The invention generally relates to a system for note taking and, more particularly, the invention relates to erasing notes with liquid.
Notes are frequently taken using classic pen and paper systems. Students, for example, generally purchase new notebooks every new school year for various subject matters, and/or when a notebook is filled up. Pages of notebooks may go unused, and thus, trees and other natural resources are wasted. Attempts have been made to migrate to other note taking formats, such as digital tablet devices and reusable writing surfaces. Many users prefer the feel of writing with a writing instrument on paper, and thus, do not adjust well to the feel of taking notes with digital devices. Furthermore, many classroom environments do not allow the use of electronic devices. Additionally, reusable writing surfaces, such as whiteboards, may wipe off easily, causing difficulty with note storage and portability.
Thermochromic ink pens can be used to write on paper and can be effectively erased. Thermochromic ink typically changes from opaque (i.e., color) to transparent when heat is applied (e.g., due to friction from an eraser being rubbed on the ink, or when the paper with thermochromic ink is placed in an oven or microwave oven). One example of a thermochromic ink pen is the FRIXION™ thermochromic ink pen manufactured by Pilot Corporation. A description of the FRIXION™ thermochromic ink pen can be found in Miki, Masuda, The Science Behind Frixion Erasable Pens, http://www.nippon.com/en/features/c00520/ dated Aug. 24, 2016. Some exemplary thermochromic inks are described in U.S. Pat. Nos. 4,028,118, 4,720,301, 4,720,301, and 8,616,797.
Synthetic paper generally contains no wood pulp or natural fibers (as found in standard paper), and is commonly formed from polypropylene resin along with inorganic fibers, although many different types of synthetic papers were known (e.g., including different types of synthetic papers referred to as stone paper). Synthetic paper frequently has a base layer covered with a surface layer. Among other things, the base layer of synthetic paper may be formed, for example, polyethylene, polypropylene, high-density polyethylene, polyester, and other plastics. The surface layer adds a bright surface finish, high opacity and smooth texture. Synthetic-paper is also more durable that traditional paper. Many synthetic papers are tear-resistant, wear-resistant, chemical-resistant, heat-resistant, and/or grease-resistant relative to traditional paper. This makes synthetic paper a good option for use in environments where the notebook could be damaged. For example, when used with many traditional pens and markers, notes and/or publications written on synthetic paper may be read in the bath, pool, spa, shower, or while boating, fishing, skiing, snowmobiling or scuba diving.
In accordance with one embodiment of the invention, a method of reusing a notebook provides a notebook having a synthetic-paper page. The method also provides a thermochromic ink pen which, when used to write on the synthetic paper page, leaves thermochromic ink markings. The method further provides a moisture carrier configured to have a liquid diffused therein. The moisture carrier is configured to erase the thermochromic ink markings from the synthetic-paper page by contacting the thermochromic ink markings when the moisture carrier is moist. The method then writes with thermochromic ink on at least a portion of the synthetic-paper page. Liquid is diffused in the moisture carrier, and the portion of the synthetic-paper page having the thermochromic ink is wiped with the moist moisture carrier, such that the thermochromic ink is erased from the synthetic-paper page.
Among other pens, the thermochromic ink pen may be a FRIXION™ thermochromic ink pen. Among other types of synthetic paper, the synthetic paper may be Polyart®, Appvion Appleton Digital™, Parax™ stone paper, RockStock™ stone paper, Nekoosa™ XM, Nekoosa™ OM, HopSyn DL Grade®, and/or Yupo® FPG 80. The synthetic-paper page may have a base layer and a surface layer disposed over the base layer. Among other things, the moisture carrier may be a cloth, a sponge, a napkin, a paper towel, and/or a baby-wipe.
The liquid diffused in the moisture carrier may be water and/or isopropyl alcohol. In some embodiments, the liquid diffused in the moisture carrier does not damage the surface layer of the synthetic-paper page when the synthetic-paper page is wiped to erase the thermochromic ink. In some embodiments, the surface layer is formed from calcium carbonate.
In accordance with an embodiment of the invention, a system includes a notebook having a synthetic-paper page and a thermochromic ink pen. The thermochromic ink pen may be used to write on the synthetic-paper page. Writing on the page leaves thermochromic ink markings. In some embodiments, the system includes a moisture carrier configured to have a liquid diffused therein. The moisture carrier erases the thermochromic ink markings from the synthetic-paper page by contacting the thermochromic ink markings when the liquid is diffused in the moisture carrier.
In accordance with another embodiment of the invention, a method of reusing a notebook having a synthetic-paper page provides a notebook having a synthetic-paper page including thermochromic ink markings on at least a portion of the synthetic-paper page. The method also wipes the portion of the synthetic-paper page having the thermochromic ink with a moistened moisture carrier, such that the thermochromic ink is erased from the synthetic-paper page.
In some embodiments, the moisture carrier is a pre-moistened moisture carrier, for example, a wet-wipe or an isopropyl alcohol wipe. In some other embodiments, the moisture carrier is provided as a dry moisture carrier, for example, a dry cloth or paper towel.
In accordance with yet another illustrative embodiment, a method reuses a notebook having a synthetic-paper page. The method provides a notebook having a synthetic-paper page, the page having thermochromic ink markings on at least a portion of the synthetic-paper page. The portion of the synthetic-paper page having thermochromic ink is wiped with a moistened moisture carrier, such that the thermochromic ink is erased from the synthetic-paper page.
In some embodiments, the method writes with thermochromic ink on at least a portion of the synthetic paper page.
In accordance with yet another illustrative embodiment, a reusable notebook for use with heat-erasable ink includes a binding configured to hold a plurality of pages. The notebook also includes at least one cover, and a plurality of pages that are moisture resistant. The pages are configured to be written on with heat-erasable ink that is moisture-erasable. In some embodiments, the pages are Polyart®, Appvion Appleton Digital™, Parax™ stone paper, RockStock™ stone paper, Nekoosa™ XM, Nekoosa™ OM, HopSyn DL Grade®, and/or Yupo® FPG 8 paper pages.
Illustrative embodiments of the invention are implemented as a computer program product having a computer usable medium with computer readable program code thereon. The computer readable code may be read and utilized by a computer system in accordance with conventional processes.
Those skilled in the art should more fully appreciate advantages of various embodiments of the invention from the following “Description of Illustrative Embodiments,” discussed with reference to the drawings summarized immediately below.
As discussed above, thermochromic ink pens are generally used to write indelibly on paper, but with the ability to effectively erase thermochromic ink markings through the application of heat that changes the ink from opaque to transparent. Also as discussed above, synthetic paper can be used to protect writings in harsh environments such as from moisture.
In illustrative embodiments, a system provides a notebook with synthetic-paper pages and a thermochromic ink pen. A user writes on the pages of the notebook with the thermochromic ink pen, such as, for example, a FRIXION™ thermochromic ink pen manufactured by Pilot Corporation. When the user has finished taking notes and wishes to erase them, the user may erase the notes by wiping the notes off of the page with a moisture carrier (e.g., a cloth, sponge, or paper towel) moistened with water or other appropriate liquid (e.g., alcohol). Details of illustrative embodiments are discussed below.
The inventors discovered and were surprised to find that moisture can erase thermochromic ink 108 when it is on synthetic paper 104 (e.g., using a wet cloth). This surprise was further enhanced given the durability and moisture-rich environments in which synthetic paper 104 may be used along with the seeming indelibility of thermochromic inks (in the absence of heat). It should be noted that the inventors are not privy to the actual chemical composition of the inks in the FRIXION™ thermochromic ink pen and therefore cannot describe, for example, why the ink is seemingly indelible on traditional paper but moisture-erasable or moisture-removable on synthetic paper.
The inventors suspect, but have not confirmed, that the mechanism of action for this erasure effect is because thermochromic ink is not absorbed into the synthetic paper 104. However, it should be understood that illustrative embodiments of the invention are intended to cover whatever mode of action is actually in use, and are not limited to the hypothesized mechanism of action.
It is hypothesized, as described in provisional application 62/421,335, that the thermochromic ink's pigment particles are sufficiently larger than any pores or imperfections on the surface of the synthetic paper. Thus, the ink pigment particles do not get stuck inside the pores or imperfections of the synthetic paper. In other words, the ink is not absorbed into the paper. Once the solvent of the ink evaporates, the thermochromic pigment is stuck to the surface of the page, but not trapped inside the pores of the page. The dry ink may appear to be permanently bonded to the synthetic page, but once the solvent, such as water is reintroduced, the ink is readily wiped away from the surface of the page. Accordingly, in some embodiments, the size of the thermochromic ink molecules and/or the microcapsule that encapsulates the thermochromic ink is larger than the pore size of the synthetic paper.
Tests were performed to confirm that the erasure effect was not caused by a change of temperature of the ink 108. Furthermore, the inventors determined that the thermochromic ink 108 is not completely moisture-erasable from cellulose-based paper. Conversely, non-thermochromic ink (e.g., tested from gel pens, ballpoint pens, dry-erase markers) is not completely and clearly moisture-erasable from synthetic paper.
Both the Sharpie permanent marker markings 116 and the BiC XtraLife pen markings 119 left behind smudging 122 after being wiped with the alcohol wipes. Thus, only the thermochromic ink marking 111 and the BiC brite liner highlighter markings 115 erased without smudging. It should be noted that the thermochromic ink marking 111 was readily erasable (generally a single swipe with the moisture carrier is necessary), while the highlighter marking 115 required the application of considerable force and multiple swipes to erase significantly.
Content is written or printed on synthetic-paper with thermochromic ink at step 802. The thermochromic ink may include a Leuco dye that can change between colored and colorless forms. The Leuco dye can be Leuco 1, 2, 3, and/or 4. Furthermore, illustrative embodiments include color developer and color change temperature regulator in the thermochromic ink. In some embodiments, the thermochromic ink may be microencapsulated. Illustrative embodiments used Pilot FriXion ball-point gel pens, Pilot FriXion felt-tipped pens and markers, and/or the UniBall phantom.
As described above, the paper may be part of a bound notebook or the paper may be separate and loose. The marking is exposed to moisture 805 to return it to its original state so content can be written or printed on it again, which will be described further below. The process can be repeated multiple times. As expressed above, different moisture-erasing techniques can be employed to erase the marking.
Optionally, at step 803, the contents written on the originally blank paper can be saved with a digital scanner prior to heating the paper and clearing the contents. After the user writes on the paper with thermochromic ink, the paper can be scanned by a digital scanning process or by taking a digital photograph and performing digital signal processing on the digital photograph to capture and retain the content in a suitable format. For example; the digital content may be saved in a format such that OCR (optical character recognition) may occur for the digital content. Furthermore, at step 804, the digital photographs or scan may optionally undergo enhancement in a computer process for enhancing each image. These processes are described in U.S. patent application Ser. No. 15/211,462, filed Jul. 15, 2016, and in U.S. Provisional Patent Application No. 62/193,915, filed Jul. 17, 2015, herein incorporated by reference in their entireties. After the contents of the paper have been digitized and saved to an appropriate storage location, the markings can be erased.
The next step 805 in the process moisture erases the marking. As described above, in some embodiments, the notebook is wiped with a moisture carrier (e.g., a moist cloth, wet napkin, baby-wipe, etc.). In some embodiments, in order to reuse the reusable moisture-erasable notebook, the one or more pages 104 are water-proof, water-resistant, moisture-proof, and/or moisture-resistant (such as with previously described pages 104 Nekoosa™ XM, Nekoosa™ OM, etc.). A person of skill in the art understands that the different types of pages 104 described above are water-proof, water-resistant, moisture-proof and/or moisture-resistant. Additionally, or alternatively, the notebook may be heated to erase the thermochromic ink (e.g., microwaved).
It should be recognized that a notebook and thermochromic pen with instructions, or with the intent, for using the pen with the notebook and erasing the notebook using a moisture carrier may be sold together in the form of a packaged kit.
Illustrative embodiments of the present invention may be described, without limitation, by the above description. While these embodiments have been described in the clauses by process steps, an apparatus comprising a computer with associated display capable of executing the process steps in the clauses above is also included in the present invention. Likewise, a computer program product including computer executable instructions for executing the process steps in the clauses and stored on a computer readable medium is included within the present invention.
Advantages of the invention include that users may have the traditional feel of writing in a notebook without requiring the purchase of multiple notebooks. Furthermore, this system is environmentally-sustainable and does not require the destruction of trees.
Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.
This patent application is a continuation of U.S. patent application Ser. No. 16/839,839, titled MOISTURE-ERASABLE NOTE TAKING SYSTEM, filed Apr. 3, 2020, which is a continuation of U.S. patent application Ser. No. 16/354,711, titled MOISTURE-ERASABLE NOTE TAKING SYSTEM, filed Mar. 15, 2019, issued Apr. 14, 2020, as U.S. Pat. No. 10,618,345, which is a continuation of U.S. patent application Ser. No. 15/811,360, titled MOISTURE-ERASABLE NOTE TAKING SYSTEM, filed Nov. 13, 2017, issued Mar. 19, 2019, as U.S. Pat. No. 10,232,663, which claims priority from U.S. provisional patent application No. 62/421,335, filed Nov. 13, 2016, each of which is incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4028118 | Nakasuji et al. | Jun 1977 | A |
4421560 | Kito | Dec 1983 | A |
4425161 | Shibahashi | Jan 1984 | A |
4720301 | Kito et al. | Jan 1988 | A |
4936916 | Shinmitsu | Jun 1990 | A |
5380394 | Shibuya | Jan 1995 | A |
5786838 | Steinhauser | Jul 1998 | A |
6346024 | Engel | Feb 2002 | B1 |
8092866 | Parr | Jan 2012 | B2 |
8616797 | Kamitani | Dec 2013 | B2 |
9345270 | Owen | May 2016 | B2 |
9352607 | Albenda | May 2016 | B1 |
9592702 | Wase | Mar 2017 | B2 |
9844965 | Lemay | Dec 2017 | B1 |
10232663 | Lemay et al. | Mar 2019 | B2 |
10618345 | Lemay et al. | Apr 2020 | B2 |
20030077563 | Farmer | Apr 2003 | A1 |
20050175390 | Wehmeyer | Aug 2005 | A1 |
20070082829 | Smets | Apr 2007 | A1 |
20070286971 | Cooper | Dec 2007 | A1 |
20100226708 | Bogal | Sep 2010 | A1 |
20100275813 | Kurihara et al. | Nov 2010 | A1 |
20110212421 | Schwendimann et al. | Sep 2011 | A1 |
20120328356 | Ishii | Dec 2012 | A1 |
20130177703 | Clayton et al. | Jul 2013 | A1 |
20130309650 | Carney | Nov 2013 | A1 |
20150224814 | Bouchard et al. | Aug 2015 | A1 |
20160096397 | Wakefield | Apr 2016 | A1 |
20160250886 | Albenda | Sep 2016 | A1 |
20180134068 | Lemay et al. | May 2018 | A1 |
20190275829 | Lemay et al. | Sep 2019 | A1 |
20200230999 | Lemay et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2249172 | Mar 1997 | CN |
2878068 | Mar 2007 | CN |
201702998 | Jan 2011 | CN |
201728919 | Feb 2011 | CN |
202319508 | Jul 2012 | CN |
105856895 | Aug 2016 | CN |
2581422 | Apr 2013 | EP |
2878069 | Mar 2007 | GN |
H08224973 | Sep 1996 | JP |
H08244397 | Sep 1996 | JP |
2014113800 | Jun 2014 | JP |
2016144933 | Aug 2016 | JP |
Entry |
---|
[No Author Listed] EcoBook—reusable, biodegradable notebook, The first ever eco-friendly, reusable, biodegradable notebook. Available at https://www.indiegogo.com/projects/ecobook-reusable-biodegradable-notebook#/ on Sep. 16, 2020. |
[No Author Listed] Esquoia. Available at https://esquoia.com/ on Sep. 16, 2020. |
Novak, I., “Esquoia Reusable Notebook.” Jul. 23, 2014. Retrieved from the Internet under <https://www.youtube.com/watch?v=2BrvXE2AtZk> on Sep. 16, 2020. |
Sparegrave, J., “Notebook review: The erasable, reusable Ecobook, a great idea to brainstorm.” Feb. 28, 2016. Retrieved from the Internet under <https://www.youtube.com/watch?v=w1TklMvhqal> on Sep. 16, 2020. |
Campbell at al, “Demonstration of Thermodynamics and Kinetics Using FriXion Erasable Pens”, J. Chem. Educ., 2012, 89 (4), pp. 526-528, Feb. 10, 2012[retrieved online Mar. 1, 2018]. |
Extended European Search Report for Application No. 17870191.8, dated Jun. 26, 2020 (12 pages). |
“Polyart: The Extraordinary Synthetic Paper”, Oct. 19, 2013 [retrieved online Mar. 1, 2018]. |
International Searching Authority, International Search Report—International Application No. PCT/US17/61359, dated Jan. 30, 2018 together with the Written Opinion of the International Searching Authority, 14 pages. |
“The Science Behind FriXion Erasable Pens”, Aug. 24, 2016 [retrieved online Sep. 10, 2018]. |
Number | Date | Country | |
---|---|---|---|
20200276857 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62421335 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16839839 | Apr 2020 | US |
Child | 16876717 | US | |
Parent | 16354711 | Mar 2019 | US |
Child | 16839839 | US | |
Parent | 15811360 | Nov 2017 | US |
Child | 16354711 | US |