The subject matter herein relates to moisture and condensation barriers, particularly (but not necessarily) for flooring systems installed in building structures.
Moisture is known to cause warping, cracking, buckling, rotting and other damage to wood building materials and can create an environment for the growth of mold, mildew and termites in or on the wood. Such moisture may come up from under a building structure from ground water, through the sides, top and bottom from precipitation and directly out of the air as condensation. Moisture and condensation have been a particular problem in building structures having radiant heating systems, since frequent cycling on and off of the radiant heating systems causes moisture condensation around the radiant heating systems. Various types of barriers to moisture and condensation have been developed to prevent damage to the building structures, particularly to wood flooring systems in the building structures.
Many moisture and condensation prevention and/or barrier techniques have been attempted. However, particularly for flooring systems that have a radiant heating system, an appropriate material that provides a sufficient moisture and condensation barrier and that does not degrade over time or with repeated heating and cooling or with exposure to moisture has not been discovered. Additionally, the moisture and condensation barrier techniques typically require complicated and time-consuming installation procedures.
Barrier materials that have been tried include a flexible sheet (single-ply or multi-ply) that is laid (with or without adhesive) between layers of the building structure, such as between layers of the flooring system. The sheet may be made of a polymeric sheet, thermoplastic film, a polymer film, polyethylene, polyvinylchloride, polyurethane, polypropylene, a vinyl film and the like.
Other attempted barrier materials have included a liquid that is placed on top of or sprayed or painted on the side of one or more of the layers of the building structure and allowed to form into a solid. For example, a water based adhesive, synthetic resin film, polymeric layer, polyolefin, polyethylene, polypropylene, polybutylene, polyvinylchloride, hot mastic asphalt tar, thermoplastic elastomers, styrene, butadiene, copolymers and the like may be coated on top of one of the layers and allowed to cool, dry or cure into a vapor or moisture barrier.
Other barrier materials have been formed into boards (typically with wood and typically laminated) that can be used in constructing some of the layers of the building structure. For example, one or more layers or a sheath or envelope of plastic, thermoplastic, thermoplastic resinous polymers, thermoplastic resins, thermoplastic homopolymers, copolymers, copolyester, terpolymers, vinyl resins, polyvinyl, polyvinyl chloride, polyethylene, polypropylene, polyolefins, polyamides, polyurethane, acrylonitrilebutadiene, acrylic resins, phenolic resins, asphalt impregnated fabric, waxes, vulcanized rubber, vulcanizable rubber or rubber latex (vulcanized or heat-pressed in situ), chlorinated rubber, a methyl methacrylate monomer, a hydroxy alkylacrylate or diacetone acrylamide monomer, a chlorinated hydrocarbon, an antimony compound, a zinc compound and the like may be formed on or in the board. Such coated or laminated boards may be used for the subfloor or the finished floor of the flooring system.
Additionally, coated wood boards for building materials have been developed for purposes other than for moisture barriers. For example, rubber particles have been heat pressed onto a wood board to form a board with a non-skid surface. Additionally, pulverized rubber has been added to styrene acrylate polymers and polyvinyl acetate-acrylic co-polymers and sprayed onto a wood board and allowed to cure to form a resilient and skid resistant surface on the board. Additionally, a rubber based elastomeric material has been heat-pressed onto a laminated board and used to bond the laminated board to a substrate coated with a similar rubber based material.
An exemplary prior art building structure 100 is shown in
With or without the radiant heating system 114, moisture and condensation commonly reaches the flooring system 102 through the ground 108 or through the concrete slab 106. The radiant heating system 114 commonly exacerbates the moisture and condensation problem. At least one type of flooring system (not shown) is known to incorporate a waterproof sheet or moisture sealing layer (not shown) under the radiant heating system 114, but this placement of the waterproof sheet cannot solve the problem of condensation around the radiant heating system 114 reaching the wood subfloor 112 and the finished hardwood floor 110.
The moisture and condensation problem is also present in building structures that have concrete slabs that do not elevate the flooring system above the ground, but support the flooring system directly on the ground. In such a building structure, a flooring system was formed on top of a concrete slab supported on the ground. The concrete slab also had a radiant heating system built into it. The flooring system was constructed with 30-lb felt tar paper overlaying the radiant heating concrete slab, a layer of plywood placed over the felt tar paper, a layer of glue troweled over the plywood and a finished hardwood floor fastened to the plywood by the glue and staples. Within a year, the flooring system had warped and buckled, due to moisture, which the felt tar paper and the glue layer could not prevent passing from the radiant heating concrete slab to the plywood and the finished hardwood floor. The flooring system was replaced with a second flooring system constructed with a moisture-resistant two-part epoxy squeegeed over the radiant heating concrete slab followed by the plywood, glue and stapled finished hardwood floor. Within half a year, the second flooring system had also warped and buckled and the epoxy had cracked, flaked and separated from the radiant heating concrete slab, due to moisture.
It is with respect to these and other background considerations that the subject matter herein has evolved.
The subject matter herein involves the discovery of moisture and condensation barrier materials that do not degrade over time or when exposed to moisture or heating/cooling cycles and that do not require the complex installation procedures required of those materials described in the background. In particular, after the second flooring system described in the background had warped and buckled and the epoxy had cracked, flaked and separated from the radiant heating concrete slab, due to moisture, a third flooring system was installed for testing in the building structure over the radiant heating concrete slab. The third flooring system included a petroleum-based tar sheet (not described in any of the background barrier materials) placed over the radiant heating concrete slab followed by the plywood and the stapled finished hardwood floor (without the glue). After more than a year and a complete seasonal cycle and after more than a hundred other installations of similar flooring systems, particularly over radiant heating systems, the petroleum-based tar sheet has proven to be an effective moisture and condensation barrier that is quick and easy to install. In one embodiment, that product commonly referenced by the trade name “Grace Ice and Water Shield,” which is about a 40-mil thick petroleum-based tar product having about a 2-mil thick plastic overlay, has been used effectively.
Additionally, a paintable rubberized coating material (not described in any of the background barrier materials or other coating materials) has been coated onto wood boards and tested as a moisture barrier and proven to be effective and quick and easy to install. In other embodiments, that product commonly referenced by the trade name “Dynatron (.TM.) Dyna-Pro Rubberized Undercoat” (.TM.) and that product commonly referenced by the trade name “Mar-Hyde Paintable Rubber Undercoating” (.TM.) have been used effectively at a thickness of about 6-8 mils. These rubberized undercoatings generally cure into a non-tacky solid.
A more complete appreciation of the present disclosure and its scope, and the manner in which it achieves the above noted improvements, can be obtained by reference to the following detailed description of presently preferred embodiments taken in connection with the accompanying drawings, which are briefly summarized below, and the appended claims.
A building structure 200 having a first embodiment of a flooring system 202 including an adequate moisture and condensation barrier 204 is shown in
The flooring system 202 is placed between walls 210 above a concrete slab on grade 214 supported directly on the ground 216. The edges 212 of the moisture and condensation barrier 204 may be turned up at the walls 210 to a height flush with the top surface of the hardwood floor 206.
The concrete slab on grade 214 also serves as an optional radiant heating system having heat pipes 218 displaced throughout the concrete slab on grade 214. The same flooring system 202 with the moisture and condensation barrier 204 beneath the hardwood floor 206 and the wood subfloor 208 may also be incorporated into a building structure (not shown) having a concrete slab that elevates the flooring system 202 off the ground 216 with or without the radiant heating system.
A building structure 220 having a second embodiment of the flooring system 202 including an adequate moisture and condensation barrier 204, similar to the moisture and condensation barrier 204 shown in
The flooring system 202 is placed between the walls 210 and above structural joists, or trusses, 228. The flooring system 202 is supported by the structural joists 228, which in turn are supported by a concrete slab 230, which elevates the structural joists 228 and the flooring system 202 above the ground 232. The same flooring system 202 with the moisture and condensation barrier 204 under the hardwood floor 206 and the wood subfloor 208 may also be incorporated into a building structure (not shown) having a concrete slab that does not elevate the flooring system 202 off the ground 232 with or without the radiant heating system 224.
A building structure 234 having a third embodiment of the flooring system 202 including an adequate moisture and condensation barrier 236 is shown in
The flooring system 202 is shown placed between the walls 210 above the concrete slab on grade 214 supported directly on the ground 216, similar to the embodiment shown in
Building structures 240 and 242 having fourth and fifth embodiments of the flooring system 202 including an adequate moisture and condensation barrier 236 are shown in
Wood boards 244 (such as plywood) that may be used in the wood subfloor 238 (
Whether it is the specifically mentioned products, the material for the moisture and condensation barrier 236 preferably does not require additional treatment, pressurizing, heating, vulcanizing or other processing steps for completing the finished coated wood boards 244. Additionally, the material generally can be rolled, squeegeed or sprayed onto the wood board 244 to a desired thickness, such as about 6-8 mils.
The moisture and condensation barrier 236 may be coated onto only part of the surfaces of the wood boards 244, as shown, or may cover the entire surfaces of the wood boards 244. Generally, the moisture and condensation barrier 236 is coated at least onto one side and the tongue 246 and groove 248 of the wood boards 244. If coated onto only one side, the moisture and condensation barrier 236 may be either on the bottom side 250, as shown, or top side 252 of the wood boards 244 when installed in the wood subfloor 238. Coverage of the tongue 246 and groove 248 by the moisture and condensation barrier 236 ensures that the joints between the wood boards 244, when the tongue 246 and groove 248 are forced together, are relatively impenetrable by moisture. Moisture-resistant tape or other joint-sealing products (not shown) are generally used. to seal the joints between the wood boards 244 to further enhance the moisture impenetrability of the joints. Additionally, in some embodiments, the moisture and condensation barrier 236 is preferably coated to the wood boards 244 prior to installation of the wood boards 244 in the wood subfloor 238 (such as in a factory).
An advantage of the subject matter described herein involves moisture and condensation barriers that prevent penetration by water, are quick and easy to install in a building structure (particularly in flooring systems) and do not degrade over time or when exposed to water or to frequent heating/cooling (e.g. freezing/thawing) cycles. With respect to the flooring systems (and other wood components), the moisture and condensation barriers protect the finished hardwood floor (and the wood subfloor if installed below the wood subfloor) from damage by moisture, such as warping, cracking, buckling, rotting, etc. and prevents the creation of an environment for the growth of mold, mildew and termites in or on the wood. Thus, the moisture and condensation barriers are particularly advantageous when installed in the flooring system of a building structure having a radiant heating system, since radiant heating systems exacerbate moisture problems by causing condensation around the radiant heating system.
Presently preferred embodiments of the subject matter herein and its improvements have been described with a degree of particularity. This description has been made by way of preferred example. It should be understood that the scope of the claimed subject matter is defined by the following claims, and should not be unnecessarily limited by the detailed description of the preferred embodiments set forth above.
This application is related to, and claims the benefit of, a previously filed U.S. provisional patent application, titled “Moisture and Condensation Barrier for Hardwood Floors Constructed over Wood Subfloor and Radiant Heating Systems,” application No. 60/208,932, filed Jun. 5, 2000, by one of the present inventors.
Number | Date | Country | |
---|---|---|---|
60208932 | Jun 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09874801 | Jun 2001 | US |
Child | 11185124 | Jul 2005 | US |