Claims
- 1. The present invention relates to a process for preparing a moisture-curable, alkoxysilane-functional polyether urethane by reacting at an NCO:OH equivalent ratio of 1.5:1 to 2.5:1
a) a hydroxyl component containing
i) 20 to 100% by weight, based on the weight of component a), of a polyether containing two hydroxyl groups and one or more polyether segments, wherein the polyether segments have a number average molecular weight of at least 3000 and a degree of unsaturation of less than 0.04 milliequivalents/g, provided that the sum of the number average molecular weights of all of the polyether segments per molecule averages 6000 to 20,000, and ii) 0 to 80% by weight, based on the weight of component a), of a polyether containing one hydroxyl group and one or more polyether segments having a number average molecular weight of 1000 to 15,000, with b) an isocyanate component containing
i) 20 to 100% by weight, based on the weight of component b), of a compound containing two isocyanate groups, and ii) 0 to 80% by weight, based on the weight of component b), of a compound containing one isocyanate group, to form an isocyanate-containing reaction product and subsequently reacting this reaction product at an equivalent ratio of isocyanate groups to isocyanate-reactive groups of 0.8:1 to 1.1:1 with c) compounds containing an isocyanate-reactive group and one or more reactive silane groups selected from i) compounds corresponding to formula I 5wherein X represents identical or different organic groups which are inert to isocyanate groups below 100° C., provided that at least two of these groups are alkoxy or acyloxy groups, Y represents a linear or branched alkylene group containing 1 to 8 carbon atoms and R1 represents an organic group selected from alkyl, cycloalkyl or aromatic groups having from 1 to 12 carbon atoms and a group corresponding to formula II —Y—Si—(X)3 (II) and ii) the reaction product of aminosilanes corresponding to formula IV H2N—Y—Si—(X)3 (IV) with maleic or fumaric acid esters corresponding to formula V R5OOC—CR3═CR4—COOR2 (V) wherein X and Y are as defined above, R2 and R5 are identical or different and represent alkyl groups having 1 to 4 carbon atoms, and R3 and R4 are identical or different and represent hydrogen or organic groups which are inert towards isocyanate groups at a temperature of 100° C. or less, to form a moisture-curable, alkoxysilane-functional polyether urethane, provided that total percentages of a-ii) and b-ii) add up to at least 10.
- 2. The process of claim 1 wherein
X represents identical or different alkoxy groups having 1 to 4 carbon atoms, Y represents a linear radical containing 2 to 4 carbon atoms or a branched radical containing 5 to 6 carbon atoms and R1 represents ethyl.
- 3. The polyether urethane of claim 1 wherein at least 10 mole % of component c) is a compound corresponding to the formula
- 4. The process of claim 1 wherein component a-i) is present in an amount of 20 to 90% by weight, based on the weight of component a); and component a-ii) is present in an amount of 10 to 80% by weight, based on the weight of component a).
- 5. The process of claim 2 wherein component a-i) is present in an amount of 20 to 90% by weight, based on the weight of component a); and component a-ii) is present in an amount of 10 to 80% by weight, based on the weight of component a).
- 6. The process of claim 3 wherein component a-i) is present in an amount of 20 to 90% by weight, based on the weight of component a); and component a-ii) is present in an amount of 10 to 80% by weight, based on the weight of component a).
- 7. The process of claim 1 wherein component b-i) is present in an amount of 20 to 90% by weight, based on the weight of component b); and component b-ii) is present in an amount of 10 to 80% by weight, based on the weight of component b).
- 8. The process of claim 2 wherein component b-i) is present in an amount of 20 to 90% by weight, based on the weight of component b); and component b-ii) is present in an amount of 10 to 80% by weight, based on the weight of component b).
- 9. The process of claim 3 wherein component b-i) is present in an amount of 20 to 90% by weight, based on the weight of component b); and component b-ii) is present in an amount of 10 to 80% by weight, based on the weight of component b).
- 10. The process of claim 1 wherein component a-i) is present in an amount of 30 to 80% by weight, based on the weight of component a); component a-ii) is present in an amount of 20 to 70% by weight, based on the weight of component a); and at least 80 mole % of component c) is a compound corresponding to the formula I.
- 11. The process of claim 2 wherein component a-i) is present in an amount of 30 to 80% by weight, based on the weight of component a); component a-ii) is present in an amount of 20 to 70% by weight, based on the weight of component a); and at least 80 mole % of component c) is a compound corresponding to the formula I.
- 12. The process of claim 3 wherein component a-i) is present in an amount of 30 to 80% by weight, based on the weight of component a); component a-ii) is present in an amount of 20 to 70% by weight, based on the weight of component a); and at least 80 mole % of component c) is a compound corresponding to the formula III.
- 13. The process of claim 1 wherein component b-i) is present in an amount of 30 to 80% by weight, based on the weight of component b); component b-ii) is present in an amount of 20 to 70% by weight, based on the weight of component b); and at least 80 mole % of component c) is a compound corresponding to the formula I.
- 14. The process of claim 2 wherein component b-i) is present in an amount of 30 to 80% by weight, based on the weight of component b); component b-ii) is present in an amount of 20 to 70% by weight, based on the weight of component b); and at least 80 mole % of component c) is a compound corresponding to the formula I.
- 15. The process of claim 3 wherein component b-i) is present in an amount of 30 to 80% by weight, based on the weight of component b); component b-ii) is present in an amount of 20 to 70% by weight, based on the weight of component b); and at least 80 mole % of component c) is a compound corresponding to the formula III.
- 16. The process of claim 1 wherein the polyether segments of component a-i) have a number average molecular weight of at least 6000 and the polyether segments of component a-ii) have a number average molecular weight of 3000 to 12,000.
- 17. The process of claim 2 wherein the polyether segments of component a-i) have a number average molecular weight of at least 6000 and the polyether segments of component a-ii) have a number average molecular weight of 3000 to 12,000.
- 18. The process of claim 3 wherein the polyether segments of component a-i) have a number average molecular weight of at least 6000 and the polyether segments of component a-ii) have a number average molecular weight of 3000 to 12,000.
- 19. The process of claim 4 wherein the polyether segments of component a-i) have a number average molecular weight of at least 6000 and the polyether segments of component a-ii) have a number average molecular weight of 3000 to 12,000.
- 20. The process of claim 10 wherein the polyether segments of component a-i) have a number average molecular weight of at least 6000 and the polyether segments of component a-ii) have a number average molecular weight of 3000 to 12,000.
Priority Claims (1)
Number |
Date |
Country |
Kind |
PCT/US03/17004 |
May 2003 |
WO |
|
CROSS REFERENCE TO RELATED PATENT APPLICATION
[0001] This application is a Continuation-In-Part of U.S. Ser. No. 10/160,479, filed May 31, 2002.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
10160479 |
May 2002 |
US |
Child |
10690953 |
Oct 2003 |
US |