1. Field of the Invention
The present invention relates generally to modulators and amplifiers used in communication and reproduction of audio signals. More particularly, the present invention relates to amplification and modulation equipment where a carrier is modulated in at least one sideband in parametric sound reproduction.
2. Related Art
Modulation of a carrier signal to incorporate audio signal information is well known. Single side band (SSB) and double side band (DSB or AM) modulation including “upper” and “lower” sidebands have been used in radio frequency (RF) communication equipment for many decades to transmit and reproduce audio information. More recently, in the field of parametric audio reproduction, modulation of an ultrasonic carrier signal has been performed. The signal is amplified and fed trough an ultrasonic transducer to produce an audible reproduction of the audio information.
Typically, at least one sideband is used to carry audio signal information. Audio information can be reproduced in a parametric array comprising a fluid medium wherein the transducer is located. The fluid is typically air, but can be other fluids, such as water, for example. The array medium is excited by the transducer at the modulated carrier frequency; and, typically, by non-linear interaction of molecules of the air (or water) medium, audible audio waves are produced. Those audible waves reproduce the audio information in the modulated carrier signal. It will be appreciated that other signal processing can be done, but toward that subject, adherence to the subject matter at hand requires forbearance in setting out more.
Parametric sound reproduction has numerous potential applications. The relatively large power requirements of sound reproduction using this technique is an issue recognized across a range of these applications. Inherently, this technique requires more power than direct excitation of the medium at an audible frequency (audio frequency). For example, conventional audio systems directly generate compression waves reproducing audio information. But in parametric reproduction, the compression waves are created at a higher frequency than that of the audio signal, typically 10 or more times the frequency. Thus changing the excursion direction of the transducer driven element and the coupled medium takes place typically at least this many more times, each change consuming energy. Development of efficient techniques for modulation and amplification of a signal to be sent to the transducer (speaker) as a modulated carrier signal can be of significant benefit in parametric sound reproduction applications. This is because the process of parametric sound reproduction is so inherently power-hungry, improvements in power efficiencies go directly to the bottom line of better reproduction, lower power consumption, and enabling more volume at the distances from the transducer within the array that are of interest in the particular application, especially where that distance is large and/or the desired sound pressure level (SPL) is large at the distance of interest.
Furthermore, the processes of modulation of the carrier, and amplification of the audio source signal, can themselves introduce distortion. For example, audible artifacts of switching in an output stage of a switching amplifier can be problematic. Further, in switching amplification and modulation at frequencies close to the carrier frequency, e.g. about ten times the frequency or less, very noticeable and distracting artifacts are present using conventional techniques. These distortions/artifacts can be noticeable, and distracting, when heard by a listener in a parametric array. They can generally degrade the quality of the audio information heard. Much work has been done in attempting to reduce such undesirable artifacts and distortion. However, due to the necessity for relatively high signal strength, and for increased power in the transducer, these problems remain apparent, and can degrade the listening experience of the hearer in the parametric array.
Improvements in power efficiency and audible signal quality will go far to increase acceptance of parametric sound reproduction technologies. They can be of benefit in other areas where modulation of a reference or carrier signal is used as well. However, it will be understood that for sake of clarity and understanding, the invention will be set forth in the application by means of example. Most of the discussion of the details of implementation will be relevant to parametric sound reproduction using an ultrasonic carrier. But the improvements disclosed herein may well have important applications in other areas.
A method and device for frequency shifting and amplifying an audio signal for use in a parametric loudspeaker system is disclosed. The method includes the operation of receiving an input audio signal and creating a reference signal. The audio signal is compared with the reference signal to derive a compared product signal. The compared product signal is sent to a switching power stage. Nonlinear preprocessing is performed with respect to the input audio signal, and/or a non-triangle wave is created as the reference signal. The input audio signal is shifted and amplified by modulating the reference signal in the switching power stage.
a) and (b) are schematic block diagrams of power supply rejection circuits for triangle and sine wave embodiments, respectively.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
With reference to
Parametric arrays 11 give the ability to direct or focus sound into tight beams using physically small transducers 15. The parametric array concept works both in fluids including gases such as air or in liquids such as water. The ModAmp is an ideal solution for the modulation and amplification functions required in parametric array systems because of its small size and high efficiency.
Other applications include AM and SSB transmitters, SONAR signal modulation and amplification, medical ultrasound applications, frequency translating amplifiers, band pass amplifiers, quadrature phase shift keying and quadrature amplitude modulation in various applications.
As illustrated in
It will be appreciated that a power supply 22 is provided to provide power in accordance with voltage and current parameters required by the various elements, as will be discussed below in further detail. A brown-out protection circuit 24 can be provided, as will be discussed in further detail below, where the reference signal frequency is based on a wall socket high voltage source of AC power at some frequency.
As will be further described below, timing signals or pulses are created by the event generator 18, and these and the reference signal generated by the carrier reference signal generator 20 are fed into a modulator/amplifier switching output driver stage 26. There the carrier signal is modulated according to the pulses generated by the event generator. This can be done so that the carrier is SSB modulated, by an SSB modulator portion 28 or DSB modulated, by an AM modulator portion 30. This is by state switching in an output driver 32, which all will be more fully discussed below in connection with example embodiments. The carrier signal can also be asymmetrically modulated, that is by modulating on the upper and lower sidebands by different amounts.
The carrier is switch-modulated at some multiple of the carrier frequency, e.g. 2, 3, 4, 5, 6 or more times the carrier frequency; and the modulated carrier signal is fed to a transducer 34 for reproduction of the information in the audio signal from the audio source 12 in a parametric array 36 in a medium. There is a non-linear relationship between events in the audio signal from the audio source, and the occurrence of state changes in the switching in the output driver 32. This can be in accordance with an arcsine function in one embodiment. It develops that when this relationship is used certain problems are elegantly solved, and distortion is minimized and a lower multiple of carrier frequency can be used in output switching. Also, in the output stage, 2 state, 3-, 5- etc. state switching can be used, for different example implementations which will be discussed.
The non-linear relationship of the audio input signal and the state change timing in the switching output driver 32 is a feature not found in conventional class-D amplifiers. The advantages obtained are not unique to the application of parametric sound reproduction in the parametric array 36, but its use is unique to date in the parametric art at the time of application for letters patent.
With reference now to
Using this scheme, an input signal 16 can be used to modulate a carrier with a variety of schemes such as amplitude modulation (AM) or single sideband modulation (SSB). The modulator generates an output with a small number of discrete output amplitudes (or voltage levels). Typically 2 or 3 discrete output levels are used, however as many as 8 levels can be implemented. The modulator output can be amplified to any arbitrary level by increasing the voltage swing. In its simplest form, the modulator output is a binary signal that is either low or high. This binary signal can be applied to MOSFET switches to increase the voltage swing thereby increasing or amplifying the signal. By using this switching technique, high-efficiency power modulator/amplifiers may be realized. The combined modulator/amplifier is referred to as a ModAmp in this disclosure. The ModAmp output spectrum consists of the desired modulated signal plus high frequency switching products. In typical applications, a lowpass filter is used to remove the high frequency switching products. It is not necessary to have a carrier tone present in the modulator output. The AM or SSB signal may have a carrier present or may be operated in a suppressed carrier fashion. When the carrier is suppressed, the SSB ModAmp performs frequency translation and amplification. That is, the input signal is frequency shifted and amplified by the ModAmp.
With reference to
The fundamental amplitude of the output signal is a non-linear function of the pulse width parameter. Recall that a real periodic signal with period T=1/fo can be written in terms of it's Fourier Series expansion:
The Fourier coefficients, an, and bn, represent the amplitudes of the cosine and sine signals, respectively, that make up the spectrum of the periodic signal f(t). For the bi-directional pulse waveforms in
and
bn=0, for all n (6)
where V is the peak value of the output waveform (or the power supply voltage) as labeled in
Of particular interest is how the amplitude of the fundamental, a1, varies with the pulse-width control parameter τ. From (5), it can be seen that the fundamental tone amplitude is given by the following non-linear function of τ:
The fundamental amplitude has a maximum peak value of V(4/π)=V×1.273 when τ=T/4. This corresponds to a square wave output signal. Note that the peak output level at the carrier frequency can be greater than the power supply rail, V.
A triangle wave and two comparators can be used to generate the tri-level waveform, as shown in
Suppose we want to perform linear AM modulation, that is, we want the output's fundamental tone amplitude to vary linearly (between 0 and it's maximum of 4/π) with some input variable or signal, x. Specifically, let the amplitude of the fundamental be
where K is a constant (typically K=V). If K=V then the fundamental amplitude will vary between 0 and it's maximum of V(4/π) as x varies from 0 to 1. By combining (7), (8), and (9) it is easy to show that the comparator threshold variable y in
Equation (10) is a necessary condition to achieve a linear variation of fundamental amplitude with the control variable, x. This equation applies when using the linear pulse width modulator of
Next, rather than holding the control variable, x, at a constant, we let it change with an input signal. This achieves AM modulation of the input signal at the carrier frequency of fo.
To achieve SSB modulation, a similar signal processing path is used in the lower part of the block diagram, with the difference being the input signal is presented in quadrature and the triangle waveform is shifted by 90 degrees. For a generalized input signal a Hilbert transform can be used to generate the required analytic signal (consisting of in-phase and quadrature components). A lower sideband output is derived by subtracting the 2 AM outputs. Upper sideband would result if we added the two AM outputs.
The waveforms for the AM and SSB modulators are shown in
The spectrum of the AM and SSB outputs are shown in
To realize the power amplifier portion of the ModAmp, the switching output waveforms are increased to the desired amplitude and passed through a lowpass filter to attenuate the high frequency switching components. A power amplifier based tri-level SSB modulation can employ an H-bridge and appropriately switching the two halves of the bridge to achieve the tri-level outputs. An example ModAmp that uses this technique is detailed below.
Note that the DC bias sets the nominal carrier level. In an alternative realization as set forth below, we can operate with the carrier suppressed.
We now take up the subject of a Sine Wave Comparator, whereas above we computed the arcsine of the input signal, x, so we could achieve linear operation when using a comparator with a triangle wave input (the linear bi-pulse width generator shown in
where A is the amplitude of the sine wave reference signal.
Solving this equation for τ and substituting it into the equation for the fundamental tone amplitude, (7); gives us a linear relationship between the input, x and the output tone amplitude:
If A is set to V/K then this equation is identical to (9). The important point here is that the fundamental amplitude is a linear function of the input or control variable, x.
With reference now to
Turning now to
Turning again to the top-level block diagram of the modulator/amplifier of
With reference to
Turning to
With reference to
Note that it is not necessary to have a carrier tone present in the modulator output. The AM or SSB signal may have a carrier present, or may be operated in a suppressed carrier fashion. When using the staggered drive we can set the DC bias level to zero so that carrier is suppressed. In the suppressed carrier case any given pulse in the tri-level waveform can be positive going or negative going, depending on the timing order of the staggered drive edges. In the suppressed carrier case, the SSB ModAmp functions as a frequency translating ‘bandpass’ amplifier. That is, the ModAmp frequency translates the input spectrum to some other band of frequencies as determined by the carrier frequency.
For true binary output in one embodiment, we want the outputs to take on only two levels. The tri-level AM and SSB waveforms can be converted to bi-level waveforms by adding a square wave at the carrier frequency, which will change the carrier level of the tri-level output. However the DC bias may be changed to allow bi-level operation with or without suppressed carrier. The bi-Level output signal allows an amplifier to be built using a half bridge (instead of a full H-bridge), requiring only two output transistors. The bi-level modulators may also be operated with suppressed carrier by properly setting the DC bias.
With reference to
With this discussion as background Table 1 summarizes the characteristics of the various modulators. We assume an H-bridge requires 4 MOSFETs and a half H-bridge requires 2 MOSFETs. The “transitions per carrier period” indicate the number of signal transitions of the modulator output per carrier period. The fewer transitions generally yield higher efficiency amplifiers.
Item 5 in Table 1 below uses two bi-level AM modulators and takes the difference to synthesize the SSB output. Item 6 starts with “bi-level AM” and adds a square wave at the 3rd harmonic of the carrier. This is used to reduce the amplitude of the 3rd harmonic in the modulator output. Schemes that add higher order harmonics is also feasible. Item 7 starts with “tri-level AM” and adds a square wave at the 3rd harmonic of the carrier. Item 8 combines two “bi-level AM reduced 3rd harmonic” (item 6) to synthesize the SSB output.
The output voltage level of the ModAmp will be proportional to the power supply voltage unless we explicitly implement the feedforward technique suggested by equation (10). In the simulations, it was assumed that the power supply voltage was a constant voltage of 1. However, if we modify the ModAmp to monitor the power supply voltage, and make adjustments to the pulse widths, they will automatically compensate for power supply voltage variations and noise (such as the 120 Hz and other AC line harmonics).
Power supply rejection may be achieved by using a feedforward technique where the pulse-width is changed in response to a change in the power supply voltage. From (10) it can be seen that x is scaled by K/V before taking the arcsine. We have assumed that K=1 and V=1 in the system simulations up until now. As the power supply voltage V changes, the pulse widths can be appropriately adjusted to maintain a consistent output.
a) shows a system with power supply rejection circuit that employs a feed-forward amplitude/pulse-width adjustment technique for stabilizing triangle and sinusoidal carrier signals by explicitly implementing equation (10) when using the triangle wave based tri-level pulse generator. An alternative implementation is achieved for the sine wave tri-level pulse generator case.
substitute it into (12). We get an output amplitude that is independent of the power supply voltage. Specifically, we get the desired linear relationship:
By using one of the feedforward power supply rejection techniques above, the usual requirement of a regulated power supply is eliminated.
An exemplary embodiment of the modulator-amplifier performs tri-level single sideband modulation. The schematic diagram with notes is shown in
The inputs to the ModAmp consists of in-phase and quadrature (Iin and Qin) audio signals. The input op-amps amplifies and hard-limits the input signals. The op-amp's output voltage is limited at the power supply rails at OV and +5V. This limiter constrains the tri-level SSB signal's maximum pulse width. After a gain trimming pot, the audio signal is AC coupled with a luF capacitor. Next a DC bias is added to set the carrier level. This signal is fed into the upper comparator, U2, and an inverted copy is fed into the lower comparator, U3.
The outputs of the comparators are fed to an edge detector circuit that generates a short 250 nS pulse on both the positive going and negative going comparator transitions. These “event trigger” signals are used to set and clear the A and B halves of the H-bridge.
Shown on the second page of the schematic, a complementary pair of MOSFETs are used to buffer (and invert) the event trigger pulses. The main MOSFETs are driven by a novel circuit design that uses a small pulse transformer and a pair of small MOSFETs to generate the main gate drive signal. Without going into detail, the driver circuit uses the short set and clear pulses to generate bipolar gate drive signals for the main MOSFETs. The driver design avoids cross conduction (or shoot through) of the MOSFETs and operates over a wide duty cycle range.
The output load is connected between the two half bridges to extract the SSB output. In this case, a series inductor forms the lowpass filter. The high-voltage power supply for the output stage is derived by full wave rectifying the 120 V AC line voltage and filtering with a capacitor. The specifications of the ModAmp prototype are shown in Table 2.
Note that with regard to the modulator output spectrums set forth herein, closed form analytic expressions of the modulator output spectrum can be derived for all the modulation approaches discussed (assuming sine wave input).
To this point it has been assumed that the ModAmps are realized with analog components such as triangle wave oscillators, sine wave oscillators, and comparators, etc. It is feasible, however, to perform all the modulation operations in the digital do-main assuming we have a digital (pulse code modulation (PCM)) input signal.
A digital ModAmp can be realized as follows: (1) up-sample the input PCM waveform, (2) compare the upsampled input to a digitally synthesized sine wave, and (3) use the comparator outputs to generate the driver signals for MOSFET power switches. The problem can be reduced to finding the zero crossing times of the oversampled or interpolated PCM waveforms, (similar to the analog event generator of
Once zero crossing times are calculated, digital PWM logic can generate the output waveforms. If high accuracy timing resolution is required on the edges, an extremely high clock rate would be required for a digital PWM. To alleviate the requirement for excessively high clock rates, techniques such as noise shaping may be applied to dither the timing of the edges (e.g. Delta Sigma modulation).
A Polyphase Variation is also possible in one embodiment. Multiple ModAmps may be paralleled to reduce the output ripple voltage can increase the power. Each amplifier would be operated at a slightly advanced phase from the previous amplifier. The outputs of the “staggered phase” ModAmps would be added together through the output filter inductor, for example. With this polyphase approach, it is also possible to increase the frequency of out-of-band components, thereby reducing the post filtering requirements. An FM Modulator Variation is also another possible embodiment. An FM modulator version of the ModAmp may be implemented using the same elements as the AM version with the following modifications. First, set the input to the ModAmp to a constant. This gives us a constant carrier output. Second replace the oscillator (triangle wave or sine wave depending on the ModAmp) with a voltage controlled oscillator (VC)). Finally use the control input of the VCO as the modulator input.
Note that it is not necessary to use an AM linearizer (since DC is used as an input) or a sine wave oscillator. We simply need to create the tri-level or bi-level waveform that will result in a carrier tone at the fundamental frequency. The VCO performs the FM modulation, the comparators generate the switching signals, and the MOSFETs switches amplify the waveform. The result is an FM ModAmp. Furthermore, this basic principle can be extended to other modulation schemes such as quadrature phase shift keying (QPSK), quadrature amplitude modulation (QAM), etc.
Now further embodiments will be discussed, and some overlapping of the previous discussion will be included. However, additional understanding will be imparted by consideration of the following discussion.
With reference to
For binary output, we want the outputs to take on only two levels. The tri-level AM and SSB waveforms can be converted to bi-level waveforms by adding a square wave at the carrier frequency, as shown at the bottom of
A simulation was run with two test tones using the parameter settings shown in
The power supply noise/ripple rejection approach of
Table 3 summarizes the characteristics of the various modulators. We assume an H-bridge requires 4 MOSFETs and a half-bridge requires 2 MOSFETs. The “transitions per carrier period” indicate the number of signal transitions of the modulator output per carrier period. The fewer transitions generally yield higher efficiency amplifiers. Item 5 uses two bi-level AM modulators and takes the difference to synthesize the SSB output. Item 6 starts with “bi-level AM” and adds a square wave at the 3rd harmonic of the carrier. This is used to reduce the amplitude of the 3rd harmonic in the modulator output. Schemes that add higher order harmonics is also feasible. Item 7 starts with “tri-level AM” and adds a square wave at the 3rd harmonic of the carrier. Item 8 combines two “bi-level AM reduced 3rd harmonic” (item 6) to synthesize the SSB output. Item 9 is the new technique used in the Analog ModAmp described in this document.
Regarding Pre-Processing Software for the Analog ModAmp, The source audio material is processed on a computer to generate an I (in-phase) and Q (quadrature) signals that are saved on the MP3 players right and left channels, respectively. The software is written in MATLAB/Simulink and the block diagrams are shown in
In another embodiment, an Analog ModAmp Circuit Description is illustrated in
The power supplies are shown in the schematic in
Sine/Cosine Reference Oscillators are implemented as follows: the master clock oscillator is the LTC 1799 chip, U5, in
The circuits in the lower half of
The circuit gains are set such that the output sine waves will clip with high input line voltages. This clipping has no negative consequence since the peaks of the waveforms are not used by the subsequent comparator circuits. The increased amplitude in the design increases the overall dynamic range.
A Reset/brown out protection circuit can be provided in one embodiment. The reset chip U22 triggers a 2 second active low reset pulse on power up. If the VCC input drops below 4.00V reset is also asserted. The RESET_F signal, when active, disables the high voltage power supply to the main MOSFETs through the switch, Qa in the power supply schematic,
The inputs to the ModAmp consist of in-phase and quadrature audio signals with DC controlling the carrier level. The circuits of U12, U17 and U14B in
The op-amp circuit design takes the ratiometric signal from the MP3 player output (the DAC in the player is proportional to the 2.47V reference times the digital code) and generates an output that drops below the nominal 2.5V as the carrier level increases. The circuit is designed to cancel the offset voltage errors that would normally occur with +5V power supply variations.
Regarding PanComparator Circuits included in the illustrated embodiment, the 15 KHz 2nd order Bessel lowpass filter U14A and U19A removes high frequency signals that may be in the input and drives the negative comparator inputs. The top comparator output has falling and rising edges that correspond to the times that the output MOSFETs should be cleared. See the wave forms in
Regarding Pulse Synthesizer Circuits, the outputs of the comparators are fed to an edge detector circuit that generates a short 350 nS pulse on both the positive going and negative going comparator transitions. These “event trigger” signals are used to set and clear the output state. Also pulse driver circuits are provided.
Now considering MOSFET Pulse to Level Converters and Output Stage, for each main MOSFET is driven by a pair of steering MOSFETs (Q3, Q4 and Q5, Q6) which converts the short event trigger pulses to steady-state voltage levels. By using MOSFETs with different gate thresholds and the secondary-to-secondary coupling in the pulse transformer, this novel circuit design guarantees that the main MOSFETs will avoid cross-conduction (or shoot through) and will operate over a wide duty cycle range.
Lastly a Transducer Isolation and Matching Stage is provided. Transformer T4 achieves the required transducer isolation from the mains and the matching inductor and capacitor form a tuned circuit with the transducer to help boost the voltage level and equalize the system.
It is to be understood that the above-referenced arrangements are illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention while the present invention has been shown in the drawings and described above in connection with the exemplary embodiments(s) of the invention. It will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the claims.
This application is a divisional of U.S. patent application Ser. No. 10/501,896, filed Jul. 19, 2004, now U.S. Pat. No. 7,109,789, which is a nationalization of PCT/US03/01854, filed Jan. 21, 2003, which claims priority of U.S. Provisional Application Ser. No. 60/350,414 filed Jan. 18, 2002, which is herein incorporated by reference for the relevant teachings consistent herewith.
Number | Name | Date | Kind |
---|---|---|---|
1616639 | Sprague | Feb 1927 | A |
1951669 | Ramsey | Mar 1934 | A |
2461344 | Olson | Feb 1949 | A |
3012222 | Hagemann | Dec 1961 | A |
3398810 | Clark, III | Aug 1968 | A |
3461421 | Stover | Aug 1969 | A |
3612211 | Clark, III | Oct 1971 | A |
3613069 | Cary, Jr. et al | Oct 1971 | A |
3710332 | Tischner et al. | Jan 1973 | A |
3742433 | Kay et al. | Jun 1973 | A |
3836951 | Geren et al. | Sep 1974 | A |
4166197 | Moog et al. | Aug 1979 | A |
4295214 | Thompson | Oct 1981 | A |
4378596 | Clark | Mar 1983 | A |
4418404 | Gordon et al. | Nov 1983 | A |
4600891 | Taylor, Jr. et al. | Jul 1986 | A |
4823908 | Tanaka et al. | Apr 1989 | A |
4991148 | Gilchrist | Feb 1991 | A |
5095509 | Volk | Mar 1992 | A |
5115672 | McShane et al. | May 1992 | A |
5317543 | Grosch | May 1994 | A |
5357578 | Taniishi | Oct 1994 | A |
5539705 | Akerman et al. | Jul 1996 | A |
5745582 | Shimpuku et al. | Apr 1998 | A |
5758177 | Gulick et al. | May 1998 | A |
5809400 | Abramsky et al. | Sep 1998 | A |
5859915 | Norris | Jan 1999 | A |
5889870 | Norris | Mar 1999 | A |
6011855 | Selfridge et al. | Jan 2000 | A |
6052336 | Lowrey, III | Apr 2000 | A |
6064259 | Takita | May 2000 | A |
6108427 | Norris et al. | Aug 2000 | A |
6229899 | Norris et al. | May 2001 | B1 |
6232833 | Pullen | May 2001 | B1 |
6359990 | Norris | Mar 2002 | B1 |
6378010 | Burks | Apr 2002 | B1 |
6445804 | Hirayanagi | Sep 2002 | B1 |
6768376 | Begley et al. | Jul 2004 | B2 |
6859096 | Tanaka et al. | Feb 2005 | B2 |
Number | Date | Country |
---|---|---|
0 973 152 | Jan 2000 | EP |
H2-265400 | Oct 1990 | JP |
WO 0108449 | Feb 2001 | WO |
WO 0152437 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070015473 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
60350414 | Jan 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10501896 | US | |
Child | 11523363 | US |