Many approaches have been taken to embed continuous-time information bearing waveforms onto continuous-time carrier waveforms for the purpose of communication. Amplitude modulation (AM) and frequency modulation (FM) are common examples of such approaches to communication. In both AM and FM, the carrier wave is a sinusoidal wave. There is a need in the art for a systematic procedure for constructing continuous-time modulators and their corresponding demodulators using carrier waves that are generated by nonlinear systems that have periodic, almost-periodic, quasi-periodic or chaotic attractors.
Accordingly, the invention provides a new class of signal modulators and their corresponding demodulators. The modulator embeds into a carrier signal an information signal by modulating the oscillatory rate of the carrier signal in a manner proportional to the information signal. The permissible carrier signals are any signals that can be generated by a nonlinear dynamical system that has a known exponentially convergent observer. modulating the rate at which the non-linear system evolves in a manner proportional to the information signal. The method includes multiplying the information signal by a constant to produce a first signal value. The method further includes adding the first signal value and a nominal rate of evolution of the dynamical system to generate a second signal value. The method further includes providing a feedback path that includes a first and second path, wherein the input to the first path is the integration of a multiplication of the second signal value and output of the second path, and the input of the second path is output of the first path, such that the second path is a first function that defines the non-linear dynamical system, and providing the output of the first path as input to a second function that produces a transmitted signal.
According to another aspect of the invention, a system for demodulating a transmitted modulated carrier signal is provided. The demodulator system includes an observer component that receives as input the transmitted signal and a rate estimate and produces an estimate of the current state of the transmitter. The demodulator system also includes a rate estimator that receives as input the transmitted signal and the estimate of the current state of the transmitter to produce the rate estimate. The observer component and rate estimator are interconnected in a feedback loop arrangement, and as shown below, this arrangement recovers the information signal assuming that the dynamical system possesses a local exponential observability property.
{dot over (x)}=ωcf(x), (1)
where x is an N-dimensional vector and ωc is a constant. Modulation is achieved by applying the information signal, m(t), to the non-linear dynamical system as
{dot over (x)}=(ωc+βm(t))f(x), (2)
where ωc is the nominal rate of evolution and β is a parameter that characterizes the degree of modulation. The effects of modulation on the non-linear system are readily seen by denoting the solution to the system without modulation giving in (1) as xo(t). Thus, the addition of modulation as described by (2) results in the modulated signal that can be expressed in term of xo(t) as
x(t)=x0(t+β∫0tm(τ)dτ). (3)
Modulating in this fashion does not modify the attractor of the non-linear system. It only modulates the rate at which the dynamical system evolves along the attractor.
The signal that is transmitted to the receiver is a scalar function of the state variables of the non-linear dynamical system in the transmitter. As shown in
y(t)=h(x), (4)
where h(x) is a function that maps the N-dimensional vector, x, to a one-dimensional signal, y. The complete modulator system is represented mathematically as
{dot over (x)}=(ωc+βm(t))ƒ(x),
y=h(x), (5)
where x is a N-dimensional signal and y is a one-dimensional signal.
ż={circumflex over (f)}(z,h(x0)) (6)
that has the property that ∥z−x0∥≦e−λt for some λ>0, where x0 is the solution to the unmodulated dynamical system given in equation (1). The rate estimator estimates m(t) given the state estimate, z, and the transmitted signal, y. The interconnection of these components comprises the complete demodulator system 20. Given the dynamical system is used in modulator system 10, the observer component 24 is given by
ż=(ωc+β{circumflex over (m)}){circumflex over (f)}(z,y), (6)
where {circumflex over (m)} is the rate estimate. The rate estimator 24 takes as input the reconstructed state z from the observer component 24 and the transmitted signal y(t) and tracks m(t). The low-pass filter 26 removes any spectral energy known to be absent from the original modulating signal, m(t). The low-pass filter 26 is an optional component to the demodulator 20.
Assuming that the unmodulated dynamical system used in modulator 10 has a known exponentially convergent local observer function, the observer component 24 can be modified so that it is an exponentially convergent observer of the modulator 10 when m(t)=m0, where m0 is an unknown constant. If the rate estimator 24 converges to a value of m0, then the augmented observer is assumed to be able to track a time-varying m(t) provided that m(t) varies sufficiently slow.
The design of the rate estimator 24 is based on a technique that is referred to as a backwards perturbation expansion. The essential step in this perturbation expansion is to express the modulator state, x, as a perturbation expansion about the demodulator state, z, in terms of the rate estimate error, em={circumflex over (m)}−m0. By expanding the modulator state x as perturbation about the demodulator state z, the resulting expansion terms depend only on variables local to the demodulator 20. The perturbation variables can then be combined in such a way that they force the demodulator rate estimate error to zero. If a dynamical system used in a modulator is of the form
{dot over (x)}=ƒ(x),
y=h(x), (7)
and has an exponentially observer of the form
ż={circumflex over (ƒ)}(z,y), (8)
then a modulator as can be constructed as
which is similar to the modulator 10 defined in (5) above and a demodulator will be constructed as
which is the same as demodulator 20 as defined in (6) where 0<K<K* for some K*>0, and r(•,•) is a scalar valued function defined by
where g(•) is scalar function such that sgn(g(α))=sgn(α), and
for some γ>0. The observer 22 and rate estimator 24 are interconnected in a feedback loop as shown in
Many systems have been shown to possess an exponentially convergent observer, including some chaotic systems. One such system is a chaotic system that is described by the Lorenz equations that are defined as
where σ, r, and b are constant parameters. An exponentially convergent observer of the system given in (13) when y(t)=x1(t),
To remove the spectral energy in {circumflex over (m)}(t) that is outside the bandwidth of m(t), a filter 36 is added to the feedback path. The filtering operation, denoted as <•>, is given by
<{circumflex over (m)}(t)>=∫0t∫ψ(t,τ){circumflex over (m)}(τ)dτ, (15)
where ψ(t,τ) is the filter kernel. If the support of this kernel is sufficiently small compared to the rate at which m and {circumflex over (m)} vary, then
As mentioned above, the gain parameter K had to be smaller than some K* to guarantee that the perturbation expansion was bounded. For K<K*, the rate estimate converges exponentially and monotonically. Choosing K slightly larger than K* affects the demodulator 30 in two ways. First, since K scales the derivate of {circumflex over (m)}, increasing K also increases the rate which {circumflex over (m)} can vary, allowing {circumflex over (m)} to track signals that vary more rapidly. Second, the perturbation term may not remain bounded. Returning to the equation for the perturbation variable,
where
If K is set to zero in (18), ξ1 remains bounded. However, the dynamics of demodulator 30 is changed and convergence is no longer guaranteed, demodulator 30 may be stable for a range of K>K*.
An example, consider the Lorenz based modulation/demodulation system based on the systems described in (13) and (14) with K>K*. The term Kr(z,ξ1) is dropped from (17) and the demodulator equation for the Lorenz equation becomes
The modulator equations are
The demodulator 30 has additional nonlinearities added beyond those already present in the dynamical system. These additional nonlinearities appear in the equation for ξ1 as given in (17). Even when K>K* and Kr(z,ξ1) is removed, a nonlinear equation remains.
The last term, βf(z,y), also appears in the observer component 34 of the demodulator 30. Since {circumflex over (f)}(z,y) is required by the observer component 34, removing it from the rate estimator 32 does not reduce the total number of nonlinearities present in the demodulator 30. This term is left as it is. The first term,
is generally nonlinear and does not appear else where in system 30. Approximating this term with a linear, time-invariant system simplifies the hardware implementation of the demodulator 30.
First, if ωc>>β{circumflex over (m)} then
The varying gain matrix,
is generally nonlinear. However, the differential equation in (20) is linear with to ξ1 and is a time varying linear filter with β{circumflex over (f)}(z,y) as its input. Using the notation <•> to denote the filtering operation,
ξ1=−β<{circumflex over (f)}(z,y)>. (21)
Replacing this linear time-varying filter with a linear time-invariant filter makes the equation for ξ1 consists of only linear components and {circumflex over (f)}(x,y), the latter of which is already present in the demodulator 30.
The difference between the derivatives of ŷ and y can be approximated as,
Filtering {circumflex over ({dot over (y)}−{dot over (y)} with the same filter that appears in (21) results in
assuming that em varies slowly with respect to the time constant of the filter so that em can be moved outside the filtering operation. Combining (21) and (23), the rate estimator 32 becomes
From (24), the rate estimator 32 has the form
{circumflex over ({dot over (m)}≈−a(t)({circumflex over (m)}−m), (25)
where a(t) is positive semi-definite function, which suggests {circumflex over ({dot over (m)} converge to m.
The Lorenz equations discussed above are repeated here for the circuit. In this circuit implementation, however, care must be given to ensure that the signal levels remain within the operating range of the circuit components. Thus,
The resealed Lorenz equations implemented are
The implementation of this modulator 40 using multipliers, operational amplifiers and capacitors, and resistors is shown in
It is assumed that the output of the multipliers is the product of its input divided by 10, which is typical of multiplier circuits. The nominal rates at which the modulator circuit 40 modulates are governed by the capacitors.
where y=V1.
where
and <•> denotes the filtering with a first order low pass filter with a cut-off frequency of ωL. The circuit of
However, the modulator and demodulator circuits 40, 50, and 60 may utilize other component values.
The goal of the invention is to describe and analyze a class of signals that can be used in the framework of the modulation technique described above, which is referred to as a generalized frequency modulation. The invention has various practical application which are low power communication system, because the modulation technique is applicable to nonlinear dynamical systems, thus the system is not constrained to operate circuit components in their linear regime. This potentially reduces the number of circuit components, simplifies the circuit, and increases the efficiency. Another is the Spread-Spectrum communication system, which the modulation technique of the invention can be applied to chaotic systems, which are naturally spread-spectrum signals. Due to sensitive dependence on initial conditions exhibited in chaotic systems, chaotic signals are difficult to track without precise knowledge of all of the parameters of the chaotic dynamical system, which suggests that chaotic carrier signals may be advantageous in the context of private communications.
Although the invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
This application claims priority from provisional application Ser. No. 60/269,052 filed Feb. 15, 2001.
This invention was made with government support under Grant No. F49620-96-1-0072 awarded by the United States Air Force and Cooperative Agreement No. DAAL01-96-2-0001 awarded by the United States Army. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5402334 | Pecora et al. | Mar 1995 | A |
Number | Date | Country | |
---|---|---|---|
20020154706 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
60269052 | Feb 2001 | US |