The present disclosure generally relates to managing the flow of and more specifically the retention or detention of fluids, such as storm water. Water retention and detention systems accommodate runoff at a given site by diverting or storing water, preventing pooling of water at a ground surface, and eliminating or reducing downstream flooding.
An underground water retention or detention system generally is utilized when the surface area on a building site is not available to accommodate other types of systems such as open reservoirs, basins or ponds. Underground systems do not utilize valuable surface areas as compared to reservoirs, basins or ponds. They also present fewer public hazards than other systems, such as by avoiding having open, standing water which would be conducive to mosquito breeding. Underground systems also avoid aesthetic problems commonly associated with some other systems, such as algae and weed growth. Thus, it is beneficial to have an underground system to manage water effectively.
One disadvantage of current underground systems is that they must accommodate existing or planned underground facilities such as utilities and other buried conduits. At the same time, an underground water retention or detention system must be effective in diverting water from the ground surface to another location. Therefore, it would be advantageous to provide a modular underground assembly which has great versatility in the plan area form it can assume.
Another disadvantage of current underground systems is that they often fail to provide relatively unrestricted water flow throughout the system. It would be preferable instead to provide systems which can permit relatively unconstrained flow throughout their interior.
Depending on the location and application, underground systems often must be able to withstand traffic and earth loads which are applied from above, without being prone to cracking, collapse or other structural failure. Indeed, it would be advantageous to provide underground systems which accommodate virtually any foreseeable loads applied at the ground surface in addition to the weight of the earth surrounding a given system. Such systems also preferably may be constructed in ways that are relatively efficient in terms of the cost, fluid storage volume and weight of the material used, as well as the ease with which the components of the systems can be shipped, handled and installed.
Modular underground systems are taught in StormTrap LLC U.S. Pat. Nos. 6,991,402; 7,160,058 and 7,344,335 (“the Burkhart Patents”), each of which is incorporated by reference in its entirety.
The present disclosure relates to the configuration, production and methods of use of modules, which are preferably fabricated using precast concrete and are usually installed in longitudinally and laterally aligned configurations to form systems having underground channels for managing the flow of, retaining and/or detaining water.
Different forms of underground water retention and/or detention structures have been either proposed or made. Such structures commonly are made of concrete and attempt to provide large spans, which require very thick components. The structures therefore are very massive, leading to inefficient material usage, more difficult shipping and handling, and consequently higher costs. Other underground water conveyance structures such as pipe, box culvert, and bridge culvert have been made of various materials and proposed or constructed for particular uses. However, such other underground structures are designed for other applications or fail to provide the necessary features and above-mentioned desired advantages of the modular systems disclosed herein.
The present disclosure is directed, in some of its several aspects, to a module and a modular assembly for managing the flow of water beneath a ground surface. The modules have unique configurations that permit thinner components. This facilitates a reduction in material usage, weight and cost, with easier shipping and handling.
In one example, a module is disclosed for use in an assembly for managing the flow of water beneath a ground surface. The module includes at least two supports, a deck portion having a main section located on top of the at least two supports and at least one secondary section extending from the main section. The supports are spaced apart and together with the main section define an interior channel. At least one of the supports has at least one leg section spaced from ends of the deck portion.
In another example, an assembly for managing the flow of water beneath a ground surface is disclosed and includes a plurality of modules with each module having a deck portion and each deck portion being placed adjacent at least one other deck portion of another module. Each module further includes at least two supports with the at least two supports being spaced apart and together with the deck portion forming an interior channel. A deck portion of at least one of the modules also includes at least one section extending beyond the interior channel.
Another example assembly for managing the flow of water beneath a ground surface is disclosed as having at least one first module that includes at least two supports, a deck portion including a main section located on top of the at least two supports, with the supports being spaced apart and together with the main section defining an interior channel. The deck portion further includes a section extending beyond the interior channel, and at least one of the supports has at least two leg sections spaced from ends of the deck portion. The at least two leg sections are spaced apart and define a support channel therebetween. The example assembly further includes a plurality of side modules, with each side module including a deck portion, and at least two supports disposed below the deck portion. The supports are spaced apart and together with the deck portion define an interior channel. Within the example assembly, each deck portion of the first and side modules is placed adjacent at least one other deck portion of either one of the plurality of side modules or the at least one first module.
A further example assembly for managing the flow of water beneath a ground surface is disclosed, with the assembly having at least one first module that includes a deck portion having a main section and first and second cantilevered sections, at least two supports disposed below the main section, and with the supports being spaced apart and together with the deck portion defining an interior channel. The assembly also includes a plurality of side modules, with each side module including a deck portion, at least two supports disposed below the deck portion, and the supports being spaced apart and together with the deck portion defining an interior channel. Each deck portion of the first and side modules is placed adjacent at least one other deck portion of either one of the plurality of side modules or the at least one first module. Also, a first of the supports and a first of the cantilevered sections of the at least one first module together with a support of an adjacent module define an outer channel, and a second support and second cantilevered section of the at least one first modules together with a support of an adjacent module defines another outer channel, wherein the outer channels are in fluid communication with the interior channel of the at least one first module.
The present disclosure generally provides a module for an underground assembly to manage the flow of water. In one aspect, the disclosed modules provide great versatility in the configuration of a modular assembly. The modules may be assembled in any customized orientation to suit a plan area or footprint as desired for a particular application and its side boundaries. The modular assembly may be configured to avoid existing underground obstructions such as utilities, pipelines, storage tanks, wells, and any other formations as desired. Some of the modules that may be used in particular configurations of an underground assembly to manage the flow of water also are sold by StormTrap LLC of Morris, Ill., under the trademark STORMTRAP®.
The modules are configured to be preferably positioned in the ground at any desired depth. For example, the topmost portion of an assembly of modules may be positioned so as to form a ground surface or traffic surface such as, for example, a parking lot, airport runway or tarmac. Alternatively, the modules may be positioned within the ground, underneath one or more layers of earth. In either case, the modules are sufficient to withstand earth, vehicle, and/or object loads. The example modules are suitable for numerous applications and, by way of example but not limitation, may be located under lawns, parkways, parking lots, roadways, airports, railroads, or building floor areas. Accordingly, the preferred modules give ample versatility for virtually any application while still permitting water flow management and more specifically, water retention or detention.
In another aspect, the module permits water to flow within its interior volume which is defined by channels that will be described in detail herein. The channels are generally defined by a deck portion and at least two supports. Preferably, these channels occupy a relatively large proportion of the volume defined by the module. The module design permits a large amount of internal water flow while minimizing the excavation required during site installation and minimizing the plan area or footprint occupied by each module.
Turning to the drawing figures of the disclosure,
The deck portion 14 may be in the form of any selected shape, but is shown in the preferred configuration as a rectangular slab. The deck portion 14 includes a main section 18 and at least one further section 20 extending from the main section 18. Preferably, the deck sections are integrally formed. The supports 12 also are spaced from the longitudinal sides 16, such that the sections 20 extending from the main section 18 are cantilevered or overhang from the supports 12. Sections 20 preferably are formed such that they need not be supported by an adjacent structure when installed. The supports 12 also are spaced apart from one another. The supports 12 may further include leg sections 22. In the illustrated example in
To manage the flow of water, the module 10 defines an interior channel 26 which is preferably open at the ends of the module 10. The interior channel 26 is defined by the supports 12 and the main section 18 of the deck portion 14. As shown in
As illustrated, each of the channels 26, 28 of the example module 10 in
The channels 26, 28 are preferably quite large, so as to allow relatively unrestricted fluid flow therethrough. The large channel sizes also prevent clogging due to surface debris which may be swept into the modules 12 by the flow of storm water. While it is preferred that the channels 26, 28 have approximately the same cross-sectional size, other configurations are also possible. It is preferred that the configuration of the interior channel 26 occupies substantially the entire area between the supports 12. Similarly, it is preferred that each support channel 28 occupies substantially the entire area between the leg sections 22 of the support 12, and each support 12 may include one or more support channels 28. As is illustrated in
As illustrated in
The dimensions associated with these unique module constructions afford a significant savings in material, and therefore, a reduction in weight. The construction industry is often constrained by weight limits when transporting and moving materials; therefore, a weight reduction allows for greater efficiency. Prior art modules commonly have supports located at the outer edges of a deck, thereby requiring a deck construction having a selected thickness to achieve a given lateral span. The example modules disclosed herein include sections of a deck portion that extend from a main section, typically in a cantilevered fashion, although additional gussets may be utilized. The use of at least one support spaced inboard from the sides of a deck portion results in a shorter span of the deck portion between the supports, which means that the overall deck portion may be thinner to withstand the same load. A thinner deck portion uses less material, which reduces the weight of the deck. In turn, a lighter deck portion permits the use of less massive supports to carry the decreased load of the thinner deck portion. This also facilitates the use of less massive footings to carry the lighter weight deck portion and supports. Lighter weight also translates into greater ease in handling the large module structures, as well as potentially smaller equipment to move and haul the modules. This may result in lower equipment and shipping costs.
Depending on the particular designs, the use of thinner or lighter weight modules as disclosed herein may require modifications to certain portions of the modules. For instance, by way of example and not limitation, the supports may be somewhat tapered in thickness from the top to the bottom. This is evident in the example module 10 shown in
As mentioned above, the modules 10 preferably are positioned in the ground and oftentimes underneath several layers of earth. Therefore, the modules 10 need to be constructed of a material that is able to withstand earth, vehicle, and/or object loads. Preferably, each module 10 is constructed of concrete, and more specifically precast concrete having a high strength. However, it will be appreciated that any other suitable material may be used.
As seen in a further example module 10′ in
The requirements for the size and location of such embedded reinforcements are dependent on the loads to which the module 10′ will be subjected. The specific reinforcements for a particular module customarily are designed by a licensed structural engineer to work with the concrete to provide sufficient load carrying strength to support earth and/or traffic loads placed upon the modules. In place of the reinforcing bars or mesh, other forms of reinforcement may be used such as pre-tensioned or post-tensioned steel strands or metal or plastic fibers or ribbons. Alternatively, the modules may comprise hollow core material which is a precast, prestressed concrete having reinforcing, prestressed strands. Hollow core material has a number of continuous voids along its length and is known in the industry for its added strength. Where a module will be located at or beneath a traffic surface such as, for example, a parking lot, street, highway, other roadways or airport traffic surfaces, the module construction will meet American Association of State Transportation and Highway Officials (AASTHO) standards. Preferably, the construction will be sufficient to withstand an HS20 loading, a known load standard in the industry, although other load standards may be used.
When installed in an assembly, the supports and more specifically the leg sections of the modules are preferably placed on footings, pads or a floor. For example, a particular assembly design may specify the use of footings, such as footings F that are shown in
If using footings, the footings F may be positioned in a parallel and spaced orientation under the leg sections. The footings F preferably are made of concrete and may be precast or formed in-situ. The lateral distance between the footings preferably is filled with aggregate material or filter fabric material (not shown) to allow all or a portion of the water to be absorbed by the soil. The aggregate or fabric material preferably is placed between the footings and extends approximately to the top surface of the footings to form a flat layer for the bottom surface of a channel 26. The aggregate material may comprise any conventional material having a suitable particle size which allows water to be absorbed into the layers of earth beneath the assembly at a desired flow rate. Various filter fabrics also may be used. Alternatively, the area between the footings F may be filled with continuous in-situ concrete or a membrane forming a floor. The floor may be impervious except for an assembly outlet port. As described below in reference to further examples, a footing or floor also may be integrally formed with the bottom surfaces of the supports.
To create an assembly for management of water beneath a ground surface, multiple modules may be placed adjacent one another. In an assembly, the modules are preferably placed in side-by-side and/or end-to-end configurations. The assembly of modules may be arranged in what can be described as columns and rows. This is one way of combining modules in a reticulated configuration. Thus, a series of modules may be placed within an assembly in an end-to-end configuration to form what will be referred to as a first column. The first column is disposed along the longitudinal direction of the assembly. A second column of modules may be placed adjacent to and abutting the first column to form an array of columns and rows of modules. The rows are disposed along the lateral direction of the assembly. This configuration results in longitudinal channels being aligned with one another. Alternatively, it is possible to place modules in an offset or staggered orientation, such as, for example, an orientation commonly used for laying bricks, while still providing aligned channels. The length or width of the assembly of modules is unlimited and the modules may be situated to form an assembly having an irregular shape.
The configuration illustrated in
With respect to lateral flow, the support channels 28 of modules 10A and 10C are in fluid communication laterally along with the support channels 28 of modules 10B and 10D. In turn, with the respective leg sections 22 being spaced from the respective ends 24 of the deck portions 14, a further lateral channel 28′ is formed by the spaced apart leg sections 22 of two modules 10 that are adjacent each other in an end-to-end placement. It will be appreciated that this configuration of an assembly A provides for relatively unconstrained water flow between the modules in both the longitudinal and lateral directions.
There may be some instances where the assembly is used to detain or at least partially detain fluid. In these instances the assembly may be at least partially enclosed and may also include additional modules having closed walls. For example, as shown in
Due to the modular design, a plan area is not constrained to simple rectangular shapes. Rather, the modules may be combined in any desired free form plan area shape available within the constraints of the site. One skilled in the art will appreciate that various combinations of these four types of modules can be used to create assemblies that fit virtually any desired configuration.
Side module 10S-1 is one example of a side module which is somewhat similar to the first module 10 of
As a result of the structure of the example side module 10S-1, the module has one closed longitudinal end. Together, the deck portion 14S-1 and the supports 12S-1 define an interior channel 26. The leg sections 52 of each of the support members 12S-1 are spaced apart to define a support channel 28 therebetween. In this example, the leg sections 52 are adjacent the end wall 50 at the outer end and are not spaced from the end of the deck portion 14S-1 at the opposite inner end. Both the interior channel 26 and support channels 28 are in fluid communication with one another so as to permit water flow in the longitudinal and lateral directions.
Side module 10S-2 is another example of a side module which is somewhat similar to the first module 10 of
As a result of the structure of the example side module 10S-2, the module has one closed side. Together, the deck portion 14S-2 and the supports 12S-2, 54 define an interior channel 26. Support 12S-2 also includes leg sections 72 which are spaced apart and defines support channel 28 therebetween. Both the interior channel 26 and support channel 28 are in fluid communication with one another so as to permit water flow in the longitudinal and lateral directions.
The construction and dimensions of the side modules 10S-2 preferably are the same as that described for the first module, although other modifications are possible. In addition, as noted above, while the boundary walls, such as end wall 50 or side wall 54 are shown as being imperforate, it also is possible for these walls to include one or more inlet or outlet ports as necessary in order to allow inflow and outflow of water, as well as other fluids and solids carried by the fluids.
Corner module 10G incorporates into one module boundary walls somewhat similar to those of end wall 50 of side module 10S-1 and side wall 54 of side module 10S-2. In this way, the corner module 10G has one closed end wall 60 in the longitudinal direction and one closed side wall 64 which intersects the closed end wall 60 to form a corner of an assembly of modules. Thus, the closed walls 60, 64 of the corner module 10G define an outer boundary of an assembly. Corner modules 10G preferably are placed at corner locations of an assembly and the dimensions of the corner modules may be similar to the modules adjacent to them, such as described with respect to the module 10 shown in
Similar to side module 10S-1, corner module 10G includes a deck portion 14G, a support 12G and the support 64 that forms a side wall. Together, these portions define an interior channel 26. The support 12G also includes leg sections 62 which are spaced apart to define a support channel 28 therebetween. In this example, a first leg section 62 is adjacent the end wall 60 at the outer end, and a second leg section 62 is not spaced from the end of the deck portion 14G at the opposite inner end. Each corner module preferably defines at least one interior channel 26 and at least one support channel 28, similar to those channels previously described in
Like the module described in
As previously described, each module of the assembly is supported on top of some form of a footing or pad, although the underlying structure may be in the form of a floor. In one example, the footings F may be laid out and the modules 10 placed on top of the footings F, such as in
To manage water flow, it will be appreciated that an assembly of modules typically will include one or more inlet ports (not shown) to permit water to flow into the modules from areas outside of the assembly such as, for example, water that is accumulating at the ground level or water from other water storage areas located either at ground level or other levels. The inlet ports can be located at any elevation in order to permit fluid communication with existing water drains and conduits and are commonly fluidly connected to a ground level drain and its associated conduit. Inlet ports may be specifically customized as required by the preferred site requirements to allow for the direct inlet of water into the assembly. For example, the location of the ports may be preformed during the formation of a module, if a preferred location is known, or may be formed during installation using appropriate tools.
Inlet ports may either be located in deck members of the modules of an assembly either alone or in combination with side inlet ports. Side inlet ports may be placed in customized locations and elevations in the perimeter walls to receive storm water via pipes from remote locations of a site. Multiple such inlet ports may be provided. Also, the water can either be stored within the assembly or be permitted to exit the assembly using one or more passageways, typically in the form of outlet ports.
Managing water flow from an assembly also commonly may include the use of outlet ports. Thus, assembly outlet ports may be used to direct the water out of the assembly and preferably to one or more of the following offsite locations: a waterway, water treatment plants, another municipal treatment facility or other locations which are capable of receiving water. Such outlet ports may be formed in the floor or the perimeter walls of the assembly. Assembly outlet ports may be placed in various locations and at various elevations in the perimeter walls of the channel to release the water. By way of example, but not limitation, outlet ports preferably are sized generally smaller than the inlet ports to restrict the flow of storm water exiting the assembly. Alternatively, water may exit the assembly through the process of water absorption or percolation through a floor constructed of a perforate material or through other means, such as an impermeable floor having openings.
Given the robust construction of the modules, an assembly or some modules of an assembly may be configured to include an upper traffic surface to be used at grade level. This offers the economics of additional pavement not being required in the area of the storm water retention/detention channel. To enhance the visual attractiveness of the upper traffic surface of the deck of the modules, the upper surface may include architectural finishes which are either added to the top surface of the deck member or which may be embossed into the deck portion when it is manufactured using molds or other tooling. These embossed surfaces may include but not be limited to simulated brick in various patterns, such as illustrated in
Turning to
In
Modules also may engage each other in a different way to create further example assemblies. For instance,
In a double depth configuration, as illustrated in
Placement of the double depth configuration preferably involves placing one or several adjacent lower modules in an excavated site and then placing the corresponding upper modules on top of the lower modules. These steps are preferably repeated until the entire assembly is completed, although other configurations and methods of placement are possible. For example, one or more rows or columns, or even all the lower modules in the entire reticulated assembly, may be placed in the site before placing the upper modules on top of their respective lower modules.
If desired, the upper and lower modules may be secured or fastened to each other using any conventional methods. By way of example, but not limitation, the upper and lower modules may be secured by an interlocking structure including offset engaging surfaces. Thus, to improve stability and alignment of the upper and lower supports, what would be considered the bottom surfaces of at least some of the supports when in an upright position, such as shown with supports 12S-1, 12S-2 and 12G in
The double depth configuration of
Turning to
As with the prior examples, the deck portion 214 may be in the form of any selected shape, but is shown in the preferred configuration as a rectangular slab. The deck portion 214 includes a main section 218 and at least one further section 220 extending from the main section 218. The supports 212 are spaced inwardly from the longitudinal sides 216, such that the sections 220 extending from the main section 218 are cantilevered or overhang from the supports 212. The supports 212 also are spaced apart from one another. The supports 212 may further include leg sections 222. However, unlike the leg sections 22 of module 10 of the first example, which are spaced from ends 24 of the deck portion 14, the leg sections 222 of the example shown in
In order to manage the flow of water, module 210 defines an interior channel 226 which is preferably open at the ends of the module 210. The interior channel 226 is defined by the supports 212 and the main section 218 of the deck portion 214. As shown in
As illustrated, each of the channels 226, 228 of the example module 210 in
A further example module 310 is illustrated in
As best seen in
Turning to
As discussed above, the supports of a module need to sit atop a footing, pad or floor to distribute the load of the module and any further loads applied thereto. However, as shown in
The first support 512 is located along and beneath a first longitudinal side 516 of the deck portion 514, and includes leg sections 522. The leg sections 522 are spaced apart and define a lateral channel 528 therebetween. The second support 512A is spaced from the second longitudinal side 516A of the deck portion 514, creating a cantilevered section 520 extending from the main section 518. The leg sections 522A of support 512A are spaced apart and define a like lateral channel 528 therebetween. However, supports 512A also include integral footings F″ formed at the lower end of leg sections 522A. It is appreciated that in some embodiments both leg sections of a module may include integral footings (not shown).
Typically, leg sections of a module are positioned upon the center of a footing such that the module is balanced on the footing. However, the integral footing F″ as shown in
From the foregoing description of the several examples of modules and underlying support surfaces, it will be appreciated that a method and apparatus are provided for managing the flow of water and/or retaining or detaining water, such as storm water, beneath a ground surface. In various aspects, one may practice the method preferably by placing a plurality of modules adjacent each other, so as to connect a plurality of longitudinal channels and to connect a plurality of lateral channels. The longitudinal channels preferably are each defined by at least one substantially horizontal deck portion and supports underlying the deck portion. At an outer boundary of an assembly, the longitudinal channels may be defined by a deck portion and by at least one substantially vertical side wall. The lateral channels are each defined preferably by a portion of a corresponding deck and a portion of a corresponding support, such as by an opening between spaced apart leg sections of a support.
Preferably, both the longitudinal and lateral channels have a somewhat similar cross-section, and are in longitudinal and lateral alignment to form continuous longitudinal and lateral channels, although similarity of cross-sections and direct alignments may not be necessary for a given site plan. The respective longitudinal and lateral channels also preferably are adjacent and in fluid communication with one another, although they may be disposed in other configurations as desired by the existing or planned underground obstacles. Further, it is preferred that each support has a bottom surface and that the longitudinal and lateral channels extend upwardly from a bottom surface of a support, to allow relatively unconstrained water flow in the both directions. However, as shown in
The method further includes creating an outer boundary for the longitudinal and lateral channels by placing modules having side walls along the periphery of the assembly. As discussed above, portions of the peripheral side walls may include one or more assembly access inlet and/or outlet ports, to receive or release water.
In one aspect, the method includes connecting longitudinal and lateral channels which are defined by at least one interior module having a corresponding deck portion and at least one support. For example, an assembly may include connecting a plurality of interior modules, such as shown in
For installation of an assembly, after a particular site has been excavated and the underground obstructions accounted for, a first module is placed into the ground. The first module may be any one of an interior module, a side module, or a corner module. Adjacent modules may be placed in longitudinal and lateral alignment with the first modules to form continuous longitudinal and lateral channels. However, it will be appreciated that the modules may be set in an offset brick-type pattern that may not provide alignment for the lateral channels. Given that interior modules are placed toward the interior of the assembly, while side and corner modules are placed at the periphery of the assembly to form side walls, end walls and corners, it can be seen that the modules may be placed in any order within the ground.
Although each module is shown as placed in end-to-end, side-by-side and in adjacent alignment, it is also possible to place the modules in a spaced apart configuration with connecting portions spanning between the spaced apart modules. Also, the assembly access inlet and outlet ports can be located in predetermined locations or formed in the side portions during installation in order to ensure that the inlet and outlet ports are aligned with existing underground drains and conduits. Alternatively, an outlet port may not be required where the floor of the assembly is perforate such as, for example, where the floor includes one or more openings or is formed of a porous or aggregate material which allows for percolation and absorption of the water into the ground.
The assemblies typically are designed for water to flow into the assembly through one or more inlet ports, and to store the water for a certain interval of time. The water then is allowed to flow out of the assembly either through one or more outlet ports, through a porous or perforate floor, or a combination of both. During entry and storage of water, such as storm water, the lateral and longitudinal aligned channels allow relatively unconstrained water flow within the assembly. An assembly also may be sloped such that a portion of the assembly having an inlet port is located at a slightly higher elevation, while a portion of the assembly having an outlet port is located at a lower elevation. This configuration will assist the tendency of the water to flow under the influence of gravity.
In another aspect of the disclosure, the method may include the step of installing a plurality of modules within the ground at a depth that will leave the top surface of at least one of the deck portions exposed, or at a depth at which none of the top surfaces of the deck portions will be exposed. A further installation may be achieved by installing at a relatively greater depth in the ground a first plurality of modules in an inverted configuration whereby the deck portion now forms a floor and the U-shape is upwardly depending, and then placing a second plurality of corresponding modules in an upright configuration, having the U-shape downwardly depending and being stacked atop the inverted modules. Lateral and longitudinal channels may be aligned to ensure relatively uninterrupted fluid communication through the assembly. Alternatively, a first set of modules may be placed in an upright manner forming a first level, and then a second set of modules may be placed atop the first level so as to form an upper second level of modules.
From the foregoing discussion, it will be appreciated that various examples have been disclosed that possess or permit various applications or configurations of assemblies for the management of water beneath a ground surface. While the underground modular assemblies herein disclosed constitute preferred example configurations, it is understood that the disclosure is not limited to these precise example modules for forming underground channels and that changes may be made therein. For example, the openings which define the longitudinal and lateral channels may have several geometric shapes other than those illustrated. It also is realized that many other geometric configurations for modular assemblies are possible. Moreover, it will be understood that one need not enjoy all of the potential advantages disclosed herein to practice the presently claimed subject matter.
This application is a continuation-in-part of U.S. Design Application No. 29/333,248 filed Mar. 5, 2009, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
862292 | Stoffer | Aug 1907 | A |
925019 | Parks et al. | Jun 1909 | A |
1028638 | Thorsby | Jun 1912 | A |
1060271 | McBean et al. | Apr 1913 | A |
1144200 | Hewett | Jun 1915 | A |
1184634 | Duerrwachter | May 1916 | A |
1349166 | Paff | Aug 1920 | A |
1412616 | Kammerer et al. | Apr 1922 | A |
1453136 | Hitchcock | Apr 1923 | A |
2095024 | Boosey | Dec 1935 | A |
2184137 | Brewer | Dec 1939 | A |
2477256 | Kneas | Jul 1949 | A |
2900083 | Oliver | Aug 1959 | A |
3339366 | Gogan et al. | Sep 1967 | A |
3570251 | Roberts | Mar 1971 | A |
3626823 | Toth | Dec 1971 | A |
3821869 | Morgan | Jul 1974 | A |
3910051 | Komisarek | Oct 1975 | A |
3962839 | Ickes | Jun 1976 | A |
4027439 | Willard | Jun 1977 | A |
4141666 | DeGraff | Feb 1979 | A |
4211504 | Sivachenko | Jul 1980 | A |
4239416 | Borca et al. | Dec 1980 | A |
4314775 | Johnson | Feb 1982 | A |
4523613 | Fouss et al. | Jun 1985 | A |
4595314 | Lockwood | Jun 1986 | A |
4638920 | Goodhues, Jr. | Jan 1987 | A |
4687371 | Lockwood | Aug 1987 | A |
4759661 | Nichols et al. | Jul 1988 | A |
4797030 | Lockwood | Jan 1989 | A |
4854775 | Lockwood | Aug 1989 | A |
4993872 | Lockwood | Feb 1991 | A |
5134741 | Carcassi | Aug 1992 | A |
5336017 | Nichols | Aug 1994 | A |
5401116 | Nichols | Mar 1995 | A |
5624204 | Dorsemaine | Apr 1997 | A |
5810510 | Urriola | Sep 1998 | A |
5836716 | Johnson et al. | Nov 1998 | A |
5890838 | Moore, Jr. et al. | Apr 1999 | A |
6004067 | Peppard | Dec 1999 | A |
6221445 | Jones | Apr 2001 | B1 |
6277274 | Coffman | Aug 2001 | B1 |
6322288 | DiTullo | Nov 2001 | B1 |
6361248 | Maestro | Mar 2002 | B1 |
6368017 | Black | Apr 2002 | B2 |
6922950 | Heierli | Aug 2005 | B2 |
6991402 | Burkhart | Jan 2006 | B2 |
7160058 | Burkhart | Jan 2007 | B2 |
7344335 | Burkhart | Mar 2008 | B2 |
8113740 | Boulton et al. | Feb 2012 | B2 |
Number | Date | Country |
---|---|---|
16232 | Jan 1913 | GB |
1995-03861 | Jan 1995 | JP |
H7-1169 | Jan 1995 | JP |
PPH8-120746 | May 1996 | JP |
2000-213014 | Aug 2000 | JP |
Entry |
---|
http://www.ipcprecast.com/Default.aspx?tabid=400, IPC Innovative Precast Solutions website, (domesrtic producer's website for double tee beams), 1 page. |
http://www.pci.org/view—file.cfm?file=W2020—MK—37-03.PDF, 8 pages. |
Premiere Dermatology Dukane Drawings w/Double Tees, detention system installed in 2009 at Premier Dermatology in Crest Hill, Illinois, 6 pages. |
www.nitterhouse.com/DrawingSpecs/DrawingSpecsSub/PDFs/10DT26.pdf, precast concrete double tee beams, (cross section and specifications from a precaster's website), 1 page. |
www.nitterhouse.com/DrawingSpecs/DrawingSpecsSub/PDFs/12DT34P.pdf, (cross section and specifications from a precaster's website), 1 page. |
http://www.archiexpo.com/prod/tarmac-precast/reinforced-concrete-double-tee-deck-slab-59572-140560.html , international producer's website, 2 pages. |
http://www.concretetech.com/Adobe/dtdetailbrochure.pdf, technical application design guide for double tee beams), 16 pages. |
http://www.structuremag.org/archives/2006/July-2006/C-SP-Double-Tee-Reder-July-06.pdf magazine article on double tee beams), Structure magazine, Jul. 2006, pp. 28-29. |
Sep. 30, 2010 PCT Search Report and Written Opinion (International App. No. PCT/US2010/044730). |
Responses to interrogatories. |
Dukane Precast Storm Water Management System Completed Project List as of Mar. 2010. |
City of Chicago Department of Aviation, drawing of project installed at Midway Airport, Oct. 16, 2002, 1 page. |
Advanced Drainage Systems, Inc., “When was the last time a footprint meant so much?”, Advertisement, Stormwater, Sep./Oct. 2002, p. 3. |
StormTech, “Profit from the ground up with StormTech's gold chambers”, Advertisement, Stormwater, Sep./Oct. 2002, p. 11. |
Hydrologic Solutions, “StormChamber The Most Effective BMP!”, Advertisement, Stormwater, Sep./Oct. 2002, p. 34. |
Invisible Structures, Inc., “Total Stormwater Management”, Advertisement, Stormwater, Sep./Oct. 2002, p. 35. |
Tilton, Joseph Lynn, “Helping Stormwater Keep Its Place”, Stormwater, Sep./Oct. 2002, pp. 40-41, 44, 46, 48-51. |
Contech Construction Products Inc., “Meet NPDES Requirements with Contech's Stormwater Treatment Train of Structural BMPs”, Advertisement, Stormwater, Sep./Oct. 2002, pp. 42-43. |
StormTrap, “Modular Storm Water Detention System”, Advertisement, Stormwater, Sep./Oct. 2002, p. 47. |
Mar-Mac Manufacturing, Inc., Advertisement, including photographs and drawings for assembly installed and completed near O'Hare Airport in 2001, 10 pages. |
Illinois Department of Transportation, Standard 602101-01, Jan. 1, 1997, 1 page. |
Illinois Department of Transportation, Standard 602006, Jan. 1, 1997, 1 page. |
StormTrap drawings prepared by Ecocast Ltd., for installation in Plainfield, IL, Aug. 1998, 9 pages. |
StormTrap advertisements, StormTrap web site, Feb. 2002. |
Number | Date | Country | |
---|---|---|---|
20100226721 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29333248 | Mar 2009 | US |
Child | 12553732 | US |