All subject matter of all of the above applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
A schematic illustration of a surface scattering antenna is depicted in
The surface scattering antenna also includes at least one feed connector 106 that is configured to couple the wave-propagation structure 104 to a feed structure 108. The feed structure 108 (schematically depicted as a coaxial cable) may be a transmission line, a waveguide, or any other structure capable of providing an electromagnetic signal that may be launched, via the feed connector 106, into a guided wave or surface wave 105 of the wave-propagating structure 104. The feed connector 106 may be, for example, a coaxial-to-microstrip connector (e.g. an SMA-to-PCB adapter), a coaxial-to-waveguide connector, a mode-matched transition section, etc. While
The scattering elements 102a, 102b are adjustable scattering elements having electromagnetic properties that are adjustable in response to one or more external inputs. Various embodiments of adjustable scattering elements are described, for example, in D. R. Smith et al, previously cited, and further in this disclosure. Adjustable scattering elements can include elements that are adjustable in response to voltage inputs (e.g. bias voltages for active elements (such as varactors, transistors, diodes) or for elements that incorporate tunable dielectric materials (such as ferroelectrics or liquid crystals)), current inputs (e.g. direct injection of charge carriers into active elements), optical inputs (e.g. illumination of a photoactive material), field inputs (e.g. magnetic fields for elements that include nonlinear magnetic materials), mechanical inputs (e.g. MEMS, actuators, hydraulics), etc. In the schematic example of
In the example of
The emergence of the plane wave may be understood by regarding the particular pattern of adjustment of the scattering elements (e.g. an alternating arrangement of the first and second scattering elements in
Because the spatial resolution of the interference pattern is limited by the spatial resolution of the scattering elements, the scattering elements may be arranged along the wave-propagating structure with inter-element spacings that are much less than a free-space wavelength corresponding to an operating frequency of the device (for example, less than one-third, one-fourth, or one-fifth of this free-space wavelength). In some approaches, the operating frequency is a microwave frequency, selected from frequency bands such as L, S, C, X, Ku, K, Ka, Q, U, V, E, W, F, and D, corresponding to frequencies ranging from about 1 GHz to 170 GHz and free-space wavelengths ranging from millimeters to tens of centimeters. In other approaches, the operating frequency is an RF frequency, for example in the range of about 100 MHz to 1 GHz. In yet other approaches, the operating frequency is a millimeter-wave frequency, for example in the range of about 170 GHz to 300 GHz. These ranges of length scales admit the fabrication of scattering elements using conventional printed circuit board or lithographic technologies.
In some approaches, the surface scattering antenna includes a substantially one-dimensional wave-propagating structure 104 having a substantially one-dimensional arrangement of scattering elements, and the pattern of adjustment of this one-dimensional arrangement may provide, for example, a selected antenna radiation profile as a function of zenith angle (i.e. relative to a zenith direction that is parallel to the one-dimensional wave-propagating structure). In other approaches, the surface scattering antenna includes a substantially two-dimensional wave-propagating structure 104 having a substantially two-dimensional arrangement of scattering elements, and the pattern of adjustment of this two-dimensional arrangement may provide, for example, a selected antenna radiation profile as a function of both zenith and azimuth angles (i.e. relative to a zenith direction that is perpendicular to the two-dimensional wave-propagating structure). Exemplary adjustment patterns and beam patterns for a surface scattering antenna that includes a two-dimensional array of scattering elements distributed on a planar rectangular wave-propagating structure are depicted in
In some approaches, the wave-propagating structure is a modular wave-propagating structure and a plurality of modular wave-propagating structures may be assembled to compose a modular surface scattering antenna. For example, a plurality of substantially one-dimensional wave-propagating structures may be arranged, for example, in an interdigital fashion to produce an effective two-dimensional arrangement of scattering elements. The interdigital arrangement may comprise, for example, a series of adjacent linear structures (i.e. a set of parallel straight lines) or a series of adjacent curved structures (i.e. a set of successively offset curves such as sinusoids) that substantially fills a two-dimensional surface area. These interdigital arrangements may include a feed connector having a tree structure, e.g. a binary tree providing repeated forks that distribute energy from the feed structure 108 to the plurality of linear structures (or the reverse thereof). As another example, a plurality of substantially two-dimensional wave-propagating structures (each of which may itself comprise a series of one-dimensional structures, as above) may be assembled to produce a larger aperture having a larger number of scattering elements; and/or the plurality of substantially two-dimensional wave-propagating structures may be assembled as a three-dimensional structure (e.g. forming an A-frame structure, a pyramidal structure, or other multi-faceted structure). In these modular assemblies, each of the plurality of modular wave-propagating structures may have its own feed connector(s) 106, and/or the modular wave-propagating structures may be configured to couple a guided wave or surface wave of a first modular wave-propagating structure into a guided wave or surface wave of a second modular wave-propagating structure by virtue of a connection between the two structures.
In some applications of the modular approach, the number of modules to be assembled may be selected to achieve an aperture size providing a desired telecommunications data capacity and/or quality of service, and/or a three-dimensional arrangement of the modules may be selected to reduce potential scan loss. Thus, for example, the modular assembly could comprise several modules mounted at various locations/orientations flush to the surface of a vehicle such as an aircraft, spacecraft, watercraft, ground vehicle, etc. (the modules need not be contiguous). In these and other approaches, the wave-propagating structure may have a substantially non-linear or substantially non-planar shape whereby to conform to a particular geometry, therefore providing a conformal surface scattering antenna (conforming, for example, to the curved surface of a vehicle).
More generally, a surface scattering antenna is a reconfigurable antenna that may be reconfigured by selecting a pattern of adjustment of the scattering elements so that a corresponding scattering of the guided wave or surface wave produces a desired output wave. Suppose, for example, that the surface scattering antenna includes a plurality of scattering elements distributed at positions {rj} along a wave-propagating structure 104 as in
where E(θ,φ) represents the electric field component of the output wave on a far-field radiation sphere, Rj(θ,φ) represents a (normalized) electric field pattern for the scattered wave that is generated by the jth scattering element in response to an excitation caused by the coupling αj, and k(θ,φ) represents a wave vector of magnitude ω/c that is perpendicular to the radiation sphere at (θ,φ). Thus, embodiments of the surface scattering antenna may provide a reconfigurable antenna that is adjustable to produce a desired output wave E(θ,φ) by adjusting the plurality of couplings {αj} in accordance with equation (1).
The wave amplitude Aj and phase φj of the guided wave or surface wave are functions of the propagation characteristics of the wave-propagating structure 104. Thus, for example, the amplitude Aj may decay exponentially with distance along the wave-propagating structure, Aj˜A0 exp(−κxj), and the phase φj may advance linearly with distance along the wave-propagating structure, φj˜φ0+βxj, where κ is a decay constant for the wave-propagating structure, β is a propagation constant (wavenumber) for the wave-propagating structure, and xj is a distance of the jth scattering element along the wave-propagating structure. These propagation characteristics may include, for example, an effective refractive index and/or an effective wave impedance, and these effective electromagnetic properties may be at least partially determined by the arrangement and adjustment of the scattering elements along the wave-propagating structure. In other words, the wave-propagating structure, in combination with the adjustable scattering elements, may provide an adjustable effective medium for propagation of the guided wave or surface wave, e.g. as described in D. R. Smith et al, previously cited. Therefore, although the wave amplitude Aj and phase φj of the guided wave or surface wave may depend upon the adjustable scattering element couplings {α1} (i.e. Ai=Ai({αj}), φi=φi({αj})), in some embodiments these dependencies may be substantially predicted according to an effective medium description of the wave-propagating structure.
In some approaches, the reconfigurable antenna is adjustable to provide a desired polarization state of the output wave E(θ,φ). Suppose, for example, that first and second subsets LP(1) and LP(2) of the scattering elements provide (normalized) electric field patterns R(1)(θ,φ) and R(2)(θ,φ), respectively, that are substantially linearly polarized and substantially orthogonal (for example, the first and second subjects may be scattering elements that are perpendicularly oriented on a surface of the wave-propagating structure 104). Then the antenna output wave E(θ,φ) may be expressed as a sum of two linearly polarized components:
are the complex amplitudes of the two linearly polarized components. Accordingly, the polarization of the output wave E(θ,φ) may be controlled by adjusting the plurality of couplings {αj} in accordance with equations (2)-(3), e.g. to provide an output wave with any desired polarization (e.g. linear, circular, or elliptical).
Alternatively or additionally, for embodiments in which the wave-propagating structure has a plurality of feeds (e.g. one feed for each “finger” of an interdigital arrangement of one-dimensional wave-propagating structures, as discussed above), a desired output wave E(θ,φ) may be controlled by adjusting gains of individual amplifiers for the plurality of feeds. Adjusting a gain for a particular feed line would correspond to multiplying the Aj's by a gain factor G for those elements j that are fed by the particular feed line. Especially, for approaches in which a first wave-propagating structure having a first feed (or a first set of such structures/feeds) is coupled to elements that are selected from LP(1) and a second wave-propagating structure having a second feed (or a second set of such structures/feeds) is coupled to elements that are selected from LP(2), depolarization loss (e.g., as a beam is scanned off-broadside) may be compensated by adjusting the relative gain(s) between the first feed(s) and the second feed(s).
Turning now to a consideration of modulation patterns for surface scattering antennas: recall, as discussed above, that the guided wave or surface wave may be represented by a complex scalar input wave Ψin that is a function of position along the wave-propagating structure. To produce an output wave that may be represented by another complex scalar wave Ψout, a pattern of adjustments of the scattering elements may be selected that corresponds to an interference pattern of the input and output waves along the wave-propagating structure. For example, the scattering elements may be adjusted to provide couplings to the guided wave or surface wave that are functions of a complex continuous hologram function h=ΨoutΨ*in.
In some approaches, the scattering elements can be adjusted only to approximate the ideal complex continuous hologram function h=ΨoutΨ*in. For example, because the scattering elements are positioned at discrete locations along the wave-propagating structure, the hologram function must be discretized. Furthermore, in some approaches, the set of possible couplings between a particular scattering elements and the waveguide is a restricted set of couplings; for example, an embodiment may provide only a finite set of possible couplings (e.g. a “binary” or “on-off” scenario in which there are only two available couplings for each scattering element, or a “grayscale” scenario in which there are N available couplings for each scattering element); and/or the relationship between the amplitude and phase of each coupling may be constrained (e.g. by a Lorentzian-type resonance response function). Thus, in some approaches, the ideal complex continuous hologram function is approximated by an actual modulation function defined on a discrete-valued domain (for the discrete positions of the scattering elements) and having a discrete-valued range (for the discrete available tunable settings of the scattering elements).
Consider, for example, a one-dimensional surface scattering antenna on which it is desired to impose an ideal hologram function defined as a simple sinusoid corresponding to a single wavevector (the following disclosure, relating to the one-dimensional sinusoid, is not intended to be limiting and the approaches set forth are applicable to other two-dimensional hologram patterns). Various discrete modulation functions may be used to approximate this ideal hologram function. In a “binary” scenario where only two values of individual scattering element coupling are available, one approach is to apply a Heaviside function to the sinusoid, creating a simple square wave. Regardless of the density of scattering elements, that Heaviside function will have approximately half the cells on and half off, in a steady repeating pattern. Unlike the spectrally pure sinusoid though, a square wave contains an (infinite) series of higher harmonics. In these approaches, the antenna may be designed so that the higher harmonics correspond to evanescent waves, making them non-radiating, but their aliases do still map into non-evanescent waves and radiate as grating lobes.
An illustrative example of the discretization and aliasing effect is shown in
The sampling of the square wave at a discrete set of locations leads to an aliasing effect in Fourier space, as shown in
The Heaviside function is not the only choice for a binary hologram, and other choices may eliminate, average, or otherwise mitigate the higher harmonics and the resulting side/grating lobes. A useful way to view these approaches is as attempting to “smooth” or “blur” the sharp corners in the Heaviside without resorting to values other than 0 and 1. For example, the single step of the Heaviside function may be replaced by a function that resembles a pulse-width-modulated (PWM) square wave with a duty cycle that gradually increases from 0 to 1 over the range of the sinusoid. Alternatively, a probabilistic or dithering approach may be used to determine the settings of the individual scattering elements, for example by randomly adjusting each scattering element to the “on” or “off” state according to a probability that gradually increases from 0 to 1 over the range of the sinusoid.
In some approaches, the binary approximation of the hologram may be improved by increasing the density of scattering elements. An increased density results in a larger number of adjustable parameters that can be optimized, and a denser array results in better homogenization of electromagnetic parameters.
Alternatively or additionally, in some approaches the binary approximation of the hologram may be improved by arranging the elements in a non-uniform spatial pattern. If the scattering elements are placed on non-uniform grid, the rigid periodicity of the Heaviside modulation is broken, which spreads out the higher harmonics. The non-uniform spatial pattern can be a random distribution, e.g. with a selected standard deviation and mean, and/or it can be a gradient distribution, with a density of scattering elements that varies with position along the wave-propagating structure. For example, the density may be larger near the center of the aperture to realize an amplitude envelope.
Alternatively or additionally, in some approaches the binary approximation of the hologram may be improved by arranging the scattering elements to have non-uniform nearest neighbor couplings. Jittering these nearest-neighbor couplings can blur the k-harmonics, yielding reduced side/grating lobes. For example, in approaches that use a via fence to reduce coupling or crosstalk between adjacent unit cells, the geometry of the via fence (e.g. the spacing between vias, the sizes of the via holes, or the overall length of the fence) can be varied cell-by-cell. In other approaches that use a via fence to separate the cavities for a series of scattering elements that are cavity-fed slots, again the geometry of the via fence can be varied cell-by-cell. This variation can correspond to a random distribution, e.g. with a selected standard deviation and mean, and/or it can be a gradient distribution, with a nearest-neighbor coupling that varies with position along the wave-propagating structure. For example, the nearest-neighbor coupling may be largest (or smallest) near the center of the aperture.
Alternatively or additionally, in some approaches the binary approximation of the hologram may be improved by increasing the nearest-neighbor couplings between the scattering elements. For example, small parasitic elements can be introduced to act as “blurring pads” between the unit cells. The pad can be designed to have a smaller effect between two cells that are both “on” or both “off,” and a larger effect between an “on” cell and an “off” cell, e.g. by radiating with an average of the two adjacent cells to realize a mid-point modulation amplitude.
Alternatively or additionally, in some approaches the binary approximation of the hologram may be improved using error propagation or error diffusion techniques to determine the modulation pattern. An error propagation technique may involve considering the desired value of a pure sinusoid modulation and tracking a cumulative difference between that and the Heaviside (or other discretization function). The error accumulates, and when it reaches a threshold it carries over to the current cell. For a two-dimensional scattering antenna composed of a set of rows, the error propagation may be performed independently on each row; or the error propagation may be performed row-by-row by carrying over an error tally from the end of row to the beginning of the next row; or the error propagation may be performed multiple times along different directions (e.g. first along the rows and then perpendicular to the rows); or the error propagation may use a two-dimensional error propagation kernel as with Floyd-Steinberg or Jarvis-Judice-Ninke error diffusion. For an embodiment using a plurality of one-dimensional waveguides to compose a two-dimensional aperture, the rows for error diffusion can correspond to individual one-dimensional waveguides, or the rows for error diffusion can be oriented perpendicularly to the one-dimensional waveguides. In other approaches, the rows can be defined with respect to the waveguide mode, e.g. by defining the rows as a series of successive phase fronts of the waveguide mode (thus, a center-fed parallel plate waveguide would have “rows” that are concentric circles around the feed point). In yet other approaches, the rows can be selected depending on the hologram function that is being discretized—for example, the rows can be selected as a series of contours of the hologram function, so that the error diffusion proceeds along directions of small variation of the hologram function.
Alternatively or additionally, in some approaches grating lobes can be reduced by using scattering elements with increased directivity. Often the grating lobes appear far from the main beam; if the individual scattering elements are designed to have increased broadside directivity, large-angle aliased grating lobes may be significantly reduced in amplitude.
Alternatively or additionally, in some approaches grating lobes can be reduced by changing the input wave Ψin along the wave-propagating structure. By changing the input wave throughout a device, the spectral harmonics are varied, and large grating lobes may be avoided. For example, for a two-dimensional scattering antenna composed of a set of parallel one-dimensional rows, the input wave can be changed by alternating feeding directions for successive rows, or by alternating feeding directions for the top and bottom halves of the antenna. As another example, the effective index of propagation along the wave-propagating structure can be varied with position along the wave-propagating structure, by varying some aspect of the wave-propagating structure geometry (e.g. the positions of the vias in a substrate-integrated waveguide), by varying dielectric value (e.g. the filling fraction of a dielectric in a closed waveguide), by actively loading the wave-propagating structure, etc.
Alternatively or additionally, in some approaches the grating lobes can be reduced by introducing structure on top of the surface scattering antenna. For example, a fast-wave structure (such as a dispersive plasmonic or surface wave structure or an air-core-based waveguide structure) placed on top of the surface-scattering antenna can be designed to propagate the evanescent grating lobe and carry it out to a load dump before it aliases into the non-evanescent region. As another example, a directivity-enhancing structure (such as an array of collimating GRIN lenses) can be placed on top of the surface scattering antenna to enhance the individual directivities of the scattering elements.
While some approaches, as discussed above, arrange the scattering elements in a non-uniform spatial pattern, other approaches maintain a uniform arrangement of the scattering elements but vary their “virtual” locations to be used in calculating the modulation pattern. Thus the scattering elements can physically still exist on a uniform grid (or any other fixed physical pattern), but their virtual location is shifted in the computation algorithm. For example, the virtual locations can be determined by applying a random displacement to the physical locations, the random displacement having a zero mean and controllable distribution, analogous to classical dithering. Alternatively, the virtual locations can be calculated by adding a non-random displacement from the physical locations, the displacement varying with position along the wave-propagating structure (e.g. with intentional gradients over various length scales).
In some approaches, undesirable grating lobes can be reduced by flipping individual bits corresponding to individual scattering elements. In these approaches, each element can be described as a single bit which contributes spectrally to both the desired fundamental modulation and to the higher harmonics that give rise to grating lobes. Thus, single bits that contribute to harmonics more than the fundamental can be flipped, reducing the total harmonics level while leaving the fundamental relatively unaffected.
Alternatively or additionally, undesirable grating lobes can be reduced by applying a spectrum (in k-space) of modulation fundamentals rather than a single fundamental, i.e. range of modulation wavevectors, to disperse energy put into higher harmonics. This is a form of modulation dithering. Because higher harmonics pick up an additional 2π a wave-vector phase when they alias back into the visible, grating lobes resulting from different modulation wavevectors can be spread in radiative angle even while the main beams overlap. This spectrum of modulation wavevectors can be flat, Gaussian, or any other distribution across a modulation wavevector bandwidth.
Alternatively or additionally, undesirable grating lobes can be reduced by “chopping” the range-discretized hologram (e.g. after applying the Heaviside function but before sampling at the discrete set of scattering element locations) to selectively reduce or eliminate higher harmonics. Selective elimination of square wave harmonics is described, for example, in H. S. Patel and R. G. Hoft, “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I—Harmonic Elimination,” IEEE Trans. Ind. App. Vol. IA-9, 310 (1973), herein incorporated by reference. For example, the square wave 502 of
Alternatively or additionally, undesirable grating lobes may be reduced by adjusting the wavevector of the modulation pattern. Adjusting the wavevector of the modulation pattern shifts the primary beam, but shifts grating lobes coming from aliased beams to a greater degree (due to the additional 2π phase shift on every alias). Adjustment of the phase and wavevector of the applied modulation pattern can be used to intentionally form constructive and destructive interference of the grating lobes, side lobes, and main beam. Thus, allowing very minor changes in the angle and phase of the main radiated beam can grant a large parameter space in which to optimize/minimize grating lobes.
Alternatively or additionally, the antenna modulation pattern can be selected according to an optimization algorithm that optimizes a particular cost function. For example, the modulation pattern may be calculated to optimize: realized gain (maximum total intensity in the main beam); relative minimization of the highest side lobe or grating lobe relative to main beam; minimization of main-beam FWHM (beam width); or maximization of main-beam directivity (height above all integrated side lobes and grating lobes); or any combination thereof (e.g. by using a collective cost function that is a weighted sum of individual cost functions, or by selecting a Pareto optimum of individual cost functions). The optimization can be either global (searching the entire space of antenna configurations to optimize the cost function) or local (starting from an initial guess and applying an optimization algorithm to find a local extremum of the cost function).
Various optimization algorithms may be utilized to perform the optimization of the desired cost function. For example, the optimization may proceed using discrete optimization variables corresponding to the discrete adjustment states of the scattering elements, or the optimization may proceed using continuous optimization variables that can be mapped to the discrete adjustment states by a smoothed step function (e.g. a smoothed Heaviside function for a binary antenna or a smoothed sequential stair-step function for a grayscale antenna). Other optimization approaches can include optimization with a genetic optimization algorithm or a simulated annealing optimization algorithm.
The optimization algorithm can involve an iterative process that includes identifying a trial antenna configuration, calculating a gradient of the cost function for the antenna configuration, and then selecting a subsequent trial configuration, repeating the process until some termination condition is met. The gradient can be calculated by, for example, calculating finite-difference estimates of the partial derivatives of the cost function with respect to the individual optimization variables. For N scattering elements, this might involve performing N full-wave simulations, or performing N measurements of a test antenna in a test environment (e.g. an anechoic chamber). Alternatively, the gradient may be calculable by an adjoint sensitivity method that entails solving a single adjoint problem instead of N finite-difference problems; adjoint sensitivity models are available in conventional numerical software packages such as HFSS or CST Microwave Studio. Once the gradient is obtained, a subsequent trial configuration can be calculated using various optimization iteration approaches such as quasi-Newton methods or conjugate gradient methods. The iterative process may terminate, for example, when the norm of the cost function gradient becomes sufficiently small, or when the cost function reaches a satisfactory minimum (or maximum).
In some approaches, the optimization can be performed on a reduced set of modulation patterns. For example, for a binary (grayscale) antenna with N scattering elements, there are 2N (or gN, for g grayscale levels) possible modulation patterns, but the optimization may be constrained to consider only those modulation patterns that yield a desired primary spectral content in the output wave Ψout, and/or the optimization may be constrained to consider only those modulation patterns which have a spatial on-off fraction within a known range relevant for the design.
While the above discussion of modulation patterns has focused on binary embodiments of the surface scattering antenna, it will be appreciated that all of the various approaches described above are directly applicable to grayscale approaches where the individual scattering elements are adjustable between more than two configurations.
With reference now to
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, to the extent not inconsistent herewith.
One skilled in the art will recognize that the herein described components (e.g., steps), devices, and objects and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are within the skill of those in the art. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar herein is also intended to be representative of its class, and the non-inclusion of such specific components (e.g., steps), devices, and objects herein should not be taken as indicating that limitation is desired.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. With respect to context, even terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
The present application is related to and/or claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). In addition, the present application is related to the “Related Applications,” if any, listed below. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/510,947, entitled MODULATION PATTERNS FOR SURFACE SCATTERING ANTENNAS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, and Yaroslav A. Urzhumov as inventors, filed 9 Oct. 2014, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/549,928, entitled MODULATION PATTERNS FOR SURFACE SCATTERING ANTENNAS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, and Yaroslav A. Urzhumov as inventors, filed 21 Nov. 2014, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date. U.S. Patent Application No. 61/455,171, entitled SURFACE SCATTERING ANTENNAS, naming NATHAN KUNDTZ ET AL. as inventors, filed Oct. 15, 2010, is related to the present application. U.S. patent application Ser. No. 13/317,338, entitled SURFACE SCATTERING ANTENNAS, naming ADAM BILY, ANNA K. BOARDMAN, RUSSELL J. HANNIGAN, JOHN HUNT, NATHAN KUNDTZ, DAVID R. NASH, RYAN ALLAN STEVENSON, AND PHILIP A. SULLIVAN as inventors, filed Oct. 14, 2011, is related to the present application. U.S. patent application Ser. No. 13/838,934, entitled SURFACE SCATTERING ANTENNA IMPROVEMENTS, naming ADAM BILY, JEFF DALLAS, RUSSELL J. HANNIGAN, NATHAN KUNDTZ, DAVID R. NASH, AND RYAN ALLAN STEVEN as inventors, filed Mar. 15, 2013, is related to the present application. U.S. Patent Application No. 61/988,023, entitled SURFACE SCATTERING ANTENNAS WITH LUMPED ELEMENTS, naming PAI-YEN CHEN, TOM DRISCOLL, SIAMAK EBADI, JOHN DESMOND HUNT, NATHAN INGLE LANDY, MELROY MACHADO, MILTON PERQUE, DAVID R. SMITH, AND YAROSLAV A. URZHUMOV as inventors, filed May 2, 2014, is related to the present application. U.S. patent application Ser. No. 14/506,432, entitled SURFACE SCATTERING ANTENNAS WITH LUMPED ELEMENTS, naming PAI-YEN CHEN, TOM DRISCOLL, SIAMAK EBADI, JOHN DESMOND HUNT, NATHAN INGLE LANDY, MELROY MACHADO, JAY MCCANDLESS, MILTON PERQUE, DAVID R. SMITH, AND YAROSLAV A. URZHUMOV as inventors, filed Oct. 3, 2014, is related to the present application. U.S. Patent Application No. 61/992,699, entitled CURVED SURFACE SCATTERING ANTENNAS, naming PAI-YEN CHEN, TOM DRISCOLL, SIAMAK EBADI, JOHN DESMOND HUNT, NATHAN INGLE LANDY, MELROY MACHADO, MILTON PERQUE, DAVID R. SMITH, AND YAROSLAV A. URZHUMOV as inventors, filed May 13, 2014, is related to the present application. The present application claims benefit of priority of U.S. Provisional Patent Application No. 62/015,293, entitled MODULATION PATTERNS FOR SURFACE SCATTERING ANTENNAS, naming PAI-YEN CHEN, TOM DRISCOLL, SIAMAK EBADI, JOHN DESMOND HUNT, NATHAN INGLE LANDY, MELROY MACHADO, MILTON PERQUE, DAVID R. SMITH, AND YAROSLAV A. URZHUMOV as inventors, filed Jun. 20, 2014, which was filed within the twelve months preceding the filing date of the present application.
Number | Name | Date | Kind |
---|---|---|---|
3001193 | Marie | Sep 1961 | A |
3714608 | Barnes et al. | Jan 1973 | A |
4291312 | Kaloi | Sep 1981 | A |
4489325 | Bauck et al. | Dec 1984 | A |
4672378 | Drabowitch et al. | Jun 1987 | A |
4874461 | Sato et al. | Oct 1989 | A |
4920350 | McGuire et al. | Apr 1990 | A |
4978934 | Saad | Dec 1990 | A |
5512906 | Speciale | Apr 1996 | A |
6061023 | Daniel et al. | May 2000 | A |
6075483 | Gross | Jun 2000 | A |
6084540 | Yu | Jul 2000 | A |
6114834 | Parise | Sep 2000 | A |
6166690 | Lin et al. | Dec 2000 | A |
6211823 | Herring | Apr 2001 | B1 |
6232931 | Hart | May 2001 | B1 |
6366254 | Sievenpiper et al. | Apr 2002 | B1 |
6384797 | Schaffner et al. | May 2002 | B1 |
6469672 | Marti-Canales et al. | Oct 2002 | B1 |
6552696 | Sievenpiper et al. | Apr 2003 | B1 |
6633026 | Tuominen | Oct 2003 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7151499 | Avakian et al. | Dec 2006 | B2 |
7154451 | Sievenpiper | Dec 2006 | B1 |
7253780 | Sievenpiper | Aug 2007 | B2 |
7307596 | West | Dec 2007 | B1 |
7456787 | Manasson et al. | Nov 2008 | B2 |
7609223 | Manasson et al. | Oct 2009 | B2 |
7667660 | Manasson et al. | Feb 2010 | B2 |
7830310 | Sievenpiper et al. | Nov 2010 | B1 |
7864112 | Manasson et al. | Jan 2011 | B2 |
7911407 | Fong et al. | Mar 2011 | B1 |
7995000 | Manasson et al. | Aug 2011 | B2 |
8040586 | Smith et al. | Oct 2011 | B2 |
8059051 | Manasson et al. | Nov 2011 | B2 |
8134521 | Herz et al. | Mar 2012 | B2 |
8179331 | Sievenpiper | May 2012 | B1 |
8212739 | Sievenpiper | Jul 2012 | B2 |
8339320 | Sievenpiper | Dec 2012 | B2 |
8456360 | Manasson et al. | Jun 2013 | B2 |
20020167456 | McKinzie, III | Nov 2002 | A1 |
20030214443 | Bauregger et al. | Nov 2003 | A1 |
20040227668 | Sievenpiper | Nov 2004 | A1 |
20040263408 | Sievenpiper et al. | Dec 2004 | A1 |
20050031016 | Rosen | Feb 2005 | A1 |
20050031295 | Engheta et al. | Feb 2005 | A1 |
20050041746 | Rosen | Feb 2005 | A1 |
20060065856 | Diaz et al. | Mar 2006 | A1 |
20060114170 | Sievenpiper | Jun 2006 | A1 |
20060116097 | Thompson | Jun 2006 | A1 |
20070085757 | Sievenpiper | Apr 2007 | A1 |
20070159395 | Sievenpiper et al. | Jul 2007 | A1 |
20070159396 | Sievenpiper et al. | Jul 2007 | A1 |
20070182639 | Sievenpiper et al. | Aug 2007 | A1 |
20070200781 | Ahn et al. | Aug 2007 | A1 |
20080180339 | Yagi | Jul 2008 | A1 |
20080224707 | Wisler et al. | Sep 2008 | A1 |
20080268790 | Shi et al. | Oct 2008 | A1 |
20080316088 | Pavlov et al. | Dec 2008 | A1 |
20090002240 | Sievenpiper et al. | Jan 2009 | A1 |
20090109121 | Herz et al. | Apr 2009 | A1 |
20090251385 | Xu et al. | Oct 2009 | A1 |
20100066629 | Sievenpiper | Mar 2010 | A1 |
20100073261 | Sievenpiper | Mar 2010 | A1 |
20100134370 | Oh et al. | Jun 2010 | A1 |
20100156573 | Smith et al. | Jun 2010 | A1 |
20100188171 | Mohajer-Iravani et al. | Jul 2010 | A1 |
20100238529 | Sampsell | Sep 2010 | A1 |
20100279751 | Pourseyed et al. | Nov 2010 | A1 |
20100328142 | Zoughi et al. | Dec 2010 | A1 |
20110151789 | Viglione et al. | Jun 2011 | A1 |
20110267664 | Kitamura et al. | Nov 2011 | A1 |
20120026068 | Sievenpiper | Feb 2012 | A1 |
20120194399 | Bily et al. | Aug 2012 | A1 |
20120268340 | Capozzoli et al. | Oct 2012 | A1 |
20130069865 | Hart | Mar 2013 | A1 |
20130249310 | Hyde et al. | Sep 2013 | A1 |
20130278211 | Cook et al. | Oct 2013 | A1 |
20140266946 | Bily et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2007-081825 | Mar 2007 | JP |
2008-054146 | Mar 2008 | JP |
2010-187141 | Aug 2010 | JP |
10-1045585 | Jun 2011 | KR |
WO 2008-007545 | Jan 2008 | WO |
WO 2008059292 | May 2008 | WO |
WO 2009103042 | Aug 2009 | WO |
WO 2010021736 | Feb 2010 | WO |
PCTUS2013212504 | May 2013 | WO |
WO 2013147470 | Oct 2013 | WO |
Entry |
---|
Abdalla et al.; “A Planar Electronically Steerable Patch Array Using Tunable PRI/NRI Phase Shifters”; IEEE Transactions on Microwave Theory and Techniques; Mar. 2009; p. 531-541; vol. 57, No. 3; IEEE. |
Amineh et al.; “Three-Dimensional Near-Field Microwave Holography for Tissue Imaging”; International Journal of Biomedical Imaging; Bearing a date of Dec. 21, 2011; pp. 1-11; vol. 2012, Article ID 291494: Hindawi Publishing Corporation. |
“Array Antenna with Controlled Radiation Pattern Envelope Manufacture Method”; ESA; Jan. 8, 2013; pp. 1-2; http://www.esa.int/Our—Activities/Technology/Array—antenna—with—controlled—radiation—pattern—envelope—manufacture—method. |
Belloni, Fabio; “Channel Sounding”; S-72.4210 PG Course in Radio Communications; Bearing a date of Feb. 7, 2006; pp. 1-25. |
Chen, Robert; Liquid Crystal Displays, Wiley, New Jersey 2011 (not provided). |
Chin, J.Y. et al.; “An efficient broadband metamaterial wave retarder”; Optics Express; vol. 17, No. 9; p. 7640-7647; 2009. |
Chu, R. S. et al.; “Analytical Model of a Multilayered Meaner-Line Polarizer Plate with Normal and Oblique Plane-Wave Incidence”; IEEE Trans. Ant. Prop.; vol AP-35, No. 6; p. 652-661; Jun. 1987. |
Colburn et al.; “Adaptive Artificial Impedance Surface Conformal Antennas”; in Proc. IEEE Antennas and Propagation Society Int. Symp.; 2009; p. 1-4. |
Courreges et al.; “Electronically Tunable Ferroelectric Devices for Microwave Applications”; Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications; ISBN 978-953-7619-66-4; Mar. 2010; p. 185-204; InTech. |
Cristaldi et al., Chapter 3 “Passive LCDs and Their Addressing Techniques” and Chapter 4 “Drivers for Passive-Matrix LCDs”; Liquid Crystal Display Drivers: Techniques and Circuits; ISBN 9048122546; Apr. 8, 2009; p. 75-143; Springer. |
Den Boer, Wilem; Active Matrix Liquid Crystal Displays; Elsevier, Burlington, MA, 2009 (not provided). |
Diaz, Rudy; “Fundamentals of EM Waves”; Bearing a date of Apr. 4, 2013; 6 total pages, located at: http://www.microwaves101.com/encycolpedia/absorbingradarl.cfm. |
Elliott, R.S.; “An Improved Design Procedure for Small Arrays of Shunt Slots”; Antennas and Propagation, IEEE Transaction on; Jan. 1983; p. 297-300; vol. 31, Issue: 1; IEEE. |
Elliott, Robert S. and Kurtz, L.A.; “The Design of Small Slot Arrays”; Antennas and Propagation, IEEE Transactions on; Mar. 1978; p. 214-219; vol. AP-26, Issue 2; IEEE. |
European Patent Office, Supplementary European Search Report, pursuant to Rule 62 EPC; App. No. EP 11 83 2873; May 15, 2014; 7 pages. |
Evlyukhin, Andrey B. and Bozhevolnyi, Sergey I.; “Holographic evanescent-wave focusing with nanoparticle arrays”; Optics Express; Oct. 27, 2008; p. 17429-17440; vol. 16, No. 22; OSA. |
Fan, Yun-Hsing et al.; “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators”; Applied Physics Letters; Feb. 23, 2004; p. 1233-1235; vol. 84, No. 8; American Institute of Physics. |
Fong, Bryan H. et al.; “Scalar and Tensor Holographic Artificial Impedance Surfaces” IEEE Transactions on Antennas and Propagation; Oct. 2010; p. 3212-3221; vol. 58, No. 10; IEEE. |
Frenzel, Lou; “What's the Difference Between EM Near Field and Far Field?”; Electronic Design; Bearing a date of Jun. 8, 2012; 7 total pages; located at: http://electronicdesign.com/energy/what-s-difference-between-em-field-and-far-field. |
Grbic, Anthony; “Electrical Engineering and Computer Science”; University of Michigan; Create on Mar. 18, 2014, printed on Jan. 27, 2014; pp. 1-2; located at http;//sitemaker.umich.edu/agrbic/projects. |
Grbic et al.; “Metamaterial Surfaces for Near and Far-Field Applications”; 7th European Conference on Antennas and Propagation (EUCAP 2013); Bearing a date of 2013, Created on Mar. 18, 2014; pp. 1-5. |
Hand, Thomas H. et al.; “Characterization of complementary electric field coupled resonant surfaces”; Applied Physics Letters; published on Nov. 26, 2008; pp. 212504-1-212504-3; vol. 93; Issue 21; American Institute of Physics. |
Imani et al.; “A Concentrically Corrugated Near-Field Plate”; Bearing a date of 2010; Created on Mar. 18, 2014; pp. 1-4; IEEE. |
Imani et al.; “Design of a Planar Near-Field Plate”; Bearing at date of 2012, Created on Mar. 18, 2014; pp. 102, IEEE. |
Imani et al.; “Planar Near-Field Plates”; Bearing a date of 2013, Create on Mar. 18, 2014; pp. 1-10; IEEE. |
Islam et al.; “A Wireless Channel Sounding System for Rapid Propagation Measurements”; Bearing a date of Nov. 21, 2012, 7 total pages. |
Kaufman, D.Y. et al.; “High-Dielectric-Constant Ferroelectric Thin Film and Bulk Ceramic Capacitors for Power Electronics”; Proceedings of the Power Systems World/Power Conversion and Intelligent Motion '99 Conference; Nov. 6-12, 1999; p. 1-9; PSW/PCIM; Chicago, IL. |
Kim, David Y.; “A Design Procedure for Slot Arrays Fed by Single-Ridge Waveguide”; IEEE Transactions on Antennas and Propagation; Nov. 1988; p. 1531-1536; vol. 36, No. 11; IEEE. |
Kirschbaum, H.S. et al.; “A Method of Producing Broad-Band Circular Polarization Employing an Anisotropic Dielectric”; IRE Trans. Micro. Theory. Tech.; vol. 5, No. 3; p. 199-203; 1957. |
Kokkinos, Titos et al.; “Periodic FDTD Analysis of Leaky-Wave Structures and Applications to the Analysis of Negative-Refractive-Index Leaky-Wave Antennas”; IEEE Transactions on Microwave Theory and Techniques; 2006; p. 1-12; ; IEEE. |
Konishi, Yohei; “Channel Sounding Technique Using MIMO Software Radio Architecture”; 12th MCRG Joint Seminar: Bearing a date of Nov. 18, 2010; 28 total pages. |
Kuki, Takao et al., “Microwave Variable Delay Line using a Membrane Impregnated with Liquid Crystal”; Microwave Symposium Digest; ISBN 0-7803-7239-5; Jun. 2-7, 2002; p. 363-366; IEEE MTT-S International. |
Leveau et al.; “Anti-Jam Protection by Antenna”; GPS World; Feb. 1, 2013; pp. 1-11; North Coast Media LLC; http://gpsworld.com/anti-jam-protection-by—-antenna/. |
Lipworth et al.; “Magnetic Metamaterial Superlens for Increase Range Wireless Power Transfer”; Scientific Reports; Bearing a date of Jan. 101, 2014; pp. 1-6; vol. 4, No. 3642. |
Luo et al.; “Hig-directivity antenna with small antenna aperture”; Applied Physics Letters; 2009; pp. 193506-1-193506-3; vol. 95; American Institute of Physics. |
Manasson et al.; “Electronically Reconfigurable Aperture (ERA): A New Approach for Beam-Steering Technology”; Bearing dates of Oct. 12-15, 2010; pp. 673-679; IEEE. |
McLean et al.; “Interpreting Antenna Performance Parameters for EMC Applications: Part 2: Radiation Patter, Gain, and Directivity”; Created on Apr. 1, 2014; pp. 7-17; TDK RF Solutions Inc. |
Mitri, F.G.; “Quasi-Gaussian Electromagnetic Beams”; Physical Review A.; Bearing a date of Mar. 11, 2013; p. 1; vol. 87, No. 035804; (Abstract Only). |
Ovi et al.; “Symmetrical Slot Loading in Elliptical Microstrip Patch antennas Partially Filled with Mue Negative Metamaterials”; PIERS Proceedings, Moscow, Russia; Aug. 19-23, 2012; pp. 542-545. |
Patel, Hasmukh S. et al.; “Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part I—Harmonic Elimination”; IEEE Transaction on Industry Applications; vol. IA-9, No. 3, May/Jun. 1973; pp. 310-317; IEEE. |
PCT International Search Report; International App. No. PCT/US2014/017454; Aug. 28, 2014; pp. 1-4. |
PCT International Search Report; International App. No. PCT/US2011/001755; Mar. 22, 2012; pp. 1-5. |
Poplavlo, Yuriy et al.; “Tunable Dielectric Microwave Devices with Electromechanical Control”; Passive Microwave Components and Antennas; ISBN 978-953-307-083-4; Apr. 2010; p. 367-382; InTech. |
Rengarajan, Sembiam R. et al.; “Design, Analysis, and Development of a Large Ka-Band Slot Array for Digital Beam-Forming Application”; IEEE Transactions on Antennas and Propagation; Oct. 2009; p. 3103-3109; vol. 57, No. 10; IEEE. |
Sakakibara, Kunio; “High-Gain Millimeter-Wave Planar Array Antennas with Traveling-Wave Excitation”; Radar Technology; Bearing a date of Dec. 2009; pp. 319-340. |
Sandell et al.; “Joint Data Detection and Channel Sounding for TDD Systems with Antenna Selection”; Bearing a date of 2011, Created on Mar. 18, 2014; pp. 1-5; IEEE. |
“Satellite Navigation”; Crosslink; The Aerospace Corporation magazine of advances in aerospace technology; Summer 2002; vol. 3, No. 2; pp. 1-56; The Aerospace Corporation. |
Sato, Kazuo et al.; “Electronically Scanned Left-Handed Leaky Wave Antenna for Millimeter-Wave Automotive Applications”; Antenna Technology Small Antennas and Novel Metamaterials; 2006; p. 420-423; IEEE. |
Siciliano et al.; “25. Multisensor Data Fusion”; Springer Handbook of Robotics; Bearing a date of 2008, Created on Mar. 18, 2014; 27 total pages; Springer. |
Sievenpiper, Dan et al.; “Holographic Artificial Impedance Surfaces for Conformal Antennas”; Antennas and Propagation Society International Symposium; 2005; p. 256-259; vol. 1B; IEEE, Washington D.C. |
Sievenpiper, Daniel F. et al.; “Two-Dimensional Beam Steering Using an Electrically Tunable Impedance Surface”; IEEE Transactions on Antennas and Propagation; Oct. 2003; p. 2713-2722; vol. 51, No. 10; IEEE. |
Smith, David R.; “Recent Progress in Metamaterial and Transformation Optical Design”; NAVAIR Nano/Meta Workshop; Feb. 2-3, 2011; pp. 1-32. |
Soper, Taylor; “This startup figured out how to charge devices wirelessly through walls from 40 feet away”; GeekWire; bearing a date of Apr. 22, 2014 and printed on Apr. 24, 2014; pp. 1-12; located at http://www.geekwire.com/2014/ossia-wireless-charging/#disqus—thread. |
“Spectrum Analyzer”; Printed on Aug. 12, 2013; pp. 1-2; http://www.gpssource.com/faqs/15; GPS Source. |
Sun et al.; “Maximum Signal-to-Noise Ratio GPS Anti-Jam Receiver with Subspace Tracking”; ICASSP; 2005; pp. IV-1085-IV-1088; IEEE. |
Thoma et al.; “MIMO Vector Channel Sounder Measurement for Smart Antenna System Evaluation”; Created on Mar. 18, 2014; pp. 1-12. |
Umenei, A.E.; “Understanding Low Frequency Non-Radiative Power Transfer”; Bearing a date of Jun. 2011; 7 total pages; Fulton Innovation LLC. |
Utsumi, Yozo et al.; “Increasing the Speed of Microstrip-Line-Type Polymer-Dispersed Liquid-Crystal Loaded Variable Phase Shifter”; IEEE Transactions on Microwave Theory and Techniques; Nov. 2005, p. 3345-3353; vol. 53, No. 11; IEEE. |
Wallace, John; “Flat ‘Metasurface’ Becomes Aberration-Free Lens”; Bearoing a date of Aug. 28, 2012; 4 total pages; located at: http://www.laserfocusworld.com/articles/2012/08/flat-metasurface-becomes-aberration-free-lens.html. |
“Wavenumber”; Microwave Encyclopedia; bearing a date of Jan. 12, 2008; pp. 1-2 P-N Designs, Inc. |
Weil, Carsten et al.; “Tunable Inverted-Microstrip Phase Shifter Device Using Nematic Liquid Crystals”; IEEE MTT-S Digest; 2002; p. 367-370; IEEE. |
Yan, Dunbao et al.; “A Novel Polarization Convert Surface Based on Artificial Magnetic Conductor”; Asia-Pacific Microwave Conference Proceedings, 2005. |
Yee, Hung Y.; “Impedance of a Narrow Longitudinal Shunt Slot in a Slotted Waveguide Array”; IEEE Transactions on Antennas and Propagation; Jul. 1974; p. 589-592; IEEE. |
Yoon et al.; “Realizing Efficient Wireless Power Transfer in the Near-Field Region Using Electrically small Antennas”; Wireless Power Transfer; Principles and Engineering Explorations: Bearing a date of Jan. 25, 2012; pp. 151-172. |
Young et al.; “Meander-Line Polarizer”; IEEE Trans. Ant. Prop.; p. 376-378; May 1973. |
Zhong, S.S. et al.; “Compact ridge waveguide slot antenna array fed by convex waveguide divider”; Electronics Letters; Oct. 13, 2005; p. 1-2; vol. 41, No. 21; IEEE. |
Fan, Guo-Xin et al.; “Scattering from a Cylindrically Conformal Slotted Waveguide Array Antenna”; IEEE Transactions on Antennas and Propagation; Jul. 1997; pp. 1150-1159; vol. 45, No. 7; IEEE. |
Intellectual Property Office of Singapore Examination Report; Application No. 2013027842; Feb. 27, 2015; pp. 1-12. |
Jiao, Yong-Chang et al.; A New Low-Side-Lobe Pattern Synthesis Technique for Conformal Arrays; IEEE Transactions on Antennas and Propagation; Jun. 1993; pp. 824-831; vol. 41, No. 6; IEEE. |
Patent Office of the Russian Federation (Rospatent) Office Action; Application No. 2013119332/28(028599); Oct. 13, 2015; machine translation; pp. 1-5. |
PCT International Search Report; International App. No. PCT/US2014/069254; Nov. 27, 2015; pp. 1-4. |
PCT International Search Report; International App. No. PCT/US2015/036638; Oct. 19, 2015; pp. 1-4. |
PCT International Search Report; International App. No. PCT/US2015/028781; Jul. 27, 2015; pp. 1-3. |
PCT International Search Report; International App. No. PCT/US2014/070645; Mar. 16, 2015; pp. 1-3. |
PCT International Search Report; International App. No. PCT/US2014/070650; Mar. 27, 2015; pp. 1-3. |
PCT International Search Report; International App. No. PCT/US2014/061485; Oct. 21, 2014; pp. 1-3. |
The State Intellectual Property Office of P.R. C.; Application No. 201180055705.8; Nov. 4, 2015; pp. 1-11. |
The State Intellectual Property Office of P.R. C.; Application No. 201180055705.8; May 6, 2015; pp. 1-11. |
Number | Date | Country | |
---|---|---|---|
20160149308 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14549928 | Nov 2014 | US |
Child | 15010118 | US | |
Parent | 14510947 | Oct 2014 | US |
Child | 14549928 | US |