found: 402.4 (M+H+); calculated: 401.42 g/mol.


Example 237
Compound 541

ESI-MS: found: 456.4 (M+H+); calculated: 455.39 g/mol.


Example 238
Compound 551

m.p.: 265-268° C.


ESI-MS: found: 392.2 (M+H+); calculated: 392.24 g/mol.


Example 239
Compound 552

m.p.: 259-261° C.


ESI-MS: found: 392.2 (M+H+); calculated: 392.24 g/mol.


Example 240
Compound 553

m.p.: 251-253° C.


ESI-MS: found: 406.2 (M+H+); calculated: 406.27 g/mol.


Example 241
Compound 554

m.p.: 226-230° C.


ESI-MS: found: 530.2 (M+H+); calculated: 529.30 g/mol.


Example 242
Compound 555

m.p.: 259-262° C.


ESI-MS: found: 469.3 (M+H+); calculated: 469.33 g/mol.


Example 243
Compound 556

m.p.: 261-263° C.


ESI-MS: found: 460.3 (M+H+); calculated: 460.36 g/mol.


Example 244
Compound 557

m.p.: 247-249° C.


ESI-MS: found: 364.2 (M+H+); calculated: 364.19 g/mol.


Example 245
Compound 558

m.p.: 272-275° C.


ESI-MS: found: 432.2 (M+H+); calculated: 432.31 g/mol.


Example 246
Compound 559

m.p.: 289-291° C.


ESI-MS: found: 444.3 (M+H+); calculated: 444.25 g/mol.


Example 247
Compound 560

m.p.: 253-255° C.


ESI-MS: found: 432.3 (M+H+); calculated: 432.29 g/mol.


Example 248
Compound 561

m.p.: >300° C.


ESI-MS: found: 471.0 (M+H+); calculated: 471.26 g/mol.


Example 249
Compound 562

m.p.: 257-260° C.


ESI-MS: found: 445.1 (M+H); calculated: 445.26 g/mol.


Example 250
Compound 563

m.p.: 262-264° C.


ESI-MS: found: 418.1 (M+H+); calculated: 418.28 g/mol.


Example 251
Compound 564

m.p.: 280-282° C.


ESI-MS: found: 454.3 (M+H+); calculated: 454.32 g/mol.


Example 252
Compound 565

m.p.: >300° C.


ESI-MS: found: 521.3 (M+H+); calculated: 521.32 g/mol.


Example 253
Compound 566

m.p.: 253-255° C.


ESI-MS: found: 340.1 (M+H+); calculated: 339.35 g/mol.


Example 254
Compound 567

m.p.: 233-236° C.


ESI-MS: found: 368.2 (M+H+); calculated: 367.41 g/mol.


Example 255
Compound 568

m.p.: 230-233° C.


ESI-MS: found: 382.2 (M+H+); calculated: 381.43 g/mol.


Example 256
Compound 569

m.p.: 262-263° C.


ESI-MS: found: 445.3 (M+H+); calculated: 444.49 g/mol.


Example 257
Compound 570

m.p.: 246-248° C.


ESI-MS: found: 368.2 (M+H+); calculated: 367.41 g/mol.


Example 258
Compound 571

m.p.: 262-264° C.


ESI-MS: found: 408.3 (M+H+); calculated: 407.47 g/mol.


Example 259
Compound 572

m.p.: 269-271° C.


ESI-MS: found: 420.4 (M+H+); calculated: 419.41 g/mol.


Example 260
Compound 573

m.p.: 265-267° C.


ESI-MS: found: 421.3 (M+H+); calculated: 420.43 g/mol.


Example 261
Compound 574

m.p.: 188-191° C.


ESI-MS: found: 402.2 (M+H+); calculated: 401.42 g/mol.


Example 262
Compound 575

m.p.: 236-238° C.


ESI-MS: found: 366.1 (M+H+); calculated: 365.39 g/mol.


Example 263
Compound 576

m.p.: 261-264° C.


ESI-MS: found: 394.3 (M+H+); calculated: 393.44 g/mol.


Example 264
Compound 577

m.p.: 254-257° C.


ESI-MS: found: 430.2 (M+H+); calculated: 429.48 g/mol.


Example 265
Compound 578

m.p.: 263-266° C.


ESI-MS: found: 416.2 (M+H+); calculated: 415.48 g/mol.


Example 266
Compound 579

m.p.: 279-283° C.


ESI-MS: found: 497.1 (M+H+); calculated: 496.48 g/mol.


Example 267
Compound 580

m.p.: 248-251° C.


ESI-MS: found: 402.1 (M+H); calculated: 401.42 g/mol.


Example 268
Compound 581

m.p.: 239-242° C.


ESI-MS: found: 505.0 (M+H+); calculated: 504.47 g/mol.


Example 269
Compound 582

ESI-MS: found: 382.3 (M+H+); calculated: 381.43 g/mol.


Example 270
Compound 583

m.p.: 273-275° C.


ESI-MS: found: 429.2 (M+H+); calculated: 428.49 g/mol.


Example 271
Compound 584

m.p.: 247-250° C.


ESI-MS: found: 392.4 (M+H+); calculated: 391.47 g/mol.


Example 272
Compound 585

ESI-MS: found: 351.9 (M+H+); calculated: 351.41 g/mol.


Example 273
Compound 586

m.p.: 240-241° C.


ESI-MS: found: 351.9 (M+H+); calculated: 351.41 g/mol.


Example 274
Compound 587

m.p.: 210-212° C.


ESI-MS: found: 350.1 (M+H+); calculated: 349.39 g/mol.


Example 275
Compound 588

m.p.: 267-269° C.


ESI-MS: found: 414.2 (M+H+); calculated: 413.48 g/mol.


Example 276
Compound 589

m.p.: 251-253° C.


ESI-MS: found: 489.0 (M+H+); calculated: 488.47 g/mol.


Example 277
Compound 590

m.p.: 242-244° C.


ESI-MS: found: 405.2 (M+H+); calculated: 404.43 g/mol.


Example 278
Compound 591

ESI-MS: found: 324.1 (M+H+); calculated: 323.35 g/mol.


Example 279
Compound 592

ESI-MS: found: 351.9 (M+H+); calculated: 351.41 g/mol.


Example 280
Compound 593

ESI-MS: found: 366.0 (M+H+); calculated: 365.43 g/mol.


Example 281
Compound 594

ESI-MS: found: 404.3 (M+H+); calculated: 403.42 g/mol.


Example 282
Compound 595

m.p.: 271-273° C.


ESI-MS: found: 386.2 (M+H+); calculated: 385.43 g/mol.


Example 283
Compound 596

m.p.: 263° C.


ESI-MS: found: 422.2 (M+H+); calculated: 421.54 g/mol.


Example 284
Compound 597

m.p.: 221° C.


ESI-MS: found: 380.2 (M+H+); calculated: 379.46 g/mol.


Example 285
Compound 598

m.p.: 232° C.


ESI-MS: found: 380.1 (M+H+); calculated: 379.46 g/mol.


Example 286
Compound 599

m.p.: 233° C.


ESI-MS: found: 394.1 (M+H+); calculated: 393.49 g/mol.


Example 287
Compound 600

m.p.: 244-246° C.


ESI-MS: found: 406.3 (M+H+); calculated: 405.39 g/mol.


Example 288
Compound 601

ESI-MS: found: 460.5 (M+H+); calculated: 459.46 g/mol.


Example 289
Compound 602

m.p.: 287-290° C.


ESI-MS: found: 431.2 (M+H+); calculated: 430.47 g/mol.


Example 290
Compound 603

m.p.: 233-236° C.


ESI-MS: found: 428.3 (M+H+); calculated: 427.46 g/mol.


Example 291
Compound 604

m.p.: 232-234° C.


ESI-MS: found: 422.4 (M+H+); calculated: 421.50 g/mol.


Example 292
Compound 605

m.p.: 252-254° C.


ESI-MS: found: 446.4 (M+H+); calculated: 445.52 g/mol.


Example 293
Compound 606

m.p.: 210-212° C.


ESI-MS: found: 529.4 (M+H+); calculated: 528.57 g/mol.


Example 294
Compound 607

m.p.: 260-263° C.


ESI-MS: found: 474.5 (M+H+); calculated: 473.49 g/mol.


Example 295
Compound 608

ESI-MS: found: 408.4 (M+H+); calculated: 407.47 g/mol.


Example 296
Compound 609

m.p.: 257-259° C.


ESI-MS: found: 444.3 (M+H+); calculated: 443.49 g/mol.


Example 297
Compound 610

ESI-MS: found: 491.5 (M+H+); calculated: 490.44 g/mol.


Example 298
Compound 611

m.p.: 245-248° C.


ESI-MS: found: 389.4 (M+H+); calculated: 388.39 g/mol.


Example 299
Compound 612

m.p.: 272-273° C.


ESI-MS: found: 408.4 (M+H+); calculated: 407.47 g/mol.


Example 300
Compound 613

m.p.: 232-236° C.


ESI-MS: found: 424.4 (M+H+); calculated: 423.51 g/mol.


Example 301
Compound 614

m.p.: 216-219° C.


ESI-MS: found: 394.4 (M+H+); calculated: 393.43 g/mol.


Example 302
Compound 615

ESI-MS: found: 471.4 (M+H+); calculated: 470.53 g/mol.


Example 303
Compound 616

m.p.: 247-250° C.


ESI-MS: found: 433.3 (M+H+); calculated: 432.39 g/mol.


Example 304
Compound 617

m.p.: 220-222° C.


ESI-MS: found: 433.4 (M+H+); calculated: 432.39 g/mol.


Example 305
Compound 618

m.p.: 274-276° C.


ESI-MS: found: 433.1 (M+H+); calculated: 432.39 g/mol.


Example 306
Compound 619

m.p.: 214-217° C.


ESI-MS: found: 453.4 (M+H+); calculated: 452.43 g/mol.


Example 307
Compound 620

m.p.: 207-210° C.


ESI-MS: found: 486.3 (M+H+); calculated: 485.55 g/mol.


Example 308
Compound 621

m.p.: 248-251° C.


ESI-MS: found: 441.5 (M+H+); calculated: 440.46 g/mol.


Example 309
Compound 622

m.p.: 290-293° C.


ESI-MS: found: 483.5 (M+H+); calculated: 482.45 g/mol.


Example 310
Compound 623

m.p.: 263-265° C.


ESI-MS: found: 453.4 (M+H+); calculated: 452.47 g/mol.


Example 311
Compound 624

m.p.: 242-245° C.


ESI-MS: found: 432.2 (M+H+); calculated: 431.45 g/mol.


Example 312
Compound 625

m.p.: 235-238° C.


ESI-MS: found: 418.1 (M+H+); calculated: 417.42 g/mol.


Example 313
Compound 626

m.p.: 259-261° C.


ESI-MS: found: 413.3 (M+H+); calculated: 412.41 g/mol.


Example 314
Compound 627

m.p.: 234-235° C.


ESI-MS: found: 396.4 (M+H+); calculated: 395.46 g/mol.


Example 315
Compound 628

m.p.: 233-235° C.


ESI-MS: found: 478.4 (M+H+); calculated: 477.61 g/mol.


Example 316
Compound 629

m.p.: 233-236° C.


ESI-MS: found: 430.3 (M+H+); calculated: 429.48 g/mol.


Example 317
Compound 630

m.p.: 208-210° C.


ESI-MS: found: 444.4 (M+H+); calculated: 443.50 g/mol.


Example 318
Compound 631

m.p.: 223-226° C.


ESI-MS: found: 368.2 (M+H+); calculated: 367.41 g/mol.


Example 319
Compound 632

m.p.: 214-216° C.


ESI-MS: found: 368.2 (M+H+); calculated: 367.41 g/mol.


Example 320
Compound 633

ESI-MS: found: 464.4 (M+H+); calculated: 463.49 g/mol.


Example 321
Compound 634

ESI-MS: found: 470.1 (M+H+); calculated: 469.42 g/mol.


Example 322
Compound 635

m.p.: 226-228° C.


ESI-MS: found: 444.1 (M+H+); calculated: 443.50 g/mol.


Example 323
Compound 636

ESI-MS: found: 436.1 (M+H); calculated: 435.87 g/mol.


Example 324
Compound 637

m.p.: >270° C.


ESI-MS: found: 344.6 (M+H+); calculated: 343.77 g/mol.


Example 325
Compound 638

ESI-MS: found: 340.1 (M+H+); calculated: 339.35 g/mol.


Example 326
Compound 639

m.p.: 250-252° C.


ESI-MS: found: 416.9 (M+H+); calculated: 416.77 g/mol.


Example 327
Compound 640

m.p.: 262° C.


ESI-MS: found: 396.2 (M+H+); calculated: 395.31 g/mol.


Example 328
Compound 641

m.p.: 291° C.


ESI-MS: found: 388.2 (M+H+); calculated: 388.22 g/mol.


Example 329
Compound 642

m.p.: 266° C.


ESI-MS: found: 358.2 (M+H+); calculated: 357.80 g/mol.


Example 330
Compound 643

m.p.: 263° C.


ESI-MS: found: 422.2 (M+H+); calculated: 421.54 g/mol.


Example 331
Compound 644

m.p.: 225° C.


ESI-MS: found: 354.1 (M+H+); calculated: 353.34 g/mol.


Example 332
Compound 647

ESI-MS: found: 310.2 (M+H+); calculated: 309.40 g/mol.


Example 333
Compound 648

ESI-MS: found: 355.3 (M+H+); calculated: 354.44 g/mol.


Example 334
Compound 649

ESI-MS: found: 368.1 (M+H+); calculated: 367.47 g/mol.


Example 335
Compound 650

m.p.: 218-219° C.


ESI-MS: found: 400.2 (M+H+); calculated: 399.47 g/mol.


Example 336
Compound 651

m.p.: 230-231° C.


ESI-MS: found: 324.1 (M+H+); calculated: 323.42 g/mol.


Example 337
Compound 652

m.p.: 213-215° C.


ESI-MS: found: 384.3 (M+H+); calculated: 383.47 g/mol.


Example 338
Compound 653

m.p.: 250-251° C.


ESI-MS: found: 438.4 (M+H+); calculated: 437.57 g/mol.


Example 339
Compound 654

m.p.: 238-240° C.


ESI-MS: found: 462.4 (M+H+); calculated: 461.59 g/mol.


Example 340
Compound 655

ESI-MS: found: 354.0 (M+H+); calculated: 353.38 g/mol.


Example 341
Compound 660

m.p.: 168-170° C.


ESI-MS: found: 387.1 (M+H+); calculated: 386.41 g/mol.


Example 342
Compound 661

ESI-MS: found: 393.3 (M+H+); calculated: 392.46 g/mol.


Example 343
Compound 686

ESI-MS: found: 368.1 (M+H+); calculated: 367.41 g/mol.


Example 344
Compound 690

m.p.: 248° C.


ESI-MS: found: 469.2 (M+H+); calculated: 468.58 g/mol.


Example 345
Compound 691

m.p.: 250° C.


ESI-MS: found: 497.3 (M+H+); calculated: 496.63 g/mol.


Example 346
Compound 692

m.p.: 258-261° C.


ESI-MS: found: 401.1 (M+H); calculated: 400.46 g/mol.


Example 347
Compound 693

m.p.: 230-234° C.


ESI-MS: found: 427.3 (M+H+); calculated: 426.50 g/mol.


Example 348
Compound 694

m.p.: 218-220° C.


ESI-MS: found: 443.2 (M+H+); calculated: 442.54 g/mol.


Example 349
Compound 695

m.p.: 247° C.


ESI-MS: found: 482.3 (M+H+); calculated: 481.53 g/mol.


Example 350
Compound 696

m.p.: 347° C.


ESI-MS: found: 483.1 (M+H+); calculated: 482.61 g/mol.


Example 351
Compound 697

m.p.: 250-252° C.


ESI-MS: found: 477.0 (M+H+); calculated: 476.56 g/mol.


Example 352
Compound 698

m.p.: 248-250° C.


ESI-MS: found: 491.1 (M+H+); calculated: 490.59 g/mol.


Example 353
Compound 699

m.p.: 197-200° C.


ESI-MS: found: 491.3 (M+H+); calculated: 490.59 g/mol.


Example 354
Compound 700

m.p.: 206° C.


ESI-MS: found: 498.1 (M+H+); calculated: 497.62 g/mol.


Example 355
Compound 701

m.p.: 255° C.


ESI-MS: found: 495.1 (M+H+); calculated: 494.55 g/mol.


Example 356
Compound 702

m.p.: 210° C.


ESI-MS: found: 457.4 (M+H+); calculated: 456.57 g/mol.


Example 357
Compound 703

m.p.: 196° C.


ESI-MS: found: 500.2 (M+H+); calculated: 499.59 g/mol.


Example 358
Compound 704

m.p.: 195-198° C.


ESI-MS: found: 505.3 (M+H+); calculated: 504.61 g/mol.


Example 359
Compound 705

m.p.: 243-245° C.


ESI-MS: found: 445.4 (M+H+); calculated: 444.51 g/mol.


Example 359
Compound 706

m.p.: 222° C.


ESI-MS: found: 428.9 (M+H+); calculated: 428.51 g/mol.


Example 360
Compound 707

m.p.: 248° C.


ESI-MS: found: 427.3 (M+H+); calculated: 426.50 g/mol.


Example 361
Compound 708

m.p.: 228° C.


ESI-MS: found: 467.3 (M+H+); calculated: 466.52 g/mol.


Example 362
Compound 709

m.p.: 244° C.


ESI-MS: found: 487.2 (M+H+); calculated: 486.55 g/mol.


Example 363
Compound 710

m.p.: 246° C.


ESI-MS: found: 459.4 (M+H+); calculated: 458.54 g/mol.


Example 364
Compound 711

m.p.: 248° C.


ESI-MS: found: 491.4 (M+H+); calculated: 490.59 g/mol.


Example 365
Compound 733

m.p.: 110° C.


ESI-MS: found: 356.0 (M+H+); calculated: 355.40 g/mol.


II) Biological Effects of the Compounds of the Invention


II.1) Cell-free Kinase Assays (by Means of ALPHA Technology)


The inhibitory effect of the compounds of the invention was tested on various human serine/threonine kinases, tyrosine kinases and lipid kinases in enzymatic assays. Recombinant human kinases, for example PI3Kalpha, -beta, -gamma, -delta, Erk2, p38alpha, p38gamma, Jnk1, Jnk2 and others were used, in some cases as full-length kinases, in some cases as truncated fragments—but at least consisting of the functional kinase domains. The commercial kinase proteins (Proqinase, Upstate) were used as recombinant fusion proteins with GST (glutathione S-transferase) tag or His tag. Depending on the substrate type, the different kinase reactions were quantified by suitable ALPHA™ beads (PerkinElmer).


Testing


The kinase assays for PI3K and Erk are described in detail and selected test results are cited below. To determine the IC50 value, the potential inhibitor substances were investigated at 10 half-logarithmically graduated concentrations of 3.16 nM-100 μM.

  • a) PI3K-ALPHA (e.g. PI3Kalpha): The test substance, 1 ng of PI3Kalpha (#14-602, Upstate), 100 μM ATP and 20 μM PIP2 substrate (#P4508, Echelon) were incubated on a 384-well Optiplate (Perkin Elmer) for 60 minutes in 50 mM Hepes, 50 mM NaCl, 5 mM MgCl2, 0.05% Chaps, 5 mM DTT at pH 7.4. Subsequently, the kinase reaction was stopped by adding the ALPHA bead mix (10 μg/ml, #6760603/PerkinElmer), preincubated with 1 nM GST:Grp1 fusion protein (Upstate) and nM biotinylated PIP3 (#C-39B6/Echelon) in 50 mM Hepes, 50 mM NaCl, 50 mM EDTA and 0.1% BSA, and left to stand overnight.
  • b) Erk2-ALPHA: The test substance, 0.625 ng of Erk2 (#14-173, Upstate), 10 μM ATP and 15 nM biotinylated MBP (myelin basic protein) substrate were incubated on a 384-well Optiplate (Perkin Elmer) in a volume of 15 μl for 1 h in 25 mM Tris, 10 mM MgCl2, 0.1% Tween-20, 100 μM NaVO4, 2 mM DTT at pH 7.5. The kinase reaction was stopped by adding 10 μl of the ALPHA bead mix (10 μg/ml, #6760617/PerkinElmer), pre-incubated with anti-phospho MBP antibody (320 pM, #05-429/Upstate), in 25 mM Tris, 200 mM NaCl, 100 mM EDTA and 0.3% BSA, and left to stand overnight.


The luminiscence was detected the next morning in a Fusion™ alpha instrument (Perkin Elmer).


Evaluation


The calculation of % inhibition values per substance concentration was done by means of the following formula from the raw data determined in the Fusion™ alpha:







%





kinase






inhibition

(
sample
)



=

100
-

(

100
×



mean

(
sample
)


-

mean

(

0

%





control

)





mean

(

100

%





control

)


-

mean

(

0

%





control

)





)






The controls were determined 8 fold and the substance samples 2 fold. 0% control contained neither any ATP nor any substrate. The 100% control contained no test substance. The IC50 values were determined with GraphPadPrism.


The compounds of the invention exhibited effective inhibition of PI3Kalpha, Erk2, p38alpha and Jnk1+Jnk2 with IC50 values of <500 nM (see Table 1).









TABLE 1







PI3Kalpha and MAPK kinase assay test results (IC50 [μM]


at 10 μM or 100 μM* ATP)











Compound
PI3Kalpha*
Erk2
p38alpha
Jnk1 + Jnk2














5
<0.5
>100
>100
>10


20
<1
>100
>100
>100


30
<1
<10
<10
<31.6


46
<5
<0.5
>100
<1


50
<1
>100
>100
>100


54
<5
<0.5
>100
<31.6


55
<5
>100
<10
>100


56
<5
<10
<10
>10


73
<5
>100
>10
>100


147
<1
>100
>100
>31.6


160
<1
<31.6
<50
>100


173
<1
<50
<50
<31.6


176
<1
>31.6
<50
<50


181
<5
>100
<50
>100


509
<1
>100
>100
>100


526
<1
>100
<50
>100


553
<5
>100
>100
<100


563
<1
>100




566
<5
>100
>31.6
>100


614
<1
<31.6
<10
<31.6


637
<5
>100
>100
>100









Especially compound 5 and derivatives are characterized by low IC50 values against PI3K and high selectivity against the other kinases.


Also pyridopyrazines, substituted by—NH-heteroaryl at the pyrazine ring (for example, compounds 50, 55, 56 and 73), show PI3K inhibition, but no or only moderate MAPK inhibition.


Pyridopyrazines, substituted by heteroaryl at the pyrazine ring (for example, compounds 46 and 54) exhibit a dual mode of kinase inhibition at least, namely an inhibition of PI3K and Erk2.


II.2) Cellular Assay: Testing for Anti-proliferate Activity (XTT Assay)


The principle of this test is based on the intracellular reduction of the tetrazolium dye XTT (sodium 3′-[1-(phenylaminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid, Sigma) to a formazan dye by mitochondrial dehydrogenases. The dye is formed only by metabolically active cells. Its photometrically measurable intensity is a quantitative indicator for the presence of living cells. The reduction in the dye formation as a result of incubation of the cells with substances serves as a parameter for the anti-proliferative activity.


Testing


The tumour cell lines (ATCC) were seeded in 96-well microtitre plates in a defined cell count (5000 cells/well for Hct116; 10000 cells/well for MDA MB468), and incubated overnight at 37° C., 5% CO2 and 95% air humidity. The test substances were made up as stock solutions (10 mM) in DMSO. To determine the EC50 values, the potential inhibitor substances were added to the cells in quarter-logarithmically graded dilutions, so as to result in final concentrations of 0.28 μM-50 μM. The cell plates were then incubated for 45 h at 37° C., 5% CO2 and 95% air humidity.


For the detection reaction, the XTT substrate was mixed with PMS (N-methyldibenzopyrazine methylsulphate, Sigma) and added to the cells, to result in a final concentration of 325 μg of XTT/ml and 2.5 μg PMS/ml. The mixture was then incubated for 3 h at 37° C., 95% air humidity. Subsequently the formazan salt formed by cellular dehydrogenases was quantified at an absorption of 490 nm.


Evaluation


The evaluation of the % inhibition values was done by means of the following formula from the values for the optical densities measured in each case at 490 nm:







%





inhibition











of





cell






proliferation

(
sample
)



=

100
-

(

100
×



mean

(
sample
)


-

mean

(

0

%





control

)





mean

(

100

%





control

)


-

mean

(

0

%





control

)





)






The controls were determined 8 fold, the substance samples 2 fold. 0% control contained no cells and the 100% control contained no test substance. The EC50 values were determined with GraphPadPrism.


The compounds of the invention exhibited effective inhibition of cell proliferation in some cases with EC50 values <1 μM (see Table 2).









TABLE 2







XTT assay test results (EC50 [μM])









Compound
MDA-MB468
Hct116












5
<1
<2


46
<10
<10


50
<10
<5


54
<5
<5


55
<5
<5


56
<5
<10


73
<5
<5


89
<5
<5


113
<5
<5


126
<5
<5


134
<5
<5


138
<10
<10


140
<5
<5


147
<5
<5


148
<5
<10


150
<5
<5


152
<10
<10


160
<1
<1


173
<1
<1


176
<1
<1


181
<10
<10


509
<5
<5


526
<1
<5


553
<5
<5


563
<1
<1


566
<5
<5


614
<5
<5


637
<10
<10









Especially compound 5 and derivatives display high anti-proliferative potencies against human tumor cell lines, as they show EC50 values in the nanomolar range


II.3) Cellular Assay: Testing of Substrate Inhibition (Western Blotting)


This method enables a statement of whether the kinase modulator investigated achieves the desired effect in a cellular context too, i.e., in this case, a substrate protein downstream of the target kinase is examined for its phosphorylation status. To this end, the cells incubated with substance are lysed and the overall protein is separated on a reducing polyacrylamide gel. Subsequently, the proteins are transferred to a PVDF membrane by Western blotting and the substrate bands sought are made visible with specific antibodies and a suitable detection method. The substrate proteins down-stream of the target kinases are detected simultaneously with an anti-phospho antibody which is specific in each case and a total antibody which recognizes the substrate total protein. The duplex technology of the ODYSSEY imager (LiCOR) enables this simultaneous measurement. The intensity of the total substrate bands is employed to normalize and quantify the phosphorylation inhibition or activation.


Testing


Suitable tumor cell lines (e.g. BxPC3, Hct116 or MDA MB468) were seeded into 6-well microtitre plates in a defined cell count (e.g. 350 000 cells/well for BxPC3 and Hct116) in the particular standard complete media and then incubated overnight at 37° C., 5% CO2 and 95% air humidity. Afterwards, the cells were incubated for 24 h under serum-reduced conditions, i.e. in the particular medium except at only 0.25% serum. The test substances were made up as stock solutions (10 mM) in DMSO and incubated with the cells at final concentrations of 5, 15.8 and 50 μM for 5 h. This was followed by cell lysis in 25 mM Tris, 150 mM NaCl, 10 mM sodium pyrophosphate, 2 mM EGTA, 25 mM beta-glycerophosphate, 25 mM NaF, 10% glycerol, 0.75% NP-40, 100 μM NaVO4 buffer. After protein quantification using the BCA (bicinchonic acid protein assay kit, Sigma) assay, amounts of protein of about 20 μg per track were separated on a Lämmli polyacrylamide gel and then transferred onto a PVDF membrane (Millipore) by semi-dry Western blotting at 0.8 mA/cm2 for 1 h. This was followed by prehybridization of the membrane for 1 hour in I-block reagent (Applied Biosystems) and overnight simultaneous incubation with the specific antibodies. To determine the Erk and PI3K inhibition, the next substrates Rsk1 downstream were detected with the total antibody (Rsk #sc-231g C-21, Santa Cruz) and the phospho antibody (Phospho-p90RSK (S380) #9341, NEB Cell Signalling) and Akt with the total antibody (Akt1 #sc-1618 C-20, Santa Cruz) and the phospho antibody (Phospho-Akt (Ser 473) #9271, NEB Cell Signaling). After the membrane had been washed, the secondary antibodies were incubated with anti-rabbit IR Dye 800 (#611-732-127, Rockland) for the phospho antibodies and anti-goat Alexa Fluor 680 (#A-21081, Molecular samples) for the total protein antibodies. After incubation for 30 min at room temperature in the dark, the hybridization of the detection antibody was detected on the membrane by scanning in an ODYSSEY imager (LiCOR).


Evaluation


At concentrations of 5-50 μM, the compounds of the invention exhibited selective inhibition of PI3K or dual inhibition of Erk (MAPK1/2) and of PI3K (see Table 3), which is indicated by inhibition of the phospho-band intensity of the downstream substrates Rsk1 and Akt.









TABLE 3







Inhibition of cellular substrate phosphorylation (at 50 μM)









Compound
PI3K →pAkt
Erk →pRsk












5
100%
0%


46
 40%
100% 


50
100%
0%


54
100%
90% 


55
 90%
0%


56
100%
0%









Especially, pyridopyrazines such as compound 5 show total inhibition of cellular phospho-Akt at compound concentrations <50 μM. The Raf-Mek-Erk pathway is not affected by these derivatives, as phospho-Rsk is not inhibited.


Also, pyridopyrazines, substituted by—NH-heteroaryl at the pyrazine ring (for example, compounds 50, 55 and 56), exhibit cellular PI3K selectivity, as they do not block the Raf-Mek-Erk pathway or show inhibition of phospho-Rsk respectively.


Pyridopyrazines, substituted by heteroaryl at the pyrazine ring (for example, compounds 46 and 54) exhibit a dual mode of kinase inhibition, as they inhibit both, the PI3K-Akt and the Raf-Mek-Erk-Rsk pathways.


Abbreviations















Akt
from: murine Akt8 retrovirus or protein kinase B (PKB)


Ask1
apoptosis signal-regulating kinase


ATR
ataxia-telangiectasia and Rad3-related


ATM
ataxia-telangiectasia mutated


Bag1
Bcl-2 associated athanogene-1


Bcl-2
B-cell leukaemia/lymhoma-2 gene


DNA-PK
DNA-dependent protein kinase


Erk
extracellular signal-regulated kinase


Flt-3
fms like tyrosine kinase 3


GSK-3
glycogen synthase kinase-3


hSMG-1
human orthologue of product of seven nematode gene-1


JAK-3
Janus kinase 3


JNK
c-jun N-terminal kinase


MAPK
mitogen activated protein kinase


Mek
MAP or Erk kinase


mTOR
mammalian target of rapamycin


PDGFR
platelet derived growth factor receptor


PI3K
phosphoinositol 3-kinase


PIKK
phosphoinositol 3-kinase related kinase


PIP2
phosphatidylinositol biphosphate


PIP3
phosphatidylinositol triphosphate


PtdIns
phosphatidylinositol


Raf
rapid accelerated fibrosarcoma


Ras
rat sarcoma


RTK
receptor tyrosine kinase


SAPK
stress-activated protein kinase


Ser
serine


Syk
spleen tyrosine kinase


Thr
threonine


Tyr
tyrosine


VEGFR
vascular endothelial growth factor receptor








Claims
  • 1. A method of modulating one or more signal transduction pathways selected from the group consisting of ras-Raf-Mek-Erk signal transduction pathway, PI3K-Akt signal transduction pathway and SAPK signal transduction pathway, the method comprising adminstering an effective amount of at least one pyrido[2,3-b]pyrazine of formula (Ia) to a mammal in need thereof:
  • 2. The method of claim 1, where two or more enzymes are modulated.
  • 3. The method of claim 2, where at least one enzyme is selected from the group consisting of Erk, Erk1, and Erk2; and at least one enzyme is selected from the group consisting of PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, and PI3K-Vps34p.
  • 4. The method of claim 2, where at least one enzyme is selected from the group consisting of Jnk, Jnk1, Jnk2, Jnk3, p38, p38alpha, p38beta, p38gamma, and p38delta; and at least one enzyme is selected from the group consisting of: PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, and PI3K-Vps34p.
  • 5. The method of claim 2, where at least one enzyme is selected from the group consisting of Erk, Erk1, and Erk2; and at least one enzyme is selected from the group consisting of ATM, ATR, mTOR, DNA-PK, and hSMG-1.
  • 6. The method of claim 2, where at least one enzyme is selected from the group consisting of Jnk, Jnk1, Jnk2, Jnk3, p38, p38alpha, p38beta, p38gamma, and p38delta; and at least one enzyme is selected from the group consisting of ATM, ATR, mTOR, DNA-PK, and hSMG-1.
  • 7. The method of claim 2, where at least one enzyme is selected from the group consisting of PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, and PI3K-Vps34p; and at least one enzyme is selected from the group consisting of ATM, ATR, mTOR, DNA-PK, and hSMG-1.
  • 8. The method of claim 1, where the signal transduction pathway is ras-Raf-Mek-Erk signal transduction pathway and PI3K-Akt signal transduction pathway.
  • 9. The method of claim 8, where the modulation of ras-Raf-Mek-Erk signal transduction pathway comprises modulating one or more enzymes selected from the group consisting of tyrosine kinase, serine/threonine kinase, receptor-tyrosine kinase, cytoplasmic tyrosine kinase, and cytoplasmic serine/threonine kinase.
  • 10. The method of claim 9, where the one or more enzymes is a tyrosine kinase that is selected from the group consisting of Erk, Erk1, and Erk2.
  • 11. The method of claim 1, where the signal transduction pathway is SAPK signal transduction pathway.
  • 12. The method of claim 11, where the modulation of SAPK signal transduction pathway comprises modulating one or more enzymes selected from the group consisting of tyrosine kinase, serine/threonine kinase, receptor-tyrosine kinase, cytoplasmic tyrosine kinase, and cytoplasmic serine/threonine kinase.
  • 13. The method of claim 12, where the one or more enzymes is a tyrosine kinase and is selected from the group consisting of Jnk, Jnk1, Jnk2, and Jnk3.
  • 14. The method of claim 1, where the signal transduction pathway is PI3K-Akt signal transduction pathway.
  • 15. The method of claim 14, where the modulation of PI3K-Akt signal transduction pathway comprises modulating one or more enzymes selected from the group consisting of PI3K, PI3Kalpha, PI3Kbeta, PI3Kgamma, PI3Kdelta, PI3K-C2alpha, PI3K-C2beta, and PI3K-Vps34p.
  • 16. The method of claim 1, comprising modulating one or more enzymes selected from the group consisting of ATM, ATR, mTOR, DNA-PK, and hSMG-1.
  • 17. The method of claim 1, where the signal transduction pathway is ras-Raf-Mek-Erk signal transduction pathway.
  • 18. The method of claim 1, where the signal transduction pathway is SAPK signal transduction pathway and PI3K-Akt signal transduction pathway.
  • 19. The method of claim 1, where modulating is inhibiting.
  • 20. The method of claim 1, where the at least one pyrido[2,3-b]pyrazine is administered before and/or during and/or after the treatment by radiation therapy and/or surgery.
  • 21. The method of claim 1, wherein the at least one pyrido[2,3-b]pyrazine is a stereoisomer, a geometric isomer, or a tautomer.
  • 22. The method of claim 1, wherein the at least one pyrido[2,3-b]pyrazine is 1-ethyl-3-[3-(3,4,5-trimethoxy-phenylamino)-pyrido[2,3-b]pyrazin-6-yl]-thiourea.
  • 23. The method of claim 1, wherein the at least one pyrido[2,3-b]pyrazine is 1-allyl-3-[3-(3,4,5-trimethoxy-phenylamino)-pyrido[2,3-b]pyrazin-6-yl]-thiourea.
  • 24. The method of claim 1, wherein the at least one pyrido[2,3-b]pyrazine is 1 -cyclobutyl-3 -[3 -(3,4,5 -trimethoxy-phenylamino)-pyrido [2,3-b ]pyrazin-6-yl]-thiourea.
  • 25. The method of claim 1, wherein the mammal is suffering from a disease selected from the group consisting of a malignant tumor, an inflammatory disorder, inflammation, a rheumatic disorder, an arthritic disorder, a human immunodeficiency virus (HIV) infection, rheumatism, arthritis, AIDS, AIDS related complex (ARC), Kaposi's sarcoma, a brain tumour, a meningeal tumor, a nervous system tumor, dementia, Alzheimer' s disease, a hyperproliferative disorder, a colon tumor, a stomach tumor, an intestinal tumor, a lung tumor, a pancreatic tumor, an ovarian tumor, a prostate tumor, leukemia, melanoma, a liver tumor, a kidney tumor, a head tumor, a throat tumor, glioma, a breast tumor, uterine cancer, endometrial cancer, cervical cancer, a brain tumor, adenocanthoma, bladder cancer, a colorectal tumor, esophageal cancer, gynecological tumor, ovarian tumor, thyroid cancer, lymphoma, chronic leukemia, acute leukemia, restenosis, diabetes, a metabolic disorder, a solid tumor, rheumatic arthritis, an allergy, an allergic disorder, atherosclerosis, a cardiac disorder, a cardiovascular disorder, an angiogenetic disorder, ischemia, cardiac hypertrophy, obesity, excess weight and hypertension.
Priority Claims (1)
Number Date Country Kind
07107976 May 2007 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of 12/117,942 field May 9, 2008, now U.S. Pat. No. 8,202,883 and claims the benefit of U.S. 60/917,129 filed May 10, 2007.

US Referenced Citations (8)
Number Name Date Kind
3898216 Weaver Aug 1975 A
7276507 Claus et al. Oct 2007 B2
7323468 Claus et al. Jan 2008 B2
20070123494 Seipelt et al. May 2007 A1
20070149484 Claus et al. Jun 2007 A1
20070275972 Claus et al. Nov 2007 A1
20080113991 Claus et al. May 2008 A1
20090275534 Gerlach et al. Nov 2009 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2008138878 Nov 2008 WO
Non-Patent Literature Citations (8)
Entry
Hackam, et al. JAMA, 296(14), 2006, 1731-1732.
Jordan, V.C. Nature Reviews: Drug Discovery, 2, 2003, 205.
Dörwald, F. Zaragoza. Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2005, Preface.
U.S. Appl. No. 13/439,107, filed Apr. 4, 2012, Gerlach, et al.
U.S. Appl. No. 13/455,435, filed Apr. 25, 2012, Gerlach, et al.
U.S. Appl. No. 13/439,150, filed Apr. 4, 2012, Gerlach, et al.
U.S. Appl. No. 13/542,101, filed Jul. 5, 2012, Gerlach, et al.
U.S. Appl. No. 13/523,968, filed Jun. 15, 2012, Claus, et al.
Related Publications (1)
Number Date Country
20120209050 A1 Aug 2012 US
Provisional Applications (1)
Number Date Country
60917129 May 2007 US
Divisions (1)
Number Date Country
Parent 12117942 May 2008 US
Child 13455187 US