Module fabrication of solar cells with low resistivity electrodes

Information

  • Patent Grant
  • 9219174
  • Patent Number
    9,219,174
  • Date Filed
    Monday, January 13, 2014
    10 years ago
  • Date Issued
    Tuesday, December 22, 2015
    9 years ago
Abstract
One embodiment of the present invention provides a solar module. The solar module includes a front-side cover, a back-side cover, and a plurality of solar cells situated between the front- and back-side covers. A respective solar cell includes a multi-layer semiconductor structure, a front-side electrode situated above the multi-layer semiconductor structure, and a back-side electrode situated below the multi-layer semiconductor structure. Each of the front-side and the back-side electrodes comprises a metal grid. A respective metal grid comprises a plurality of finger lines and a single busbar coupled to the finger lines. The single busbar is configured to collect current from the finger lines.
Description
BACKGROUND

1. Field


This disclosure is generally related to the fabrication of solar cells. More specifically, this disclosure is related to module fabrication of bifacial tunneling junction solar cells.


2. Related Art


The negative environmental impact of fossil fuels and their rising cost have resulted in a dire need for cleaner, cheaper alternative energy sources. Among different forms of alternative energy sources, solar power has been favored for its cleanness and wide availability.


A solar cell converts light into electricity using the photovoltaic effect. There are several basic solar cell structures, including a single p-n junction, p-i-n/n-i-p, and multi-junction. A typical single p-n junction structure includes a p-type doped layer and an n-type doped layer. Solar cells with a single p-n junction can be homojunction solar cells or heterojunction solar cells. If both the p-doped and n-doped layers are made of similar materials (materials with equal band gaps), the solar cell is called a homojunction solar cell. In contrast, a heterojunction solar cell includes at least two layers of materials of different bandgaps. A p-i-n/n-i-p structure includes a p-type doped layer, an n-type doped layer, and an intrinsic (undoped) semiconductor layer (the i-layer) sandwiched between the p-layer and the n-layer. A multi-junction structure includes multiple single-junction structures of different bandgaps stacked on top of one another.


In a solar cell, light is absorbed near the p-n junction generating carriers. The carriers diffuse into the p-n junction and are separated by the built-in electric field, thus producing an electrical current across the device and external circuitry. An important metric in determining a solar cell's quality is its energy-conversion efficiency, which is defined as the ratio between power converted (from absorbed light to electrical energy) and power collected when the solar cell is connected to an electrical circuit.



FIG. 1 presents a diagram illustrating an exemplary solar cell (prior art). Solar cell 100 includes an n-type doped Si substrate 102, a p+ silicon emitter layer 104, a front electrode grid 106, and an Al back electrode 108. Arrows in FIG. 1 indicate incident sunlight. As one can see from FIG. 1, Al back electrode 108 covers the entire backside of solar cell 100, hence preventing light absorption at the backside. Moreover, front electrode grid 106 often includes a metal grid that is opaque to sunlight, and casts a shadow on the front surface of solar cell 100. For a conventional solar cell, the front electrode grid can block up to 8% of the incident sunlight, thus significantly reducing the conversion efficiency.


SUMMARY

One embodiment of the present invention provides a solar module. The solar module includes a front-side cover, a back-side cover, and a plurality of solar cells situated between the front- and back-side covers. A respective solar cell includes a multi-layer semiconductor structure, a front-side electrode situated above the multi-layer semiconductor structure, and a back-side electrode situated below the multi-layer semiconductor structure. Each of the front-side and the back-side electrodes comprises a metal grid. A respective metal grid comprises a plurality of finger lines and a single busbar coupled to the finger lines. The single busbar is configured to collect current from the finger lines.


In a variation on the embodiment, the single busbar is located at a center of a respective surface of the solar cell.


In a further variation, two adjacent solar cells are strung together by a stringing ribbon weaved from a front surface of a solar cell and to a back surface of an adjacent solar cell. The stringing ribbon is soldered to single busbars on the front and the back surfaces, and a width of the stringing ribbon is substantially similar to a width of the single busbar.


In a variation on the embodiment, single busbars of a front and a back surface of the solar cell are located at opposite edges.


In a further variation, two adjacent solar cells are coupled together by a metal tab soldered to a first single busbar at an edge of a solar cell and a second single busbar at an adjacent edge of the adjacent solar cell. A width of the metal tab is substantially similar to a length of the first and the second single busbar.


In a further variation, a length of the metal tab is between 3 and 12 mm.


In a variation on the embodiment, the multi-layer semiconductor structure includes a base layer, a front- or back-side emitter, and a back or front surface field layer.


In a further variation, the multi-layer semiconductor structure further includes a quantum tunneling barrier (QTB) layer situated at both sides of the base layer.


In a variation on the embodiment, the metal grid comprises at least an electroplated Cu layer.


In a variation on the embodiment, a width of the single busbar is between 0.5 and 3 mm.


In a variation on the embodiment, the solar module further includes a plurality of maximum power point tracking (MPPT) devices. A respective MPPT device is coupled to an individual solar cell, thereby facilitating cell-level MPPT.


In a variation on the embodiment, the front-side and the back-side covers are transparent to facilitate bifacial configuration of the solar module





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 presents a diagram illustrating an exemplary solar cell (prior art).



FIG. 2 presents a diagram illustrating an exemplary double-sided tunneling junction solar cell, in accordance with an embodiment of the present invention.



FIG. 3A presents a diagram illustrating the electrode grid of a conventional solar cell (prior art).



FIG. 3B presents a diagram illustrating the front or back surface of an exemplary bifacial solar cell with a single center busbar per surface, in accordance with an embodiment of the present invention.



FIG. 3C presents a diagram illustrating a cross-sectional view of the bifacial solar cell with a single center busbar per surface, in accordance with an embodiment of the present invention.



FIG. 3D presents a diagram illustrating the front surface of an exemplary bifacial solar cell, in accordance with an embodiment of the present invention.



FIG. 3E presents a diagram illustrating the back surface of an exemplary bifacial solar cell, in accordance with an embodiment of the present invention.



FIG. 3F presents a diagram illustrating a cross-sectional view of the bifacial solar cell with a single edge busbar per surface, in accordance with an embodiment of the present invention.



FIG. 4 presents a diagram illustrating the percentage of power loss as a function of the gridline (finger) length for different aspect ratios.



FIG. 5A presents a diagram illustrating a typical solar panel that includes a plurality of conventional double-busbar solar cells (prior art).



FIG. 5B presents a diagram illustrating an exemplary solar panel that includes a plurality of solar cells with a single busbar at the center, in accordance with an embodiment of the present invention.



FIG. 5C presents a diagram illustrating the serial connection between two adjacent solar cells with a single edge busbar per surface, in accordance with an embodiment of the present invention.



FIG. 5D presents a diagram illustrating an exemplary solar panel that includes a plurality of solar cells with a single busbar at the edge, in accordance with an embodiment of the present invention.



FIG. 6A presents a diagram illustrating the percentages of the ribbon-resistance-based power loss for the double busbar (DBB) and the single busbar (SBB) configurations for different types of cells, different ribbon thicknesses, and different panel configurations.



FIG. 6B presents a diagram comparing the power loss difference between the stringing ribbons and the single tab for different ribbon/tab thicknesses.



FIG. 7A presents a diagram illustrating one exemplary placement of maximum power point tracking (MPPT) integrated circuit (IC) chips in a solar panel with double-busbar solar cells, in accordance with an embodiment of the present invention.



FIG. 7B presents a diagram illustrating one exemplary placement of maximum power point tracking (MPPT) integrated circuit (IC) chips in a solar panel with single-center-busbar solar cells, in accordance with an embodiment of the present invention.



FIG. 7C presents a diagram illustrating one exemplary placement of maximum power point tracking (MPPT) integrated circuit (IC) chips in a solar panel with single-edge-busbar solar cells, in accordance with an embodiment of the present invention.



FIG. 7D presents a diagram illustrating the cross-sectional view of an exemplary solar module implementing cell-level MPPT, in accordance with an embodiment of the present invention.



FIG. 8 presents a flow chart illustrating the process of fabricating a solar cell module, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention provide a high-efficiency solar module. The solar module includes a bifacial tunneling junction solar cell with electroplated Cu gridlines serving as front- and back-side electrodes. To reduce shading and cost, a single Cu busbar or tab is used to collect current from the Cu fingers. In some embodiments, the single busbar or tab is placed in the center of the front and backsides of the solar cell. To further reduce shading, in some embodiments, the single Cu busbar or tab is placed on the opposite edges of the front and backside of a solar cell. Both the fingers and the busbars can be fabricated using a technology for producing shade-free electrodes. In addition, the fingers and busbars can include high-aspect ratio Cu gridlines to ensure low resistivity. When multiple solar cells are stringed or tabbed together to form a solar panel, conventional stringing/tabbing processes are modified based on the locations of the busbars. Compared with conventional solar modules based on monofacial, double-busbar solar cells, embodiments of the present invention provide solar modules with up to an 18% gain in power. Moreover, 30% of the power that may be lost due to a partially shaded solar panel can be recouped by applying maximum power point tracking (MPPT) technology at the cell level. In some embodiments, each solar cell within a solar panel is coupled to an MPPT integrated circuit (IC) chip.


Bifacial Tunneling Junction Solar Cells



FIG. 2 presents a diagram illustrating an exemplary double-sided tunneling junction solar cell, in accordance with an embodiment of the present invention. Double-sided tunneling junction solar cell 200 includes a substrate 202, quantum tunneling barrier (QTB) layers 204 and 206 covering both surfaces of substrate 202 and passivating the surface-defect states, a front-side doped a-Si layer forming a front emitter 208, a back-side doped a-Si layer forming a BSF layer 210, a front transparent conducting oxide (TCO) layer 212, a back TCO layer 214, a front metal grid 216, and a back metal grid 218. Note that it is also possible to have the emitter layer at the backside and a front surface field (FSF) layer at the front side of the solar cell. Details, including fabrication methods, about double-sided tunneling junction solar cell 200 can be found in U.S. patent application Ser. No. 12/945,792, entitled “Solar Cell with Oxide Tunneling Junctions,” by inventors Jiunn Benjamin Heng, Chentao Yu, Zheng Xu, and Jianming Fu, filed 12 Nov. 2010, the disclosure of which is incorporated by reference in its entirety herein.


As one can see from FIG. 2, the symmetric structure of double-sided tunneling junction solar cell 200 ensures that double-sided tunneling junction solar cell 200 can be bifacial given that the backside is exposed to light. In solar cells, the metallic contacts, such as front and back metal grids 216 and 218, are necessary to collect the current generated by the solar cell. In general, a metal grid includes two types of metal lines, including busbars and fingers. More specifically, busbars are wider metal strips that are connected directly to external leads (such as metal tabs), while fingers are finer areas of metalization which collect current for delivery to the busbars. The key design trade-off in the metal grid design is the balance between the increased resistive losses associated with a widely spaced grid and the increased reflection and shading effect caused by a high fraction of metal coverage of the surface. In conventional solar cells, to prevent power loss due to series resistance of the fingers, at least two busbars are placed on the surface of the solar cell to collect current from the fingers, as shown in FIG. 3A. For standardized five-inch (five inch by five inch) solar cells, typically there are two busbars at each surface. For larger, six-inch (six inch by six inch) solar cells, three or more busbars may be needed depending on the resistivity of the electrode materials. Note that in FIG. 3A a surface (which can be the front or back surface) of solar cell 300 includes a plurality of parallel finger lines, such as finger lines 302 and 304; and two busbars 306 and 308 placed perpendicular to the finger lines. Note that the busbars are placed in such a way as to ensure that the distance (and hence the resistance) from any point on a finger to a busbar is small enough to minimize power loss. However, these two busbars and the metal ribbons that are later soldered onto these busbars for inter-cell connections can create a significant amount of shading, which degrades the solar cell performance.


In some embodiments of the present invention, the front and back metal grids, such as the finger lines, can include electroplated Cu lines, which have reduced resistance compared with conventional Ag grids. For example, using an electroplating or electroless plating technique, one can obtain Cu grid lines with a resistivity of equal to or less than 5×10−6 Ω·cm. Details about an electroplated Cu grid can be found in U.S. patent application Ser. No. 12/835,670, entitled “Solar Cell with Metal Grid Fabricated by Electroplating,” by inventors Jianming Fu, Zheng Xu, Chentao Yu, and Jiunn Benjamin Heng, filed 13 Jul. 2010; and U.S. patent application Ser. No. 13/220,532, entitled “Solar Cell with Electroplated Metal Grid,” by inventors Jianming Fu, Jiunn Benjamin Heng, Zheng Xu, and Chentao Yu, filed 29 Aug. 2011, the disclosures of which are incorporated by reference in their entirety herein.


The reduced resistance of the Cu fingers makes it possible to have a metal grid design that maximizes the overall solar cell efficiency by reducing the number of busbars on the solar cell surface. In some embodiments of the present invention, a single busbar is used to collect finger current. The power loss caused by the increased distance from the fingers to the busbar can be balanced by the reduced shading.



FIG. 3B presents a diagram illustrating the front or back surface of an exemplary bifacial solar cell with a single center busbar per surface, in accordance with an embodiment of the present invention. In FIG. 3B, the front or back surface of a solar cell 310 includes a single busbar 312 and a number of finger lines, such as finger lines 314 and 316. FIG. 3C presents a diagram illustrating a cross-sectional view of the bifacial solar cell with a single center busbar per surface, in accordance with an embodiment of the present invention. The semiconductor multilayer structure shown in FIG. 3C can be similar to the one shown in FIG. 2. Note that the finger lines are not shown in FIG. 3C because the cut plane cuts between two finger lines. In the example shown in FIG. 3C, busbar 312 runs in and out of the paper, and the finger lines run from left to right. As discussed previously, because there is only one busbar at each surface, the distances from the edges of the fingers to the busbar are longer. However, the elimination of one busbar reduces shading, which not only compensates for the power loss caused by the increased finger-to-busbar distance, but also provides additional power gain. For a standard sized solar cell, replacing two busbars with a single busbar in the center of the cell can produce a 1.8% power gain.



FIG. 3D presents a diagram illustrating the front surface of an exemplary bifacial solar cell, in accordance with an embodiment of the present invention. In FIG. 3D, the front surface of solar cell 320 includes a number of horizontal finger lines and a vertical single busbar 322, which is placed at the right edge of solar cell 320. More specifically, busbar 322 is in contact with the rightmost edge of all the finger lines, and collects current from all the finger lines. FIG. 3E presents a diagram illustrating the back surface of an exemplary bifacial solar cell, in accordance with an embodiment of the present invention. In FIG. 3E, the back surface of solar cell 320 includes a number of horizontal finger lines and a vertical single busbar 324, which is placed at the left edge of solar cell 320. Similar to busbar 322, single busbar 324 is in contact with the leftmost edge of all the finger lines. FIG. 3F presents a diagram illustrating a cross-sectional view of the bifacial solar cell with a single edge busbar per surface, in accordance with an embodiment of the present invention. The semiconductor multilayer structure shown in FIG. 3F can be similar to the one shown in FIG. 2. Like FIG. 3C, in FIG. 3F, the finger lines (not shown) run from left to right, and the busbars run in and out of the paper. From FIGS. 3D-3F, one can see that in this embodiment, the busbars on the front and the back surfaces of the bifacial solar cell are placed at the opposite edges of the cell. This configuration can further improve power gain because the busbar-induced shading now occurs at locations that were less effective in energy production. In general, the edge-busbar configuration can provide at least a 2.1% power gain.


Note that the single busbar per surface configurations (either the center busbar or the edge busbar) not only can provide power gain, but also can reduce fabrication cost, because less metal will be needed for busing ribbons. Moreover, in some embodiments of the present invention, the metal grid on the front sun-facing surface can include parallel metal lines (such as fingers), each having a cross-section with a curved parameter to ensure that incident sunlights on these metal lines is reflected onto the front surface of the solar cell, thus further reducing shading. Such a shade-free front electrode can be achieved by electroplating Ag- or Sn-coated Cu using a well-controlled, cost-effective patterning scheme.


It is also possible to reduce the power-loss effect caused by the increased distance from the finger edges to the busbars by increasing the aspect ratio of the finger lines. FIG. 4 presents a diagram illustrating the percentage of power loss as a function of the gridline (finger) length for different aspect ratios. In the example shown in FIG. 4, the gridlines (or fingers) are assumed to have a width of 60 μm. As one can see from FIG. 4, for gridlines with an aspect ratio of 0.5, the power loss degrades from 3.6% to 7.5% as the gridline length increases from 30 mm to 100 mm. However, with a higher aspect ratio, such as 1.5, the power loss degrades from 3.3% to 4.9% for the same increase of gridline length. In other words, using high-aspect ratio gridlines can further improve solar cell/module performance. Such high-aspect ratio gridlines can be achieved using an electroplating technique. Details about the shade-free electrodes with high-aspect ratio can be found in U.S. patent application Ser. No. 13/048,804, entitled “Solar Cell with a Shade-Free Front Electrode,” by inventors Zheng Xu, Jianming Fu, Jiunn Benjamin Heng, and Chentao Yu, filed 15 Mar. 2011, the disclosure of which is incorporated by reference in its entirety herein.


Bifacial Solar Panels


Multiple solar cells with a single busbar (either at the cell center or the cell edge) per surface can be assembled to form a solar module or panel via a typical panel fabrication process with minor modifications. Based on the locations of the busbars, different modifications to the stringing/tabbing process are needed. In conventional solar module fabrications, the double-busbar solar cells are strung together using two stringing ribbons (also called tabbing ribbons) which are soldered onto the busbars. More specifically, the stringing ribbons weave from the front surface of one cell to the back surface of the adjacent cell to connect the cells in series. For the single busbar in the cell center configuration, the stringing process is very similar, except that only one stringing ribbon is needed to weave from the front surface of one cell to the back surface of the other.



FIG. 5A presents a diagram illustrating a typical solar panel that includes a plurality of conventional double-busbar solar cells (prior art). In FIG. 5A, solar panel 500 includes a 6×12 array (with 6 rows and 12 cells in a row) of solar cells. Adjacent solar cells in a row are connected in series to each other via two stringing ribbons, such as a stringing ribbon 502 and a stringing ribbon 504. More specifically, the stringing ribbons connect the top electrodes of a solar cell to the bottom electrodes of the next solar cell. At the end of each row, the stringing ribbons join together with stringing ribbons from the next row by a wider bus ribbon, such as a bus ribbon 506. In the example shown in FIG. 5A, the rows are connected in series with two adjacent rows being connected to each other at one end. Alternatively, the rows can connect to each other in a parallel fashion with adjacent rows being connected to each other at both ends. Note that FIG. 5A illustrates only the top side of the solar panel; the bottom side of the solar panel can be very similar due to the bifacial characteristics of the solar cells. For simplicity, the fingers, which run perpendicular to the direction of the solar cell row (and hence the stringing ribbons), are not shown in FIG. 5A.



FIG. 5B presents a diagram illustrating an exemplary solar panel that includes a plurality of solar cells with a single busbar at the center, in accordance with an embodiment of the present invention. In FIG. 5B, solar panel 510 includes a 6×12 array of solar cells. Adjacent solar cells in a row are connected in series to each other via a single stringing ribbon, such as a ribbon 512. As in solar panel 500, the single stringing ribbons at the ends of adjacent rows are joined together by a wider bus ribbon, such as a bus ribbon 514. Because only one stringing ribbon is necessary to connect adjacent cells, compared with solar panel 500 in FIG. 5A, the total length of the bus ribbon used in fabricating solar panel 510 can be significantly reduced. For six-inch cells, the length of the single stringing ribbon that connects two adjacent cells can be around 31 cm, compared with 62 cm of stringing ribbons needed for the double-busbar configuration. Note that such a length reduction can further reduce series resistance and fabrication cost. Similar to FIG. 5A, in FIG. 5B, the rows are connected in series. In practice, the solar cell rows can be connected in parallel as well. Also like FIG. 5A, the finger lines run perpendicular to the direction of the solar cell row (and hence the stringing ribbons) and are not shown in FIG. 5B.


Comparing FIG. 5B with FIG. 5A, one can see that only a minor change is needed in the stringing/tabbing process to assemble solar cells with a single center busbar into a solar panel. However, for solar cells with a single edge busbar per surface, more changes may be needed. FIG. 5C presents a diagram illustrating the serial connection between two adjacent solar cells with a single edge busbar per surface, in accordance with an embodiment of the present invention. In FIG. 5C, solar cell 520 and solar cell 522 are coupled to each other via a single tab 524. More specifically, one end of single tab 524 is soldered to the edge busbar located on the front surface of solar cell 520, and the other end of single tab 524 is soldered to the edge busbar located on the back surface of solar cell 522, thus connecting solar cells 520 and 522 in series. From FIG. 5C, one can see that the width of single tab 524 is substantially the same as the length of the edge busbars, and the ends of single tab 524 are soldered to the edge busbars along their length. In some embodiments, the width of single tab 524 can be between 12 and 16 cm. On the other hand, the length of single tab 524 is determined by the packing density or the distance between adjacent solar cells, and can be quite short. In some embodiments, the length of single tab 524 can be between 3 and 12 mm. In further embodiments, the length of single tab 524 can be between 3 and 5 mm. This geometric configuration (a wider width and a shorter length) ensures that single tab 524 has a very low series resistance. The finger lines, such as a finger line 526, run in a direction along the length of single tab 524. Note that this is different from the conventional two-busbar configuration and the single center-busbar configuration where the fingers are perpendicular to the stringing ribbons connecting two adjacent solar cells. Hence, the conventional, standard stringing process needs to be modified by rotating each cell 90 degrees in order to string two solar cells together as shown in FIG. 5C.



FIG. 5D presents a diagram illustrating an exemplary solar panel that includes a plurality of solar cells with a single busbar at the edge, in accordance with an embodiment of the present invention. In FIG. 5D, solar panel 530 includes a 6×12 array of solar cells. Solar cells in a row are connected in series to each other via a single tab, such as a tab 532. At the end of the row, instead of using a wider bus ribbon to connect stringing ribbons from adjacent cells together (like the examples shown in FIGS. 5A and 5B), here we simply use a tab that is sufficiently wide to extend through edges of both end cells of the adjacent rows. For example, an extra-wide tab 534 extends through edges of cells 536 and 538. For serial connection, extra-wide tab 534 can connect the busbar at the top surface of cell 536 with the busbar at the bottom surface of cell 538. For parallel connection, extra-wide tab 534 may connect both the top or bottom busbars of cells 536 and 538. Unlike examples shown in FIGS. 5A and 5B, in FIG. 5D, the finger lines (not shown) run along the direction of the solar cell rows.


The stringing ribbons or tabs can also introduce power loss due to their series resistance. In general, the distributed power loss through series resistance of the stringing ribbons increases with the size of the cell. Moreover, using single stringing ribbon instead of two ribbons also increases this series-resistance-induced power loss because the single-ribbon configuration means that there is more current on each ribbon, and the power loss is proportional to the square of the current. To reduce such a power loss, one needs to reduce the series resistance of the stringing ribbon. For the single center-busbar configuration, the width of the ribbon is determined by the width of the busbar, which can be between 0.5 and 3 mm. Hence, one way to reduce the resistance of the ribbon is to increase its thickness as thicker ribbons have lower resistivity. FIG. 6A presents a diagram illustrating the percentages of the ribbon-resistance-based power loss for the double busbar (DBB) and the single busbar (SBB) configurations for different types of cells, different ribbon thicknesses, and different panel configurations. In the example shown in FIG. 6A, the ribbons are assumed to be Cu ribbons.


From FIG. 6A, one can see that for 200 μm thick ribbons, the ribbon-resistance-induced power loss for a five-inch cell with a single busbar (SBB) (at the center) configuration is 2.34%, compared to the 1.3% power loss of the double busbar (DBB) configuration. To limit the power loss to less than 2% in order to take advantage of the 1.8% power gain obtained from the reduced shading by eliminating one busbar, the thickness of the single stringing ribbon needs to be at least 250 μm. For larger cells, such as a six-inch cell, the situation can be worse. For the single center-busbar configuration, ribbons with a thickness of 400 um are needed to ensure less than 3% power loss in the six-inch cell, as indicated by cells 602 and 604. Note that the number of cells in a panel also affects the amount of power loss.


400 um is the upper boundary for the ribbon thickness because thicker ribbons can cause damage to the cells during the soldering process. More specifically, thicker ribbons may result in warping of the cells, which can be caused by stress and the thermal-coefficient difference between the ribbon material and the semiconductor material. Moreover, reliability concerns also start to surface if the stringing ribbons are too thick. Implementation of ultrasoft ribbons can reduce the stress and warping issues, but a different stringing scheme is required to effectively reduce the power loss to less than 2% without giving up the gains made by busbar shading reduction and ribbon cost reduction. In some embodiments, other methods are used to reduce stress and warping, including but not limited to: introducing crimps or springs within the length of the stringing ribbon, and spot soldering of the thick ribbon.


For the single-edge-busbar configuration, because the tabs are much wider and shorter than the stringing ribbon, the amount of power loss induced by the series resistance of the single tab is much smaller. FIG. 6B presents a diagram comparing the power loss difference between the stringing ribbons and the single tab for different ribbon/tab thicknesses. From FIG. 6B, one can see that the power loss due to the series resistance of the single tab is much smaller compared with that of the single ribbon, as indicated by column 606. For example, the power loss caused by the 250 um thick single edge tab is merely 0.73% for five-inch, 96-cell panel layout, and around 1.64% for six-inch, 60-cell panel layout. Hence, one can see that, even for the six-inch cell in the 72-cell panel, an edge tab with a thickness of 250 um is sufficiently thick that it induces less than a 2% power loss, making it possible to achieve an overall power gain considering the reduction in shading.


One more factor that can affect power output of the solar panel is the mismatch among cells, which may be caused by a partially shaded solar panel. To maximize power output, it is possible to incorporate maximum power point tracking (MPPT) devices into a solar panel to allow a partially shaded or otherwise obscured panel to deliver the maximum power to the battery charging system coupled to the panel. The MPPT device can manage power output of a string of cells or a single cell. In some embodiments of the present invention, the solar panel implements cell-level MPPT, meaning that each solar cell is coupled to an MPPT device, such as an MPPT integrated circuit (IC) chip.


Implementing MPPT at the cell level makes it possible to recoup up to 30% of the power that can be lost due to the mismatch inefficiencies. Moreover, it eliminates cell binning requirements and may increase yield. This can thus significantly enhance the return of investment (ROI) for the array owners by eliminating the inventory management needs of installers to match panels within a string, as well as reducing warranty reserves because replacement panels no longer need to be matched to the old system. Cell-level MPPT can also increase the available surface area for the installation of a solar array, particularly in situations where there may be structural shading of the array at certain hours of the day or during certain seasons of the year. This is particularly useful to bifacial modules which may experience shading at both the front- and back-side. The cell-level MPPT also allows more flexibility in the system mounting, making it possible to use 1- or 2-axis trackers, and ground mounting on high diffuse light background. Details about the cell-level MPPT can be found in U.S. patent application Ser. No. 13/252,987, entitled “Solar Panels with Integrated Cell-Level MPPT Devices,” by inventors Christopher James Beitel, Jiunn Benjamin Heng, Jianming Fu, and Zheng Xu, filed 4 Oct. 2011, the disclosure of which is incorporated by reference in its entirety herein.



FIG. 7A presents a diagram illustrating one exemplary placement of maximum power point tracking (MPPT) integrated circuit (IC) chips in a solar panel with double-busbar solar cells, in accordance with an embodiment of the present invention. In the example shown in FIG. 7A, the MPPT IC chips, such as an MPPT IC chip 702, are placed between adjacent solar cells. More specifically, the MPPT IC chips can be placed between the two stringing ribbons. In some embodiments, the MPPT IC chips can make contact with both stringing ribbons and facilitate the serial connection between two adjacent solar cells.



FIG. 7B presents a diagram illustrating one exemplary placement of maximum power point tracking (MPPT) integrated circuit (IC) chips in a solar panel with single-center-busbar solar cells, in accordance with an embodiment of the present invention. Like the example shown in FIG. 7A, the MPPT IC chips, such as an MPPT IC chip 704, are placed between two adjacent solar cells. In some embodiments, the MPPT IC chips are three-terminal devices with two inputs from one cell and one output to the adjacent cell. The two inputs can be connected to the top and bottom electrodes (via corresponding stringing ribbons) of the first solar cell, and the one output can be connected to the top or bottom electrode of the adjacent solar cell to facilitate the serial connection between the two cells.


In addition to placing the MPPT IC chips in between adjacent solar cells, it is also possible to place the MPPT IC chips at the corner spacing between solar cells. FIG. 7C presents a diagram illustrating one exemplary placement of maximum power point tracking (MPPT) integrated circuit (IC) chips in a solar panel with single-edge-busbar solar cells, in accordance with an embodiment of the present invention. In the example shown in FIG. 7C, the MPPT IC chips, such as an MPPT IC chip 706, are placed at the corner spacing between solar cells. In some embodiments, the MPPT IC chips are in contact with the single tabs to facilitate the serial connection between the two adjacent chips. Note that for the single-edge-busbar configuration, wiring outside of the solar cell may be needed to connect the front and back electrodes located on opposite sides of the solar cell with the two inputs of the MPPT chip.



FIG. 7D presents a diagram illustrating the cross-sectional view of an exemplary solar module implementing cell-level MPPT, in accordance with an embodiment of the present invention. In FIG. 7D, each solar cell in solar module 710 includes a top electrode and a bottom electrode, which can be the single center busbars shown in FIG. 7B. Each MPPT IC chip includes a top input terminal, a bottom input terminal, and a bottom output terminal. For example, MPPT IC chip 712 includes a top input terminal 714, a bottom input terminal 716, and an output terminal 718. Top input terminal 714 and bottom input terminal 716 are coupled to top and bottom electrodes of a solar cell. Output terminal 718 is coupled to the bottom electrode of the adjacent solar cell. In the example shown in FIG. 7D, the solar cells, such as a solar cell 720, can be double-sided tunneling junction solar cells.


The solar cells and the MPPT IC chips are embedded within an adhesive polymer layer 722, which can later be cured. Materials that can be used to form adhesive polymer layer 722 include, but are not limited to: ethylene-vinyl acetate (EVA), acrylic, polycarbonate, polyolefin, and thermal plastic. Solar module 710 further includes a front-side cover 724 and a back-side cover 726. For bifacial modules, both front-side cover 724 and back-side cover 726 can be made of glass. When adhesive polymer layer 722 is cured, front- and back-side covers 724 and 726 are laminated, sealing the solar cells and the MPPT IC chips within, thus preventing damage caused by exposure to environmental factors. After lamination, solar module 710 can be trimmed and placed in a frame 728, and is then ready to be connected to an appropriate junction box.



FIG. 8 presents a flow chart illustrating the process of fabricating a solar cell module, in accordance with an embodiment of the present invention. During fabrication, solar cells comprising multi-layer semiconductor structures are obtained (operation 802). In some embodiments, the multi-layer semiconductor structure can include a double-sided tunneling junction solar cell. The solar cells can have a standard size, such as five inch by five inch or six inch by six inch. In some embodiments, the smallest dimension of the solar cells is at least five inches. Front- and back-side metal grids are then deposited to complete the bifacial solar cell fabrication (operation 804). In some embodiments, depositing the front- and back-side metal grids may include electroplating of Ag- or Sn-coated Cu grid. In further embodiments, one or more seed metal layers, such as a seed Cu or Ni layer, can be deposited onto the multi-layer structures using a physical vapor deposition (PVD) technique to improve adhesion of the electroplated Cu layer. Different types of metal grids can be formed, including, but not limited to: a metal grid with a single busbar at the center, and a metal grid with a single busbar at the cell edge. Note that for the edge-busbar configuration, the busbars at the front and back surface of the solar cells are placed at opposite edges.


Subsequently, the solar cells are strung together to form solar cell strings (operation 806). Note that, depending on the busbar configuration, the conventional stringing process may need to be modified. For the edge-busbar configuration, each solar cell needs to be rotated 90 degrees, and a single tab that is as wide as the cell edge and is between 3 and 12 mm in length can be used to connect two adjacent solar cells. In some embodiments, the length of the single tab can be between 3 and 5 mm.


A plurality of solar cell strings can then be laid out into an array and the front-side cover can be applied to the solar cell array (operation 808). For solar modules implementing cell-level MPPT, the MPPT IC chips are placed at appropriate locations, including, but not limited to: corner spacing between solar cells, and locations between adjacent solar cells (operation 810). The different rows of solar cells are then connected to each other via a modified tabbing process (operation 812), and then electrical connections between the MPPT IC chips and corresponding solar cell electrodes are formed to achieve a completely interconnected solar module (operation 814). More specifically, the top electrode of a solar cell is connected to one terminal of the IC and the bottom electrode is tied to another terminal of the IC via typical semiconducting methods, including, but not limited to: solder bumps, flip chip, wrap through contacts, etc. Subsequently, the back-side cover is applied (operation 816), and the entire solar module assembly can go through the normal lamination process, which would seal the cells and MPPT ICs in place (operation 818), followed by framing and trimming (operation 820), and the attachment of a junction box (operation 822).


The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.

Claims
  • 1. A bifacial solar cell, comprising: a multi-layer semiconductor structure;a front-side electrode positioned on a front side of the multi-layer semiconductor structure; anda back-side electrode positioned on a back side of the multi-layer semiconductor structure, wherein the front-side and the back-side electrodes each consist of a single busbar, and wherein the front-side busbar and back-side busbar are positioned near opposite edges of the solar cell.
  • 2. The solar cell of claim 1, wherein the multi-layer semiconductor structure comprises: a base layer;a front- or back-side emitter; anda back or front surface field layer.
  • 3. The solar cell of claim 2, wherein the multi-layer semiconductor structure further comprises a quantum tunneling barrier (QTB) layer positioned at both front and back sides of the base layer.
  • 4. The solar cell of claim 1, wherein a respective busbar comprises at least an electroplated Cu layer.
  • 5. The solar cell of claim 1, wherein a width of the single busbar is between 0.5 and 3 mm.
  • 6. A bifacial solar module, comprising: a transparent front-side cover;a transparent back-side cover; anda plurality of solar cells laminated between the front- and back-side covers, wherein a respective solar cell comprises: a multi-layer semiconductor structure;a front-side electrode positioned on a front side of the multi-layer semiconductor structure; anda back-side electrode positioned on a back side of the multi-layer semiconductor structure, wherein the front-side and the back-side electrodes each consist of a single busbar, and wherein the front-side busbar and back-side busbar are positioned near opposite edges of the solar cell.
  • 7. The solar module of claim 6, wherein two adjacent solar cells are coupled together by electrically connecting the busbar on a back surface of one of the two adjacent solar cells with the busbar on a front surface of the other one of the two adjacent solar cells.
  • 8. The solar module of claim 6, wherein two adjacent solar cells are coupled together by electrically connecting a first single busbar at an edge of a solar cell and a second single busbar at an adjacent edge of the adjacent solar cell.
  • 9. The solar module of claim 8, wherein a width of the electrical connection is substantially similar to a length of the first single busbar.
  • 10. The solar module of claim 6, wherein the multi-layer semiconductor structure comprises: a base layer;a front- or back-side emitter; anda back or front surface field layer.
  • 11. The solar module of claim 10, wherein the multi-layer semiconductor structure comprises a quantum tunneling barrier (QTB) layer situated at both front and back sides of the base layer.
  • 12. The solar module of claim 6, wherein a respective busbar comprises at least an electroplated Cu layer.
  • 13. The solar module of claim 6, wherein a width of the single busbar is between 0.5 and 3 mm.
  • 14. The solar module of claim 6, further comprising a plurality of maximum power point tracking (MPPT) devices, wherein a respective MPPT device is coupled to an individual solar cell, thereby facilitating cell-level MPPT.
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/751,733, entitled “Module Fabrication Using Bifacial Tunneling Junction Solar Cells with Copper Electrodes,” by inventors Jiunn Benjamin Heng, Jianming Fu, Zheng Xu, and Bobby Yang, filed 11 Jan. 2013.

US Referenced Citations (242)
Number Name Date Kind
2938938 Dickson May 1960 A
3094439 Mann et al. Jun 1963 A
3116171 Nielson Dec 1963 A
3459597 Baron Aug 1969 A
3961997 Chu Jun 1976 A
3969163 Wakefield Jul 1976 A
4015280 Matsushita Mar 1977 A
4124410 Kotval Nov 1978 A
4124455 Lindmayer Nov 1978 A
4193975 Kotval Mar 1980 A
4200621 Liaw Apr 1980 A
4213798 Williams Jul 1980 A
4251285 Yoldas Feb 1981 A
4284490 Weber Aug 1981 A
4315096 Tyan Feb 1982 A
4336648 Pschunder et al. Jun 1982 A
4342044 Ovshinsky Jul 1982 A
4431858 Gonzalez Feb 1984 A
4514579 Hanak Apr 1985 A
4540843 Gochermann et al. Sep 1985 A
4567642 Dilts Feb 1986 A
4571448 Barnett Feb 1986 A
4577051 Hartman Mar 1986 A
4586988 Nath May 1986 A
4589191 Green May 1986 A
4612409 Hamakawa Sep 1986 A
4633033 Nath Dec 1986 A
4652693 Bar-On Mar 1987 A
4667060 Spitzer May 1987 A
4670096 Schwirtlich Jun 1987 A
4694115 Lillington Sep 1987 A
4771017 Tobin Sep 1988 A
4784702 Henri Nov 1988 A
4877460 Flodl Oct 1989 A
5053355 von Campe Oct 1991 A
5075763 Spitzer Dec 1991 A
5118361 Fraas Jun 1992 A
5131933 Floedl Jul 1992 A
5178685 Borenstein Jan 1993 A
5181968 Nath Jan 1993 A
5213628 Noguchi May 1993 A
5217539 Fraas Jun 1993 A
5279682 Wald Jan 1994 A
5286306 Menezes Feb 1994 A
5364518 Hartig Nov 1994 A
5401331 Ciszek Mar 1995 A
5455430 Noguchi Oct 1995 A
5461002 Safir Oct 1995 A
5563092 Ohmi Oct 1996 A
5627081 Tsuo May 1997 A
5676766 Probst Oct 1997 A
5681402 Ichinose Oct 1997 A
5698451 Hanoka Dec 1997 A
5705828 Noguchi Jan 1998 A
5726065 Szlufcik Mar 1998 A
5814195 Lehan Sep 1998 A
5903382 Tench May 1999 A
5935345 Kuznicki Aug 1999 A
6091019 Sakata Jul 2000 A
6140570 Kariya Oct 2000 A
6232545 Samaras May 2001 B1
6303853 Fraas Oct 2001 B1
6333457 Mulligan Dec 2001 B1
6441297 Keller Aug 2002 B1
6488824 Hollars Dec 2002 B1
6538193 Fraas Mar 2003 B1
6552414 Horzel Apr 2003 B1
6586270 Tsuzuki Jul 2003 B2
6620645 Chandra Sep 2003 B2
6683360 Dierickx Jan 2004 B1
6736948 Barrett May 2004 B2
6803513 Beernink Oct 2004 B2
6841051 Crowley Jan 2005 B2
7030413 Nakamura Apr 2006 B2
7164150 Terakawa Jan 2007 B2
7328534 Dinwoodie Feb 2008 B2
7388146 Fraas Jun 2008 B2
7399385 German Jul 2008 B2
7534632 Hu May 2009 B2
7635810 Luch Dec 2009 B2
7737357 Cousins Jun 2010 B2
7749883 Meeus Jul 2010 B2
7769887 Bhattacharyya Aug 2010 B1
7772484 Li Aug 2010 B2
7777128 Montello Aug 2010 B2
7825329 Basol Nov 2010 B2
7829781 Montello Nov 2010 B2
7829785 Basol Nov 2010 B2
7872192 Fraas Jan 2011 B1
7905995 German Mar 2011 B2
8070925 Hoffman Dec 2011 B2
8168880 Jacobs May 2012 B2
8182662 Crowley May 2012 B2
8209920 Krause Jul 2012 B2
8222513 Luch Jul 2012 B2
8222516 Cousins Jul 2012 B2
8343795 Luo Jan 2013 B2
8586857 Everson Nov 2013 B2
20010008143 Sasaoka Jul 2001 A1
20020086456 Cunningham Jul 2002 A1
20020176404 Girard Nov 2002 A1
20020189939 German Dec 2002 A1
20030000571 Wakuda Jan 2003 A1
20030042516 Forbes Mar 2003 A1
20030070705 Hayden Apr 2003 A1
20030097447 Johnston May 2003 A1
20030121228 Stoehr Jul 2003 A1
20030168578 Taguchi Sep 2003 A1
20030183270 Falk Oct 2003 A1
20030201007 Fraas Oct 2003 A1
20040065363 Fetzer Apr 2004 A1
20040103937 Bilyalov Jun 2004 A1
20040112426 Hagino Jun 2004 A1
20040123897 Ojima Jul 2004 A1
20040152326 Inomata Aug 2004 A1
20050012095 Niira Jan 2005 A1
20050022861 Rose Feb 2005 A1
20050064247 Sane Mar 2005 A1
20050109388 Murakami May 2005 A1
20050133084 Joge Jun 2005 A1
20050178662 Wurczinger Aug 2005 A1
20050189015 Rohatgi Sep 2005 A1
20050199279 Yoshimine Sep 2005 A1
20050252544 Rohatgi Nov 2005 A1
20050257823 Zwanenburg Nov 2005 A1
20060012000 Estes Jan 2006 A1
20060060238 Hacke Mar 2006 A1
20060130891 Carlson Jun 2006 A1
20060154389 Doan Jul 2006 A1
20060213548 Bachrach Sep 2006 A1
20060231803 Wang Oct 2006 A1
20060255340 Manivannan Nov 2006 A1
20060260673 Takeyama Nov 2006 A1
20060283496 Okamoto Dec 2006 A1
20060283499 Terakawa Dec 2006 A1
20070023081 Johnson Feb 2007 A1
20070023082 Manivannan Feb 2007 A1
20070108437 Tavkhelidze May 2007 A1
20070110975 Schneweis May 2007 A1
20070132034 Curello Jun 2007 A1
20070137699 Manivannan Jun 2007 A1
20070148336 Bachrach Jun 2007 A1
20070186970 Takahashi Aug 2007 A1
20070202029 Burns Aug 2007 A1
20070235829 Levine Oct 2007 A1
20070274504 Maes Nov 2007 A1
20070283996 Hachtmann Dec 2007 A1
20070283997 Hachtmann Dec 2007 A1
20080011350 Luch Jan 2008 A1
20080047602 Krasnov Feb 2008 A1
20080047604 Korevaar Feb 2008 A1
20080092947 Lopatin Apr 2008 A1
20080121272 Besser May 2008 A1
20080121276 Lopatin May 2008 A1
20080121932 Ranade May 2008 A1
20080128017 Ford Jun 2008 A1
20080149161 Nishida Jun 2008 A1
20080149163 Gangemi Jun 2008 A1
20080156370 Abdallah Jul 2008 A1
20080173350 Choi Jul 2008 A1
20080196757 Yoshimine Aug 2008 A1
20080202577 Hieslmair Aug 2008 A1
20080202582 Noda Aug 2008 A1
20080216891 Harkness Sep 2008 A1
20080230122 Terakawa Sep 2008 A1
20080251117 Schubert Oct 2008 A1
20080276983 Drake Nov 2008 A1
20080283115 Fukawa Nov 2008 A1
20080302030 Stancel Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080308145 Krasnov Dec 2008 A1
20090007965 Rohatgi Jan 2009 A1
20090078318 Meyers Mar 2009 A1
20090084439 Lu Apr 2009 A1
20090101872 Young Apr 2009 A1
20090139512 Lima Jun 2009 A1
20090151783 Lu Jun 2009 A1
20090155028 Boguslavskiy Jun 2009 A1
20090188561 Aiken Jul 2009 A1
20090221111 Frolov Sep 2009 A1
20090239331 Xu Sep 2009 A1
20090250108 Zhou Oct 2009 A1
20090255574 Yu Oct 2009 A1
20090283138 Lin Nov 2009 A1
20090283145 Kim Nov 2009 A1
20090293948 Tucci Dec 2009 A1
20090320897 Shimomura Dec 2009 A1
20100006145 Lee Jan 2010 A1
20100015756 Weidman Jan 2010 A1
20100043863 Wudu Feb 2010 A1
20100065111 Fu Mar 2010 A1
20100068890 Stockum Mar 2010 A1
20100108134 Ravi May 2010 A1
20100116325 Nikoonahad May 2010 A1
20100124619 Xu May 2010 A1
20100132774 Borden Jun 2010 A1
20100132792 Kim Jun 2010 A1
20100147364 Gonzalez Jun 2010 A1
20100169478 Saha Jul 2010 A1
20100186802 Borden Jul 2010 A1
20100193014 Johnson Aug 2010 A1
20100218799 Stefani Sep 2010 A1
20100224230 Luch Sep 2010 A1
20100236612 Khajehoddin et al. Sep 2010 A1
20100269904 Cousins Oct 2010 A1
20100300506 Heng Dec 2010 A1
20100300507 Heng Dec 2010 A1
20110146781 Laudisio Jun 2011 A1
20110156188 Tu Jun 2011 A1
20110168250 Lin Jul 2011 A1
20110245957 Porthouse Oct 2011 A1
20110259419 Hagemann Oct 2011 A1
20110272012 Heng et al. Nov 2011 A1
20110277825 Fu Nov 2011 A1
20110297227 Pysch Dec 2011 A1
20120000502 Wiedeman Jan 2012 A1
20120012174 Wu Jan 2012 A1
20120028461 Ritchie Feb 2012 A1
20120031480 Tisler Feb 2012 A1
20120040487 Asthana Feb 2012 A1
20120085384 Beitel et al. Apr 2012 A1
20120125391 Pinarbasi May 2012 A1
20120152349 Cao Jun 2012 A1
20120192932 Wu Aug 2012 A1
20120240995 Coakley Sep 2012 A1
20120248497 Zhou Oct 2012 A1
20120279443 Kornmeyer Nov 2012 A1
20120279548 Munch Nov 2012 A1
20120305060 Fu et al. Dec 2012 A1
20120318319 Pinarbasi Dec 2012 A1
20120318340 Heng Dec 2012 A1
20120325282 Snow Dec 2012 A1
20130000705 Shappir Jan 2013 A1
20130096710 Pinarbasi Apr 2013 A1
20130152996 DeGroot Jun 2013 A1
20130206213 He Aug 2013 A1
20130206221 Gannon Aug 2013 A1
20130247955 Baba Sep 2013 A1
20140124013 Morad May 2014 A1
20140124014 Morad May 2014 A1
20140196768 Heng Jul 2014 A1
20140345674 Yang Nov 2014 A1
Foreign Referenced Citations (15)
Number Date Country
1816684 Aug 2007 EP
2385561 Nov 2011 EP
2385561 Nov 2011 EP
2479796 Jul 2012 EP
2626907 Aug 2013 EP
2007123792 May 2007 JP
9120097 Dec 1991 WO
2006097189 Sep 2006 WO
2009150654 Dec 2009 WO
2010075606 Jul 2010 WO
2010104726 Sep 2010 WO
2010123974 Oct 2010 WO
2011005447 Jan 2011 WO
2011008881 Jan 2011 WO
2011123646 Oct 2011 WO
Non-Patent Literature Citations (20)
Entry
JP 2007123792 A Osawa et al. May 2007 Japan, English equivalent of the abstract.
Beaucarne G et al: ‘Epitaxial thin-film Si solar cells’ Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH LNKD- DOI:10.1016/J.TSF.2005.12.003, vol. 511-512, Jul. 26, 2006, pp. 533-542, XP025007243 ISSN: 0040-6090 [retrieved on Jul. 26, 2006].
Chabal, Yves J. et al., ‘Silicon Surface and Interface Issues for Nanoelectronics,’ The Electrochemical Society Interface, Spring 2005, pp. 31-33.
Collins English Dictionary (Convex. (2000). In Collins English Dictionary. http://search.credoreference.com/content/entry/hcengdict/convex/0 on Oct. 18, 2014).
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE/%20343/Chapter/%207%20Dopant%20 diffusion%20—%20I.pptx> and converted to PDF.
Davies, P.C.W., ‘Quantum tunneling time,’ Am. J. Phys. 73, Jan. 2005, pp. 23-27.
Dosaj V D et al: ‘Single Crystal Silicon Ingot Pulled From Chemically-Upgraded Metallurgical-Grade Silicon’ Conference Record of the IEEE Photovoltaic Specialists Conference, May 6, 1975, pp. 275-279, XP001050345.
Green, Martin A. et al., ‘High-Efficiency Silicon Solar Cells,’ IEEE Transactions on Electron Devices, vol. ED-31, No. 5, May 1984, pp. 679-683.
Hamm, Gary, Wei, Lingyum, Jacques, Dave, Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells, EU PVSEC Proceedings, Presented Sep. 2009.
JCS Pires, J Otubo, AFB Braga, PR Mei; The purification of metallurgical grade silicon by electron beam melting, J of Mats Process Tech 169 (2005) 16-20.
Khattak, C. P. et al., “Refining Molten Metallurgical Grade Silicon for use as Feedstock for Photovoltaic Applications”, 16th E.C. Photovoltaic Solar Energy Conference, May 1-5, 2000, pp. 1282-1283.
Merriam-Webster online dictionary—“mesh”. (accessed Oct. 8, 2012).
Mueller, Thomas, el al. “Application of wide-band gap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation.” Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008.
Munzer, K.A. “High Throughput Industrial In-Line Boron BSF Diffusion” Jun. 2005. 20th European Photovoltaic Solar Energy Conference, pp. 777-780.
O'Mara, W.C.; Herring, R.B.; Hunt L.P. (1990). Handbook of Semiconductor Silicon Technology. William Andrew Publishing/Noyes. pp. 275-293.
Roedem, B. von, et al., ‘Why is the Open-Circuit Voltage of Crystalline Si Solar Cells so Critically Dependent on Emitter-and Base-Doping?’ Presented at the 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, CO, Aug. 9-11, 1999.
Stangl et al., Amorphous/Crystalline Silicon heterojunction solar cells—a simulation study; 17th European Photovoltaic Conference, Munich, Oct. 2001.
Warabisako T et al: ‘Efficient Solar Cells From Metallurgical-Grade Silicon’ Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 19, No. Suppl. 19-01, Jan. 1, 1980, pp. 539-544, XP008036363 ISSN: 0021-4922.
WP Leroy et al., “In Search for the Limits of Rotating Cylindrical Magnetron Sputtering”, Magnetron, ION Processing and ARC Technologies European Conference, Jun. 18, 2010, pp. 1-32.
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology;The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011, p. 78402, XP020207379, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402.
Related Publications (1)
Number Date Country
20140196768 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61751733 Jan 2013 US