The present invention is in the field of cell therapy.
References considered to be relevant as background to the presently disclosed subject matter are listed below:
Acknowledgement of the above references herein is not to be inferred as meaning that these are in any way relevant to the patentability of the presently disclosed subject matter.
Multiple cell therapy products, autologous or allogeneic, particularly in cancer therapy, are based on a heterogenic mixture of cells as a raw material (Watkins et al, 2017; Turtle et al, 2016). The isolation and enrichment techniques currently utilized to reduce toxicity of the transplanted cell populations, may result in a more defined, final product, which is lacking some of the desired biological activities due to the non-selective nature of the depletion techniques (Lamb et al, 2017). These isolation techniques utilize mechanical or phenotypic characteristics, often too rough, and not sensitive enough to differentiate between desired and undesired cells within a cell population. A new method to standardize the starting material used for manufacturing of cell-based products is required, to get a final product which is well characterized and reproducible with a defined biological activity. Preferably this method will be used ex vivo, prior to patient treatment with the cell product, to reduce side effects and improve outcome.
Another major goal in cell therapies for selective depletion, for example in the field of autoimmune diseases therapy, is developing effective therapeutic strategies to reduce the activation potential and the pro-inflammatory reaction (Baecher-Allan et al, 2018).
An additional challenge in cell therapy is in the field of regenerative medicine, when the starting material is a heterogeneous population, where the non-effective cells are diminishing the potency of the cell therapy product (Mazar J, 2009: Knight, 2010).
An example of the difficulty in using a heterogenic population in cell therapy is the case of chimeric antigen receptor genetically engineered T (CAR-T) cells. Adoptive T cell therapy (ACT) utilizing CAR-T cells that has been investigated for various anti-tumor treatments may provide an effective way to treat several cancers, since CAR-T cells can be genetically engineered to specifically recognize antigenically-distinct tumor populations (see for example Locke et al, 2017). These T cell-based therapies have been shown in clinical trials to be remarkably promising for highly refractory B-cell malignancies. However, since in most reported trials, patients have received T-cell products comprising random compositions of T cell subsets, each patient received a different therapeutic agent, which may have influenced the efficacy of the T-cell therapy, and complicated comparison of outcomes between different patients and across trials. Recent studies by the group of Riddle & Maloney, in ALL patients, suggest that the CAR-T-cell products generated from defined T-cell subsets can provide uniform potency compared with products derived from unselected T cells, which vary in phenotypic composition. (Turtle et al, 2016; and Sommermeyer et al, 2016).
The CAR-T cell immunotherapy presents major challenge in toxicity management. The two most commonly observed toxicities with CAR-T cell therapies are the CAR-T cell related encephalopathy syndrome (CRES) and the cytokine release syndrome (CRS), which ranges from mild to life threatening, a constellation of inflammatory symptoms resulting from elevated cytokines usually within the first week and peaks within 1-2 weeks of cell administration, and associated with T cell activation and proliferation (Bonifant et al 2016). The risk of toxicity is limiting wide deployment of the CAR-T cell treatment. The current medical strategy for reducing the toxicities related to the CAR-T cell therapy includes post treatment anti-inflammatory modalities. For example, anti-IL6 receptor or an IL6 receptor antagonist, and corticosteroids, both modalities suppress inflammatory responses and are, therefore, effective in the management of CRS and CRES that are associated with the cellular therapies. The drawback however is that these treatments are down regulating the immune response, and their potential to block T cell activation and abrogate clinical benefit is a concern. The challenge in toxicity management is controlling symptoms without compromising efficacy (Bonifant et al, 2016).
An additional challenge is the transduction efficiency. Transduction efficiency is affected by the T cells quality. Activation of the T cells is a pre-requisite for efficient transduction as primary human T cells are non-dividing quiescent cells in vitro. In addition, the quality of T cells of patients which have undergone chemotherapy is compromised. T cell dysfunction is common and frequently cannot be fully reversed during the manufacturing process (Graham et al 2018).
Another challenge concerns post treatment immune down regulation. It is possible that CAR modified T cells will be rendered ineffective upon entering the suppressive tumour microenvironment. This is especially important in the attempts to develop CAR-T cells therapy for solid tumours. Apoptotic signalling within the tumour milieu is down regulating all immune effector cells.
Studies suggest that mature effector cells such as effector memory T cells (EM) are less efficient CAR-T cells in in vivo T cell expansion, survival, persistence and antitumor activity than CAR-T cells manufactured from early differentiated, less mature T cells, mostly naïve and central memory (CM) (Sommermeyer D, 2016, and Xu Y, 2014).
WO2013/132477 discloses devices and methods for selecting apoptosis-signaling resistant cells comprising exposing immune cell populations to an apoptosis-inducing ligand.
In a first of its aspects, the present invention provides a method for producing a population of cells enriched with non-activated/non-mature cells, comprising:
In one embodiment, said mammalian cells are human cells.
In another embodiment, said mammalian cells are selected from the group consisting of immune cells and multipotential stromal/mesenchymal stem cells.
In one embodiment, said non active/non-mature cells are immune cells.
In one embodiment, said non active/non-mature cells are naïve-immune cells.
In one embodiment, said container comprises a physiological solution and/or a growth medium, and/or autologous or non-autologous human plasma.
In a specific embodiment, the present invention provides a method for producing a population of cells enriched with naïve-immune cells, comprising:
In one embodiment, said naïve-immune cells are naïve-T cells or naïve-B cells.
In another embodiment, said biological sample is selected from the group consisting of mobilized peripheral blood cells, peripheral blood mononuclear cells (PBMC), enriched CD3+ T cells, enriched CD4+ or CD8+ T cell, enriched B cells, cord blood cells and bone marrow cells.
In one embodiment, said immune cells are autologous to the patient or allogenic to the patient.
In one embodiment, said container comprises a physiological solution and/or a growth medium, and/or autologous or non-autologous human plasma.
In one embodiment, the apoptosis inducing ligand is immobilized on an inner surface of the container or on beads or films comprised in the container.
In one embodiment, the apoptosis inducing ligand is selected from the group consisting of TNF-α, Fas ligand (FasL), TRAIL and TWEAK.
In one embodiment, said contacting step with an apoptosis inducing ligand is performed for between about 1 hour to about 48 hours.
In one embodiment, said contacting step is performed for about 2 hours.
In one embodiment, said apoptosis inducing ligand is FasL and wherein said FasL is administered in a concentration of between about 1 to about 800 ng/ml.
In one embodiment, FasL is administered at a concentration of about 100 ng/ml.
In one embodiment. FasL is administered at a concentration of about 10 ng/ml.
In one embodiment, said mature cells are mature T cells selected from the group consisting of TH1/TC1, TH17, TSCM, TCM, TEM, and Teff cell populations.
In another aspect, the present invention provides, a population of cells enriched for naïve-T cells prepared by the method of any one of the preceding claims.
In one embodiment, said cells enriched for naïve-T cells are characterized as CCR7+CD45RA+CD95-LFA1low.
In another aspect, the invention provides the population of cells enriched for naïve-T cells of the invention for use in the treatment of cancer and autoimmune diseases.
In another aspect, the invention provides the population of cells enriched for T cells that maintain their activation potential as a pre-requisite for genetic modification, for use in the treatment of cancer and autoimmune diseases.
In another aspect, the invention provides a method of treating autoimmune diseases in a patient comprising administering to said patient a population of cells enriched for naïve-T cells prepared by the methods of the invention.
In one embodiment, said mature cells are mature B cell populations selected from the group consisting of memory and plasmablast B cell populations.
In another aspect, the present invention provides a population of cells enriched for naïve-B cells prepared by the methods of the invention.
In one embodiment, said naïve-B cells are characterized as CD27+CD38+.
In another aspect, the present invention provides the population of cells enriched for naïve-B cells of the invention for use in the treatment of cancer, autoimmune diseases, or inflammatory diseases.
In another aspect, the present invention provides a method of treating autoimmune diseases in a patient comprising administering to said patient a population of cells enriched for naïve-B cells prepared by the methods of the invention described herein.
In another aspect, the present invention provides a method of treating autoimmune diseases comprising:
In another aspect, the present invention provides a method of treating cancer in a patient comprising administering the population of cells enriched for non-mature T cells of the invention, wherein said cells preserve their anti-cancer activity.
In another aspect, the present invention provides a method for producing CAR-T cells, comprising:
In one embodiment, said mammalian cells are human cells.
In one embodiment, said biological sample is selected from the group consisting of peripheral blood mononuclear cells (PBMC), enriched CD3+ T cells, enriched CD4+ T cells, enriched CD8+ T cells and any combination thereof.
In one embodiment, said cells are PBMC.
In one embodiment, said T cell activating agents are anti-CD3 and anti CD28 antibodies.
In one embodiment, the apoptosis inducing ligand is selected from the group consisting of FasL, TNF-α, TRAIL and TWEAK.
In one embodiment, said contacting step with an apoptosis inducing ligand is performed for between about 1 hour to about 48 hours.
In one embodiment, said contacting step is performed for about 2 hours.
In one embodiment, said apoptosis inducing ligand is FasL and said FasL is administered in a concentration of between about 1 to about 800 ng/ml.
In some embodiments, FasL is administered at a concentration of about 10 ng/ml, 50 ng/ml or 100 ng/ml.
In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
(O) and (P) are graphs showing expression of CD25 receptor (activation marker) as measured in FasL treated T helper (CD4+ CD25+) cells (O), and T cytotoxic (CD8+CD25+) cells (P), compared to MPBCs control using flow cytometry. (Q) Percentage of regulatory T cells (Tregs) (CD127-) out of CD4+CD25+ activated helper T cells following FasL treatment compared to MPBCs control. Mean+SEM, n=11 independent grafts. Statistical analysis was made using non-parametric, paired Student's T test *P<0.05, **P<0.01, ***P<0.001 ****P<0.0001.
The present invention is based on the surprising finding that exposure of a heterogeneous population of immune cells, e.g. cells obtained from G-CSF mobilized peripheral blood samples of human donors, to the apoptosis-inducing ligand Fas-L, causes a shift in the composition and activation state of cells present in the sample. In particular, the cells that are affected by the treatment are mature, apoptosis susceptible T cell subtypes. B cells and myeloid cells, all of which express variable levels of the Fas (CD95) receptor.
Apoptosis is a programmed cell death, which may be mediated by specific receptors for members of the TNF superfamily (including for example FasL (the terms FasL and Fas-L are used interchangeably herein), TNFα, TRAIL. TWEAK). These receptors are expressed on a variety of cell populations, mostly on mature activated cells, in which the expression of these specific receptors is correlated with controlled cell death, making them apoptosis susceptible cells, while naïve cells are insensitive. Other cell types may be resistant to death ligand-induced apoptosis, despite death ligand receptor expression, due to intracellular mechanisms (Kim et al 2002). The differential sensitivity to induced cell death may be used as a selection tool.
Mature T and B cells express the Fas receptor and are susceptible to the apoptotic effects of Fas ligand (Sprent and Tough, 2001; Strasser et al 2009). The Fas-L treatment as proposed in the present invention uses this Fas-Fas ligand mechanism to eliminate these apoptosis susceptible, reactive cells, that are found in lower levels at a steady state in the blood of healthy donors, as well as in high levels in the blood of auto-immune patients or patients with inflammatory diseases, and thereby may reduce the acute, undesired, pro-inflammatory reaction.
The inventors of the present invention demonstrate that amongst the T cells in G-CSF mobilized peripheral blood cells, helper T cells (TH) (i.e. CD4+ cells) express higher levels of Fas receptor (FasR) than cytotoxic T cells (TC) (i.e. CD8+), and that mature subtypes of both TH and TC cells (including memory and effector T cells, and TH1/TC1 and TH17 cells), as well as T stem cell memory (TSCM) cells express extensive levels of FasR as compared to naïve T cells.
Furthermore, the inventors show that in G-CSF mobilized peripheral blood cells that were incubated with an apoptotic inducer (e.g. FasL), a significant reduction of both CD4+ TH cells and CD8+ TC cells occurred. Furthermore, FasL selectively depleted specific subtypes of both TH and TC cells, namely helper and cytotoxic TSCM populations.
The naïve T cells derived TSCM cells are a specific subtype of naïve T cells. Current studies indicate that upon activation, the TSCM further differentiate into memory and effector T cells that play a significant role in T cell reconstitution and pro-inflammatory responses (Zhang et al 2005, and Roberto et al 2015). The TSCM subtype was shown by the inventors to express high levels of FasR and thereby are the fraction of naïve population which is mostly susceptible to Fas-L treatment.
In addition to T cells, other immune cells such as B cells and myeloid cells are also affected by FasL treatment.
Accordingly, the present invention provides a method of modifying a mixed cell population such as an immune cell population, to comprise less differentiated immune cells (e.g. T cells, B cells and myeloid cells), by exposing the immune cell population to an apoptosis inducing ligand. Such a modified immune cell population can be used in any method comprising immune cell transplantation in which the elimination of apoptosis susceptible cells from the transplant may increase the utility of the transplantation by reducing pro-inflammatory reaction of the apoptosis susceptible cells, e.g. T or B or myeloid cells.
Therefore, in a first of its aspects, the present invention provides a method for producing a population of cells enriched with non-activated/non-mature cells, comprising:
In one embodiment, said heterogeneous population of mammalian cells is a population of immune cells. Said heterogeneous population comprises apoptosis resistant and apoptosis susceptible immune cells, including apoptosis susceptible-T cells and/or apoptosis susceptible B cells.
As used herein the term “apoptosis susceptible-T cells” encompasses CD95+ T cell subtypes, including, but not limited to TH1/TC1. TH17, TSCM, TCM, TEM, and Teff. In certain embodiments, these T cell subtypes are defined by the expression profile of certain markers, as follows:
TSCM (CCR7+CD45RA+CD95+LFA1high),
TCM (CCR7+CD45RA− CD95+LFA1high),
TEM (CCR7−CD45RA− CD95+LFA1high),
Teff (CCR7−CD45RA+CD95+LFA1high),
TH1/TC1 (CD3+ CD4+CXCR3+),
TH17 (CD3+ CD4+ CCR6+CXCR3−).
As used herein the term “naïve T cells” encompasses cells that are CD95−. In one embodiment naïve T cells are defined by the following expression profile: CCR7+CD45RA+CD95−LFA1low.
As used herein the term “apoptosis susceptible B cells” encompasses CD95+ B cell subtypes, including, but not limited to Plasma blast, memory cells, transitional or naïve B cells. In certain embodiments, these B cell subtypes are defined by the expression profile of certain markers, as follows:
B transitional (CD27−CD38+)
B naïve (CD27−CD38−)
B Memory cells (CD27+CD38−)
B Plasmablast (CD27+CD38+)
In one embodiment, said container is made of a biocompatible material. In one embodiment, said apoptosis-inducing ligand is immobilized to an inner surface of the container.
According to another embodiment, said apoptosis-inducing ligand is immobilized to the surface of beads present within the container.
According to another embodiment, the container is selected from a group consisting of a bag, a column, a tube, a bottle, a vial and a flask.
In one embodiment, the apoptosis inducing ligand is selected from the group consisting of TNF-α, Fas ligand (FasL), TRAIL and TWEAK.
In a specific embodiment, the apoptosis inducing ligand is Fas-L.
The existing technologies of adoptive cell therapies use modified, activated or engineered autologous cells. One of the limitations of the autologous based therapies, is the need to generate tumor specific lymphocytes for each individual patient, which is technically and economically challenging. However, allogeneic adoptive transfer faces the danger of graft-versus-host-disease (GvHD). Pre-selection of the administered activated T cells, to reduce the GvHD causing cells, could result in a tumor specific treatment, without the risk of off-tumor damage.
Therefore, in one embodiment, the method of the invention can be employed in the preparation of autologous cell populations expressing a recombinant B cell antigen receptor, e.g. CAR-T cell transplantation, while reducing the risk of high levels of released cytokines.
In another embodiment the method of the invention can be employed in the preparation of allogeneic cell populations expressing a recombinant B cell antigen receptor, e.g. CAR-T cell transplantation, while reducing the risk of high level release of cytokines and in addition mitigating the risk of GvHD.
In another embodiment the method of the invention can be employed for reducing inflammatory causing cells with auto reactivity, such as in T cell mediated autoimmune and inflammatory diseases, including but not limited to Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Autoimmune Diabetes, Diabetes mellitus type 1 and type 2, SLE (Systemic Lupus Erythematosus), Myestenia gravis, Progressive systemic sclerosis, Hashimoto's thyroiditis, Grave's disease. Autoimmune haemolytic anemia. Primary biliary cirrhosis, Crohn's disease, Ulcerative Colitis, Rheumatoid Spondylitis, Osteoarthritis. Gouty Arthritis, Arthritic conditions, Inflamed joints, Eczema, Inflammatory skin conditions, Inflammatory eye conditions, Conjunctivitis, Pyresis, Tissue necrosis resulting from inflammation, Atopic dermatitis, Hepatitis B antigen negative chronic active hepatitis, Airway inflammation, Asthma and Bronchitis.
In one embodiment, the method of the invention can be employed for decreasing immunological activity by reducing the pro-inflammatory TH1 and TH17 populations, which are known to elevate autoimmune reactions in autoimmune Multiple Sclerosis (MS) (Baecher-Allan et al, 2018). Namely, in accordance with one embodiment of the invention, the MS patient's peripheral mononuclear cells are removed temporarily, treated with an apoptosis-inducing ligand (e.g. FasL), resulting in lowering the autoimmune load and re-transplanted into the patient clean from autoreactive clones.
In another embodiment the method of the invention can be employed for reducing auto-antibody producing B cells or B cell antigen presentation, in autoimmune diseases such as, but not limited to, Lupus erythematosus (Nashi et al, 2010), Multiple Sclerosis (Baker et al, 2017).
In one embodiment the method of the invention can be employed for using progenitor cells such as Multipotential Stromal/Mesenchymal Stem Cells, Neural Progenitor Cells and Endothelial Progenitor Cells in regenerative medicine, in improving the outcome due to administration of a selected population.
In another embodiment, the method of invention can be employed in facilitating the use of double cord blood as a method for hematopoietic stem cell transplantation, namely, in lowering the GvHD and the cross attack of one cord unit's cells to the other.
In another embodiment, a heterogeneous population of donor cells is obtained (e.g. G-CSF (Granulocyte Colony Stimulating Factor) Mobilized Peripheral Blood cells obtained from apheresis of healthy, consenting, stem cell donors). The cells are incubated with an apoptosis inducing ligand (e.g. Fas Ligand). FasL is removed from the cell culture, e.g. by one or more washing steps. In one embodiment, no further isolation steps are performed.
In certain embodiments, incubation with the apoptosis-inducing ligand (e.g. FasL) may be performed in a device having FasL attached to a surface thereof.
The present invention discloses a method for producing a cell population from which specific subtypes of apoptosis susceptible cells are depleted. The method enables simultaneous positive selection for immune cells which support engraftment, the desired activity such as anti-tumor activity, cells which support tissue regeneration and negative selection for cells which have a detrimental effect such as release of life threatening levels of cytokines, cells which are directed to self-antigens, cells which are the key players in causing graft versus host disease (GvHD), cells which have an inflammatory causing profile or other effects, out of a heterogeneous cell population.
The immune cell population comprises apoptosis-signaling resistant cells and apoptosis-signaling sensitive cells. The method comprises providing a sample comprising a heterogeneous cell population, incubating the cells with an apoptosis inducing ligand, thereby eliminating the more apoptosis-sensitive cells (e.g. mature effector cells) from the sample and enriching the population with the apoptosis-signaling resistant cells (e.g. naïve-T or B or myeloid or CD34 cells or other progenitors).
Described are methods for preparing populations of cells, such as genetically modified T cells, e.g. T cells expressing a chimeric antigen receptor, or some other activated T cells and having lower toxicity and GvHD or other toxic activity. The method entails contacting the cells with an apoptosis inducing ligand, e.g., during various steps of the therapeutic cell preparation, for example prior to or after culturing and expansion of the T cell population expressing the recombinant antigen receptor.
A chimeric antigen receptor (CAR) is a recombinant biomolecule that can bind specifically to a target molecule present on the cell surface of a target cell, for example, the CD19 antigen on B cells. Non-limiting examples of CAR molecules include a chimeric T-cell receptor, an artificial T-cell receptor or a genetically engineered receptor. These receptors can be used to endow the specificity of a monoclonal antibody or a binding portion thereof onto a desired cell, e.g. a T cell. CARs can bind antigen and transduce T cell activation, independent of MHC restriction. Thus, CARs are “universal” immune-receptors which can treat a population of patients with antigen-positive tumors irrespective of their HLA genotype. Adoptive immunotherapy using T lymphocytes that express a tumor-specific CAR can be a powerful therapeutic strategy for the treatment of cancer.
CAR coding sequences can be produced by any means known in the art, though preferably it is produced using recombinant DNA techniques. Nucleic acids encoding the several regions of the chimeric receptor can be prepared and assembled into a complete coding sequence by standard techniques of molecular cloning known in the art (genomic library screening, PCR, primer-assisted ligation, site-directed mutagenesis, etc.). The resulting coding region is preferably inserted into an expression vector and used to transform a suitable expression host cell, preferably a T lymphocyte. There are several available techniques for inserting a gene into a host genome, using viral or non-viral transfection vectors. For example, a nucleic acid may be injected through a cell's nuclear envelope directly into the nucleus or administered to a cell using viral vectors to produce genetically modified cells.
Transfection with a viral vector is a common technique for producing genetically modified cells, such as T cells. This technique is known as viral transduction. The nucleic acid is introduced into the cells using a virus, such as a lentivirus or adenovirus, or a plasmid, as a carrier using methods well known in the art.
Peripheral blood mononuclear cells as well as enriched T cell populations (e.g. CD4+ and CD8+ T cells) can be isolated by various methods, transduced with a vector for CAR expression and cultured by the methods described herein.
As used herein the term “CAR-T” or “CAR-T cells” refers to T cells that were transduced with a CAR construct.
As used herein the term “CAR construct” refers to a vector comprising the gene encoding the desired CAR, optionally further comprising additional nucleic acid sequences required for expression of said gene and optionally further comprising additional components encoding accessory molecules for enhancing the CAR function.
As used herein the term “mononuclear cells” refers to any blood cell having a round nucleus. These cells consist of lymphocytes (T cells, B cells, NK cells) and monocytes. The term “peripheral blood mononuclear cells” refers to a mononuclear cell found in peripheral blood.
PBMC can be isolated from whole blood using methods well known in the art, for example using ficoll, a hydrophilic polysaccharide that separates layers of blood, and gradient centrifugation, which will separate the blood into a top layer of plasma with platelets, followed by a layer of mononuclear cells and a bottom fraction of polymorphonuclear cells (such as neutrophils and cosinophils) and erythrocytes.
For example, T cells can be isolated from peripheral blood by gradient separation, elutriation or affinity purification. The cells are incubated with an apoptosis-inducing ligand and thereby the cell population is shifted towards a more immature state. The cells can then be transduced with, for example, a SIN lentiviral vector that directs the expression of a CAR (e.g., a CD19 or HER2 specific CAR). The genetically modified T cells can be expanded in vitro and then cryopreserved or provided freshly for immediate use. Alternatively, the T cells can be transduced with, for example, a SIN lentiviral vector that directs the expression of a CAR (e.g., a CD19 or HER2 specific CAR), then the cells are incubated with an apoptosis-inducing ligand and thereby the cell population is shifted towards a more immature state. The selected, genetically modified T cells can be expanded in vitro and then cryopreserved or provided freshly for immediate use.
As demonstrated in the Examples below, exposure of peripheral blood mononuclear cells to FasL prior to activation with anti-CD3/CD28 antibodies resulted in selection for cells with higher potential to be efficiently transduced into CAR-T cells, as measured by the number of CAR expressing cells and by the level of IFNγ secreted by these cells upon exposure to the target antigen.
Therefore a step of exposure to FasL during the procedure of CAR-T production (and in particular prior to the activation step of the cells) may result in improved transduction, in particular, but not limited to, in the setting of autologous CAR-T transplantation, where transduction efficiency is impaired, for example due to previous chemotherapy treatments.
In addition, as demonstrated in the Examples below, FasL treatment after transduction may decrease potential pro inflammatory CAR T-cells and their activation state. Therefore, a step of exposure to FasL after the transduction step may result in reducing the cytokine release storm, or mitigating GvHD development in the setting of allogeneic CAR-T transplantation.
Therefore, in another one of its aspects the present invention provides a method for producing CAR-T cells, said method comprising:
In certain embodiments said method results in obtaining improved transduction efficiency. In certain embodiments said method results in reduced cytokine release storm, or reduced GvHD in the patient, in the setting of allogeneic CAR-T transplantation.
In one embodiment, said isolated mononuclear cells are peripheral blood mononuclear cells. In some embodiments said mononuclear cells are enriched with CD3+, CD4+ and/or CD8+ T cells.
In one embodiment, said activating step (b) is performed for a period of between about 1-3 days. In one specific embodiment said activating step is performed for about 48 hours (2 days).
The terms “Transduction” or “Transducing” as used herein refer to methods of transferring the CAR construct into the T cell by way of a vector which results in integration of the CAR transcript into the cell. Common techniques use infection with a virus, viral vectors, electroporation, protoplast fusion, transposon/transposase system (e.g. see Hackett et al (2010)), and chemical reagents to increase cell permeability, e.g. calcium phosphate transfection. Viruses commonly used for gene therapy are adenoviruses, adeno-associated viruses (AAV), retroviruses or lentiviruses, for example.
Terms in the disclosure herein should be given their plane and ordinary meaning when read in light of the specification. One of skill in the art would understand the terms as used in view of the whole specification.
As used herein, “a” or “an” may mean one or more than one.
As used herein, the term “about” indicates that a value includes the inherent variation of error, e.g. a 10% variation.
This experiment was performed with samples of G-CSF (Granulocyte Colony Stimulating Factor) Mobilized Peripheral Blood cells (MPBC) obtained from apheresis of healthy, consenting, stem cell donors. Donors received G-CSF (10-12 μg/kg/day) for a period of 4-5 days prior to the leukapheresis. The cells underwent two washing steps with buffer containing EDTA, and were incubated at a concentration of 100±20×106 cells/ml in CellGro SCGM medium (CellGenix) with recombinant human Fas Ligand (Mega FasL, Adipogen) at a concentration of 100 ng/ml for 2 hours at 37° C. in a humidified incubator 5% CO2. Following the incubation with FasL, the cells were subjected to two additional washing steps to remove unbound FasL. No further isolation steps were performed. Control non treated samples consisted of the original unprocessed MPBC from the same donor.
Immunophenotyping of the T cell subtypes was performed by flow cytometry using the following antibodies (Miltenyi): CD4, CD8, CCR7, CD45RA, LFA1. CD95. CXCR3 and CCR6. Data from samples was acquired using flow cytometer (MACSquant, Miltenyi) (
The FasR (CD95) expression profile described in
Samples of G-CSF MPBCs obtained from apheresis of healthy donors within 24 hours of collection, were incubated with or without Fas ligand, in a closed infusion bag system. Briefly, cells were counted, washed twice with buffer containing EDTA, incubated at a concentration of 100±20×106 cells/ml in CellGro SCGM medium (CellGenix), in the presence of the apoptotic mediator Fas ligand (MegaFasL, Adipogen) at a concentration of 100 ng/ml for 2 hours at 37° C. in a humidified incubator 5% CO2, then washed twice to remove unbound FasL. T cells were isolated from MPBCs after incubation with Fas ligand or control MPBC, using magnetic Human T cell isolation beads (EasySep, StemCell, 17951) according to the manufacturer's protocol. Immunophenotyping of the isolated T cell subtypes was performed by flow cytometry using the following Miltenyi Abs: CD4, CD8, CCR7, CD45RA, LFA1, CD95, CXCR3 and CCR6. Data from samples was acquired using flow cytometer (MACSquant, Miltenyi). The following populations were determined according to their receptor expression: T helper (TH, CD4+), T cytotoxic (TC, CD8+), Naïve T cells (CCR7+CD45RA+CD95-LFA1low), TSCM (CCR7+CD45RA+CD95+LFA1high), TCM(CCR7+CD45RA−), TEM(CCR7−CD45RA−) and Teff (CCR7−CD45RA+), TH1/TC1 (CXCR3+), TH17(CCR6+CXCR3−). In addition, the apoptosis and necrosis levels of the T cell subtypes were assessed using Annexin V staining (eBiosciences BMS500FI) and 7AAD (eBiosciences 00-6993) staining, where Annexin V+7AAD− cells were defined as early apoptotic, and all of the 7AAD+ cells were considered late apoptotic/necrotic cells, and were gated out of the analysis of the viable cells.
FasL treatment selectively depleted both helper and cytotoxic T cell subsets. As can be seen in
As shown in
The results indicate that exposure to the apoptosis-inducing ligand Fas-L, selectively depletes T Helper (TH) cells: memory-TH cell subsets are reduced, while in the naïve-TH, only a small portion of the cells express FasR (namely the TSCM subset) and this specific subset is affected by the apoptotic challenge. Moreover, it appears that exposure to Fas-L preferentially induces apoptosis in pro-inflammatory TH1, TC1 and TH17 populations (
Without wishing to be bound by theory such results indicate that incubation with the apoptosis inducing ligand Fas-L results in elimination of the apoptosis susceptible matured helper T-cells, leaving a less differentiated state of the subpopulation.
In addition, pre-treatment with FasL also reduced significantly effector memory T helper (THEM) subtype as well as effector memory T cytotoxic (TCEM) and effector (TCeff) subtypes (26.0%, P<0.0001, 16.4%. P<0.01; 13.6%, P<0.01, respectively), while in the naïve TC subtype there was no effect and in the naïve TH cells, only a slight reduction was shown (6.0%, P<0.01). Furthermore, the level of pro-inflammatory mature T cells, TH1, TC1 and TH17 was massively reduced (55.1%, 47.9% and 91.8% respectively, with P<0.0001) as compared to MPBCs control. In addition to the reduction in viable population percentages of each subtype of T cell, the early apoptosis level was shown to increase following FasL treatment.
Overall these data suggests that unlike complete T cell depletion methods currently used, the pre-treatment with FasL selectively depleted specific sub-populations, and reduces activation. Therefore, and without wishing to be bound by theory, it appears that treatment with an apoptosis inducing ligand such as FasL results in elimination of apoptosis susceptible matured T-cells, leaving a less differentiated state, less activated and maintain anti-inflammatory T cells subpopulations.
Next, the expression level of CD25 receptor, the marker for cell activation, was evaluated in activated T cell subtypes. T cells were isolated from FasL pre-treated MPBCs, and MPBC controls, and incubated 1 or 2 days with anti CD3/CD28 activation beads. As seen in
In these experiments, the isolated T cells from MPBC controls and MPBC incubated with Fas-L were counted and incubated at 0.75×106 cell/ml in RPMI complete medium (supplemented with 10% FCS, 1% L-Glutamine, 1% Pen-Strep, 1% non-essential amino acid and 1% sodium pyruvate), and stimulated using activation beads (Dynabeads™ Human T-Activator CD3/CD28 Gibco 111.32D), at a 1:10 bead:cell ratio, for 24/48 hrs. For analysis of T cell subtypes, the cells were stained with all the Abs described above in Example 2. In addition, flow cytometry analysis was performed for CD25 activation receptor expression. Furthermore, IFNγ cytokine secretion using ELISA was also performed according to manufacturer's protocol (R&D systems, Quantikine ELISA kit DIF-50).
It is important to note that the elimination of apoptosis susceptible mature cells, as well as reduced activation state, as demonstrated in the data above, is not affecting other attributes of the T cell population.
Fas-L treated MPBC or control cells were expanded by incubation in a 24 well-plate at concentration of 1×10{circumflex over ( )}6 cells/ml, in complete RPMI medium (containing 10% FCS, 1% L-Glutamine, 0.2% β-Mercaptoethanol, 1% Pen/Strep, 1% sodium pyruvate and 1% non-essential amino acids) and supplemented with 30 μg/ml anti-CD3 (eBioscience, 16-0037, OKT3) and 1000U/ml recombinant IL2 (hr-IL-2 R&D systems, 202IL-500). On the 4th day, the medium was replaced with complete fresh medium (containing anti CD3 and IL-2) and the cells were counted and re-seeded at 5×10{circumflex over ( )}6 cells/ml in 6-well plates. The cells were counted, and the medium was replaced every other day. On day 12 of the expansion, two different types of Leukemia cell lines—MV4-11 and U937 cells were labeled with 2 μM CFSE (eBioscience, 65-0850), and seeded in complete RPMI at 2×10{circumflex over ( )}4/100 μl in a 96-well plate.
The expanded Fas-L treated MPBC or control cells were washed, counted and co-cultured overnight in elevated concentrations with the labeled Leukemia cells (MPBC:leukemic cells ratio of 1:1, 1:5, 1:10 and 1:30). At the end of the incubation, cells were stained with Propidium Iodide for detection of dead cells, the number of viable CFSE-leukemic cells was analyzed using FACSCalibur Flow Cytometer (BD Biosciences, San Jose, Calif., USA); the data was analyzed using BD CellQuest software (version 3.3: BD Biosciences) (
Furthermore, the ability of MPBCs to kill Leukemia cells was evaluated as well using in-vivo mouse model. In this model, MV4-11 leukemic cells were administered into γ-irradiated NSG mice on day 0 (10×106 cells/mouse), and FasL-treated and control MPBC grafts (3×106 total nucleated cells (TNCs)/mouse) were injected within 4-6 hours (
Alloreactivity of T cells depends, among others, on antigen presentation of myeloid cells (dendritic cells and monocytes) as well as B cells that serve as antigen presenting cells (MacDonald et al, 2013). In addition to the T cells population, the APCs express CD95 and are exposed as well to the FasL, therefore, we hypothesized that they may play a role and contribute to the reduction in GvHD. Assessment of CD95 expression in untreated MPBCs revealed moderate levels in the B cells population and high levels in the myeloid cells (
FasR (CD95+) expression of MPBC control cells was measured in B cells subtypes, using anti CD95 antibodies (Miltenyi). Analysis of the B cell subtypes was performed using the following antibodies: anti CD19, anti CD27 and anti CD38. Data from samples was acquired using flow cytometer (MACSquant, Miltenyi). The following B cells sub-populations were determined according to their receptor expression: Transitional (CD27−CD38+), naïve (CD27−CD38−), memory (CD27+CD38−), and plasmablast (CD27+CD38+). In addition, the early apoptosis of the B cell subtypes was assessed using Annexin V (eBiosciences BMS500FI) and 7AAD (eBiosciences 00-6993) staining, where Annexin V+7AAD− cells were defined as early apoptotic, and all of the 7AAD+ cells were considered late apoptotic/necrotic cells, and gated out of the analysis of the viable cells.
Human MSCs are maintained in their naïve-undifferentiated state in medium and passaged once they reach confluence. To assess the effect of FasL on MSCs, the cells are plated at a density of 5×10+ cells/cm2 in six-well plates and treated with different doses of FasL (from 1 to 50 ng/ml). On different days the cells are detached and counted using a hemocytometer or an automated cell counter. The culture supernatant is collected and assayed for secretion of angiogenic cytokines (e.g. bFGF, FGF2, HGF, IL-8, TIMP-1, TIMP-2 and VEGF) and pro-inflammatory cytokines/chemokines (IL-6, CCL2, CCL7 and CCL8).
Human MSCs grown in culture with or without FasL are tested for the mitigation of GvHD in-vivo. NOD.SCID IL2Rgnull (NSG) mice are subjected to total Body γ-Irradiation (TBI). GvHD is induced by administration of Mobilized Peripheral Blood Cells (MPBCs). FasL treated or untreated MSCs are administered by intravenous (IV) bolus injection 1 to 10 days later. Body weight changes as well as development of GvHD symptoms are assessed twice a week. The mice are followed until death or euthanization. Survival curves and median survival times are calculated for each treatment group.
As shown in previous examples, following short incubation (e.g. 2 hours) of G-CSF mobilized peripheral blood cells with the apoptotic mediator Fas Ligand (FasL), the T cells composition was altered. FasL treatment reduced the percentage of mature and activated T cells, as expressed by decreased percentage of effector and increased percentages of naïve cells. Moreover, following exposure to FasL, the proportion of active cells in the population was reduced (as noticed by the number of T cells expressing CD25 marker). In addition, upon in-vitro activation of FasL-treated-T-cells using anti CD3/CD28 beads, lower number of CD25 expressing T cells was detected, as well as reduced level of IFNγ secretion and reduced differentiation kinetics rate, indicating a less mature and active T cell composition.
Therefore, the following example was undertaken in order to test whether combining FasL in CAR-T cells manufacturing process, may reduce the potential cytokine release syndrome (CRS), improve chimeric antigen receptor transduction efficiency and maintain or even contribute to CAR-T survival and antitumor activity.
The following experiment was a preliminary study intended for determination of FasL concentration range, for induction of T cells apoptosis, differentiation and effect on activation potential, in a Peripheral Blood Mononuclear Cells (PBMC) sample.
Peripheral blood mononuclear cells (PBMC) were separated from buffy coat on Ficoll gradient. The PBMC were treated with an escalating dose of FasL, before or after activation of the cells. Activation was performed in 24 well dishes coated with anti-CD3/CD28 antibodies. The FasL concentrations that were examined were 0, 1, 5, 10, 25, 50 or 100 ng/ml FasL.
Three groups of cells were analyzed:
Next, each group of cells was analyzed using flow cytometry.
FasL effect on T cells Viability: significant reduction in the percentage of viable T cells (CD3+7AAD− cells) was detected in T-cells treated with FasL at concentrations of 50 and 100 ng/ml followed by 48 h of incubation in activation conditions (with anti CD3/CD28 antibodies) (Group 2,
The effect of FasL on the activation state of T cells: the percentage of CD25 expressing T cells was reduced significantly with escalating concentrations of FasL in Group 2, but barely in Group 1 and none in Group 3, mostly in concentration higher than 25 ng/ml (
The effect of FasL on early apoptosis induction: Dose dependent elevation in early apoptosis levels (AnnexinV+ T cells) following treatment with escalating concentrations of FasL was detected when flow cytometry analysis was performed soon after FasL treatment (Groups 1 and 3,
Based on these results, a concentration-range of FasL was delineated.
PBMC were separated from buffy coats on Ficoll gradient. Activation was performed in 24 well dishes coated with anti-CD3/CD28 antibodies. Cells were treated with FasL at different stages during the CAR-T manufacturing process: before activation (Group 1), after activation (Group 2), and after CAR-T transduction (Group 3), in this case with ErbB2 CAR. FasL was used at concentrations of 0, 50 and 100 ng/ml. CAR-T transduction was performed with a lentivirus vector according to standard procedures (see for example Zhang et al 2017 Biomark. Res. 5:22: Fesnak et al Nature Protocols, Stem cell Technologies “Production of chimeric antigen receptor T cells”).
At the end of the CAR transduction process (following 10 days of incubation) the following parameters were evaluated: viability (7AAD− cells), efficacy of CAR transduction (detected by elevation in the percent of GFP+ cells), differentiation state as indicated by the T cell subtypes (naïve/CM/EM/eff cells), and activation state (CD25+) were analyzed by flow cytometry.
In addition, a specificity assay was performed by incubation of T cells of each treatment group with the target antigen (human tumor cell line: MDA-MB-231). The ErbB2-CAR-T cells recognize the tumor cells and a pro-inflammatory reaction is initiated during which the cells release IFNγ into the medium. The media were collected and the level of IFNγ was evaluated using ELISA.
The results of this experiment demonstrated that: Exposure of cells to FasL prior to activation, resulted in improved CAR transduction in comparison to the standard CAR-T (
Exposure to high concentrations of FasL (50-100 ng/ml) following CAR transduction, resulted in elevated cell death (decrease in viable transduced cells) in the cells that were incubated with 50 ng/ml FasL. No cells survived following treatment after transduction with 100 ng/ml FasL (
Similar findings were obtained for CD4+ and CD8+ cells.
Following transduction of the ErbB2-CAR-T cells, the cells were co-cultured with their target tumour cells (the MDA-MB-231 human cell line). Cells that were exposed to FasL before activation, secreted high levels of IFNγ (
To summarize the above results, FasL treatment before activation results in better CAR transduction (
The improvement in CAR transduction is also reflected in the assay that measured the stimulation of the CAR-T cells with their target tumor cells. Cells that were exposed to FasL before activation, and incubated with their target cells, secreted high levels of IFNγ (
These results point to a beneficial role that incubation with FasL before the activation step, may have on the transduction efficiency of CAR-T cells, and on the increased response of CAR-T cells to antigen.
Transduced CAR-T cells were incubated for 2 hours with different FasL concentrations (0, 1, 10, 50 ng/ml). Following treatment with FasL, the CAR-T cells were incubated for additional 4 days, in the presence of IL-2, for further recovery, before being analyzed.
Staining panels included T cell subtypes (naïve/CM/EM/eff cells), and additional panel of TH1, TH17, and TC1 pro-inflammatory subtypes secreting IFNγ and IL17 that contribute to exacerbation of the pro-inflammatory reaction (during CRS and GvHD).
Similar to the results obtained in Experiment II, treatment of CAR-T cells post transduction with 10 and 50 ng/ml of FasL led to a reduced number of transduced cells (GFP+) in a dose dependent manner (
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2019/050945 | 8/22/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62720988 | Aug 2018 | US |