This application is related to U.S. Ser. No. 60/391,528, filed Jun. 25, 2002, entitled “A Moisture-Proof Resealable, non-Cylindrical Container for Consumer Packages”; is also related to U.S. Ser. No. 09/876,381, filed Jun. 1, 2001, now U.S. Pat. No. 6,705,463, issued Mar. 4, 2004, entitled “Flip Top golf Ball Container Assembly Provided with Moisture Barrier Properties” and is also related to U.S. Ser. No. 09/386,702, filed Aug. 31, 1999, now U.S. Pat. No. 6,769,558, issued Aug. 3, 2004, entitled “A Leak-Proof Container and Cap Assembly.
The present invention relates to a moisture-proof plastic resealable, non-cylindrical container for consumer packaging including candy, tobacco products (e.g. cigarettes) and pharmaceutical products (e.g. pills):
Cylindrical containers are described in the following patents as being “leak-proof.” For example, cylindrical leak-proof containers are disclosed in U.S. Pat. Nos. 4,783,056, 4,812,116, RE 37,676 and U.S. Pat. No. 6,303,064. The disclosure of the processes of producing injection molded plastic containers and sealing them are incorporated by reference herein.
Co-pending U.S. application Ser. No. 09/386,702, filed Aug. 31, 1999, now U.S. Pat. No. 6,769,558, issued Aug. 3, 2004, and assigned to the same assignee as the present application, discloses a leakproof, resealable cylindrical container and cap assembly, which comprises a cap and container attached by a hinge. The cylindrical container has an upper portion and an outer surface, and at the upper portion, the container has a rim. The cap has a circular base portion with an outer periphery and a cylindrical tubular skirt extending perpendicularly and outwardly around said outer periphery of the base; the skirt has an inner wall, which includes at least one recess. The cylindrical cap and container assembly, when in the closed position, form a leakproof, air tight seal. The cap and container may be integrally molded of plastic, forming a hinge there between.
The present invention relates to a moisture proof, resealable non-cylindrical container and lid assembly. The term “resealable” means that the closure can be closed at least once after the container is opened for the first time. Preferably, the closure can be opened and closed additional times after the initial opening.
In another embodiment, the non-cylindrical cap and container assembly, in a closed position, forms a moisture proof seal. The term “moisture proof” refers to a rate of ingress of moisture into a scaled container of about 500 pg/day or less determined by the test method of the example.
Referring now to
The container may also have a flange 24 projecting radially outwardly from the outer surface 25 of the container 20. One or more hinges 40 arc attached to the container flange 24 or, to another part of the container. The hinge 40 also has a recess 42 that functions as a bending point during the opening and closing of the container. The hinge 40 has two elements, 40A and 40B, respectively, formed on either side of the recess. One element 40A is attached to the flange 24 of the container 20 and the second element 40B is attached to the cap 30.
As illustrated in
The container is sized to hold one or more items. in one embodiment, the container is used to hold candy such gum, mints or chocolate. In another embodiment, the container is used to hold a pharmaceutical product such as pills or glucose test strips. In a further embodiment, the container is used to hold tobacco products such as cigarettes. In one specific example, the container is similarly sized as the present cigarette packages. In yet another embodiment, the container is sized to hold electronic products such as hard drives or circuit boards. In another embodiment, the container is used to hold coffee samples such as regular or instant coffee.
Suitable material for assembly 10 includes plastic (e,g, thermoplastics such as polypropylene and polyethylene). In one embodiment, the cap 30 and container 20 may be integrally molded of the plastic to form one or more hinges 40 therebetween. In one embodiment, the cap 30 and container 20 may be produced in a molding process and, in another embodiment, may be molded in accordance with the mold similar to that disclosed in U.S. Pat. Nos. 4,783,056 and 4,812,116, respectively or, in another embodiment, may be produced in accordance with U.S. Pat. No. 5,723,085 or 6,303,064. The disclosure of these patents are incorporated by reference herein.
Turning to
In another embodiment, the thumb tab 36 has a length from about 0.125 inches to about 0.325 inches, preferably 0.235 inches, measured from the outside perimeter of the cap to the end of the tab.
The container 12 may be integrally connected to the cap 14 by means of a tab or flange 16. Cap 14 has a base 85, and a skirt 87 extending therefrom. Extending perpendicular to the skirt 87 is a thumb tab 88 for facilitating the opening and closing of the container. Ridge 74 is positioned on the interior 70 of the base 85, and extends perpendicularly therefrom. The outer wall 77 of the ridge 74 and the wall surfaces 87 of the cap rim define a gap 81 into which rim 63 is fitted to form a moisture-proof seal when the cap is in the closed position. An end surface 79 of the ridge 74 interconnects the inner edge 75 with the outer edge 77.
The ridge 74, the gap 81 and the skirt 87 combine to form an annular region for interlocking with the rim 63 on the container 12. The rim 63 is adapted to sealingly fit within the gap XI formed between the seal 74 and the outer cap rim. The top surface 76 forms a smooth transition surface to further guide the seal 74 around the container wall. In another embodiment, seal 74 can be proportionally smaller than shown in
In one embodiment, to insure that the moisture which may enters the container assembly is absorbed so it does not adversely affect the item within the container, a disc (e.g. puck), sleeve, or other shapes, either conforms to a part of the container or is placed within the container. U.S. Pat. No. 5,911,937 discloses a process and resulting structure for producing a desiccant insert. The method of making the desiccant insert is incorporated by reference herein as an embodiment of one method of making the desiccant insert. In addition, U.S. Pat. Nos. 5,911,937, 5,911,937, 6,214,255, 6,130,263, 6,080,350 and 6,174,952, 6,124,006, 6,221,446 and U.S. Ser. No. 09/504,029, filed Feb. 14, 2000, discloses various structures and positions in the container for the desiccant insert including a plug and a liner in the container. In one embodiment, the outer surface of the upper housing may be made of a sufficiently water impermeable plastic (e.g. PP or PE) and at least a portion of the inner surface may be molded with a desiccant plastic, such as the desiccant plastic formulations disclosed all of which are incorporated herein by reference. These structures and positions are also incorporated by reference herein as embodiments of various structures and positions of the desiccant insert.
In another embodiment, a suitable puck is constructed as follows: (a) 35% Polypropylene (Aristech manufacturer); (b) 5% Polyethylene Glycol (Dow manufacturer “E4500”); and (c) 60% Molecular Sieve (Elf AtoChem manufacturer “MS4A”). The above percentages are on a weight/weight basis. The components are blended and extruded into pellets. The pellets are injection molded into the desiccant puck. All sample components are in the solid phase. The total weight of the molded puck can be approximately 4.5 grams. In another embodiment, a desiccant may be blended with a thermoplastic material to form a suitable shape.
In a further embodiment in the area of tobacco products, the rigid flip-top container can be composed of an outer surface of the container of a sufficiently water impermeable plastic (e.g. PP or PE) and at least a portion of the inner surface may be molded with one or more of the following: a) an aroma releasing film (e.g. menthol, mint and/or other desirable aroma or fragrant components); b) an absorbing component to preserve the tobacco; and/or c) a releasing component. U.S. Pat. Nos. 5,911,937, 5,911,937, 6,214,255, 6,130,263, 6,080,350 and 6,174,952, 6,124,006, 6,221,446 and U.S. Ser. No. 09/504,029, filed Feb. 14, 2000, discloses various structures and positions in the container for the liner in the container. The method of making the liner is incorporated by reference herein as an embodiment of one method of making the liner.
The moisture ingress through the flip-top seal of the container of the present invention is determined over a fifty (50) day period. A total of six (6) containers are used for the study. Two containers, referred to as CONTROL A and Control B, do not contain desiccant. Four other containers, referred to as Samples C, D, E, F, have 2.0 grams of loose molecular sieve (MS) powder placed inside, plus or minus 0.25 grams. The dimensions of the containers are approximately 1.8″ in diameter×5.3″ tall. The test method can be described as follows: (a) placing two grams plus or minus 0.25 grams of molecular sieve (“MS”) into four (4) containers 1.8″ in diameter×5.3″ tall and recording the weight; (b) recording the weight of two of the same containers which do not contain any MS material, which containers are maintained as controls; (c) closing the containers by applying, in a singular motion, a downward pressure upon the container lids or thumb tabs until the rim portions, adjacent to the thumb tabs, contact the inside that part of the caps also adjacent to the thumb tabs; (d) weighing the six (6) containers and recording their respective weights; (e) placing the closed containers in an environmental chamber maintained at conditions of 80% relative humidity and 72° F. (f) weighing the containers on a daily basis for fifty (50) days, recording the weights of the respective containers, and returning them to the chamber; (g) subtracting the weights recorded in steps (a) and (b) from the current day weight of the respective containers to calculate the moisture ingress of the container in units of micrograms of water; and (h) determining the moisture ingress through the seal by discounting the moisture ingress through the vial, according to the following methodology, calculated on a daily basis:
A relative humidity transducer is mounted in the environmental chamber. The transducer measures the relative humidity inside the chamber. The transducer is a capacitive type, composed of a thin polymer lilm, with a 0–100% relative humidity operating range, accuracy +−3% RH from 10–90% at (−20–40° C.), resolution: >0.04% between (25.60% KH).
Results
The data collected shows that the average moisture ingress through the flip-top seal is 318 μg per day over the test period. The rate of moisture ingress is relatively constant over the test period, as shown by the plot in
Number | Name | Date | Kind |
---|---|---|---|
3346099 | Thomas et al. | Oct 1967 | A |
5114003 | Jackisch et al. | May 1992 | A |
5133470 | Abrams et al. | Jul 1992 | A |
5139165 | Hara | Aug 1992 | A |
5269430 | Schlaupitz et al. | Dec 1993 | A |
5667094 | Rapchak et al. | Sep 1997 | A |
5788064 | Sacherer et al. | Aug 1998 | A |
5875891 | Snell | Mar 1999 | A |
6398067 | Belfance et al. | Jun 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040065669 A1 | Apr 2004 | US |