Moisture-resistant eye wear

Information

  • Patent Grant
  • 10613355
  • Patent Number
    10,613,355
  • Date Filed
    Thursday, May 9, 2013
    11 years ago
  • Date Issued
    Tuesday, April 7, 2020
    4 years ago
Abstract
Eyewear including an optical functional member, control electronics, and a sealed electrical connective element connecting the electronics to the optical functional member. The connective element can directly connect the electronics to the optical functional member, or can connect through an intermediate contact, e.g., a plug-and-receptacle. The connective element can be routed from the electronics, around a rimlock of the eyewear to the optical functional member. The connective element can be a conductive compressible member, such as conductive rubber. In some embodiments, the connective element can be a multiconductor cable.
Description
BACKGROUND

The present subject matter relates to various types of eyewear including electronic functional members, including, for example, electronic focusing eyeglasses, electro-active eyeglasses, electronic eyewear providing 3D capabilities, etc.


Unfortunately, it has been found that in some environments, particularly those having high humidity or causing the wearer to sweat, commercially available electronic eyewear and frames may suffer from shorting of electronic connections and thus impede or cause the electronic application used with the eyewear to fail.


Thus there is a need for a solution to allow for electronic eyewear and frames to be even more robust in all environments including those whereby there is an abundance of moisture present, one whereby there are fewer electrical contact points exposed to the environment, and/or one that involved fewer moving and/or open and shut electrical connections.


SUMMARY

The technology includes eyewear having an optical functional member, an electronics module, and at least one sealed conductive element. The electronics module can include electronics for controlling the optical functional member. The sealed electrical connective element connects the electronics of the electronics module to the optical functional member. The optical functional member can include an electrical connector, and the connective element can directly connect the electronics of a sealed electronics module to the electrical connector of the optical functional member.


The present subject matter may be applied, by way of example only, in and/or with electronic focusing eyeglasses, electro-active eyeglasses, fluid lenses being activated by way of an electronic actuator, mechanical or membrane lenses being activated by way of electronics, electro-chromic lenses, electronic fast tint changing liquid crystal lenses, lenses whose tint can be altered electronically, lenses that by way of an electrical charge can resist or reduce the attraction of dust particles, lenses or eyeglass frames housing or having an electronic display affixed thereto, electronic eyewear providing virtual reality, electronic eyewear providing 3D capabilities, electronic eyewear providing gaming, and electronic eyewear providing augmented reality.


In some embodiments, the eyewear can include an intermediate electrical contact. In those embodiments, the optical functional member can include an electrical connector, and the connective element can connects the electronics of the electronics module to the electrical connector(s) of the optical functional member through the intermediate electrical contact. The intermediate electrical contact can be a plug-and-receptacle electrical contact. In some embodiments, the intermediate electrical contact is located at one of: a rim of the eyewear, the rear ⅓ of the temple, the middle of the temple, the forward ⅓ of the temple, the rim lock or hinge, of the eyewear, a surface of the optical functional member, a frame front of the eyewear, an electronic display, an electronic controller, and between the rim and the lens of the eyewear.


In some embodiments, the eyewear can include a temple and a rimlock. In those embodiments, the electronics module can be located in the temple, and the connective element can be routed from the electronics module through the rimlock to the optical functional member. In some embodiments, the rimlock includes an upper rimlock and a lower rimlock, and the connective element is routed between the upper rimlock and the lower rimlock. The rimlock can include upper rimlock and a lower rimlock, and the connective element can form a layer between the upper rimlock and the lower rimlock. The layer can be insulating. In some embodiments, the connective element can be a conductive compressible member that can be conductive rubber. In some embodiments, the connective element comprises a multi-conductor cable.


The technology includes an eyewear frame that includes an electronics module and at least one conductive element. The electronics module includes electronics for controlling an optical functional member. The sealed electrical connective element(s) can connect the electronics of the electronics module at a first end of the connective element, and can connect to an optical functional element at a second end of the connective element. The sealed electrical connective element can connect one electrical module to another electrical module or to a plurality of different electrical modules. In some embodiments, the optical functional member includes at least one electrical connector, and the connective element can directly connect the electronics of a sealed electronics module to the electrical connector of the optical functional member.


In some embodiments, the frame includes at least one intermediate electrical contact, and the optical functional member comprises at least one electrical connector. In such embodiments, the connective element can connect the electronics of the electronics module to the electrical connector of the optical functional member through the intermediate electrical contact. In some such embodiments, the intermediate electrical contact is a plug-and-receptacle.


The intermediate electrical contact is located at one of: a rim of the eyewear, the rear ⅓ of the temple, the middle of the temple, the forward ⅓ of the temple, the rim lock or hinge, of the eyewear, a surface of the optical functional member, a frame front of the eyewear, an electronic display, an electronic controller, and between the rim and the lens of the eyewear.


In some embodiments, the eyewear frame can include a temple and a rimlock. In such embodiments the electronics module can be located in the temple, and the connective element can be routed from the electronics module through the rimlock to the optical functional member. In some such embodiments, the rimlock can include an upper rimlock and a lower rimlock, and the connective element can be routed between the upper rimlock and the lower rimlock. In some such embodiments, the rimlock can include an upper rimlock and a lower rimlock, and the connective element can form a layer between the upper rimlock and the lower rimlock. The layer can be an electrically insulating layer. The connective element can be a conductive compressible member, which can be conductive rubber. The connective element can be a multi-conductor cable.


The technology includes eyewear including at least one electrical conductor and at least one non-electrically-conductive grease coating a portion of the electrical conductor. In such embodiments, the grease can be silicone grease.


The disclosed technology includes methods of assembling eyewear. Some such methods include coating a portion of at least one electrical conductor of the eyewear with non-electrically-conductive grease, which can be silicone grease. In some such methods, the grease can be applied between surfaces of a conducting portion of a rimlock of the eyewear and an insulating layer of the eyewear.


The disclosed technology includes additional methods of assembling eyewear. Such methods include affixing a portion of eyewire to a rimlock to form a first stage assembly, wherein each surface point of the first stage assembly comprises an single electrical node; bisecting the first stage assembly, forming an upper rimlock with upper eyewire and a lower rimlock with lower eyewire; and coating the bisected first stage assembly with an electrically-insulating coating. Some such methods include removing the coating from at least one area of electrical connection.


The technology also includes eyewear including a lens comprising electro-active material, and in some cases a gasket. The electro-active lens, can be characterized by a lens edge, and can include at least one electrical contact on the lens edge. The gasket can be configured to fit around the lens edge to be substantially resistant to the ingress of liquid between the gasket and the lens edge. The gasket can have formed therein an aperture to corresponding to the electrical contact. In such embodiments, the electrical contact surface can be a conductive compliant material fitted to the aperture to substantially resist the ingress of liquid between the gasket and the electrical contact. In other embodiments the connection from the connector to the lens or optical functional member can be sealed by way of example only, an adhesive, caulk, or another material that forms a water resistant barrier.


In some embodiments, an electrically conductive caulk can be used, which is also moisture resistant and/or moisture proof.


In some embodiments, the technology can include an eyewear temple assembly that includes a temple body and an electronics module. The temple body can form a cavity therein, and can be configured to be removeably attachable to eyewear. The electronics module can be housed in the cavity, and can be operable to perform a function other than control of electro-active optics. In such embodiments, the temple assembly is configured to maintain the electronics module at least one of moisture resistant, salt resistant, and moisture proof.


In some such embodiments, the electronics module includes at least one of: a transmitter operable to transmit a signal in response a user input; a sensor operable to sense at least one of: the environment of the electronics module, and a condition of the electronics module; and an output module operable to output at least one of: an acoustic signal, a visible light signal, and a vibration signal. In some such embodiments containing a sensor, the electronics module includes s at least one of a temperature sensor, a position sensor, an electromagnetic radiation sensor, GPS, and a pedometer.


In some embodiments of the temple assembly, the cavity can be formed with an opening at a surface of the temple body, and a cover of the eyewear temple can seal the opening, in a fashion that electronics module is maintained as at least one of moisture resistant, salt resistant, and moisture proof at least in part by the cover. In some such embodiments, the cavity can be formed with only one opening, and the one opening is at a front surface of the temple body. In other such embodiments, the cavity can be formed with only one opening, and the one opening is at a wearer-facing surface of the temple body. In some embodiments of the temple assembly, the electronics module can be is releasably secured in the cavity, and the electronics module itself can be at least one of moisture resistant, salt resistant, and moisture proof.


In some embodiments, a sealed electronic module may house one or more of an electronic sensor, manual controls and/or automatic controls. In embodiments, eyewear may be configured to be placed in one or more of an automatic mode, a manual on mode, and/or a manual off mode. In embodiments, one electronic module may be provided to electrically power a pair of lenses, or two such electronic modules can be provided. In embodiments, the electronic modules may be sealed such that they are water resistant or water proof.


Aspects of the invention disclosed herein may be used to address pressing needs of making electronic eyewear more moisture resistant and more robust. This may allow more reliable performance from the electronic eyewear and, thus, happier users. Electronic eyewear, or electronic eyeglasses, may be understood as typically including electronic frames that provide an electrical connection to, by way of example only, electronic focusing eyeglasses, electro-active eyeglasses, fluid lenses being activated by way of an electronic actuator, mechanical or membrane lenses being activated by way of electronics, electro-chromic lenses, electronic fast tint changing liquid crystal lenses, lenses whose tint can be altered electronically, lenses that by way of an electrical charge can resist or reduce the attraction of dust particles, lenses or eyeglass frames housing or having an electronic display affixed thereto, electronic eyewear providing virtual reality, electronic eyewear providing 3D capabilities, electronic eyewear providing gaming, and electronic eyewear providing augmented reality.


Additional features, advantages, and embodiments of the invention may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention claimed. The detailed description and the specific examples, however, indicate only preferred embodiments of the invention. Various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention, are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the detailed description serve to explain the principles of the invention. No attempt is made to show structural details of the invention in more detail than may be necessary for a fundamental understanding of the invention and various ways in which it may be practiced. In the drawings:



FIG. 1 illustrates electro-active spectacles in accordance with an aspect of the present technology.



FIG. 2 illustrates a side view of the electro-active spectacles depicted in FIG. 1 in accordance with an aspect of the present technology.



FIG. 3 illustrates an exemplary configuration of electrical components of the electro-active spectacles in accordance with an aspect of the present technology.



FIG. 4 illustrates an exemplary configuration of electrical connectivity between a battery and an electronic module depicted in FIG. 3 in accordance with an aspect of the present technology.



FIG. 5 illustrates an electronic module in accordance with an aspect of the present technology.



FIG. 6 illustrates an electro-active lens in accordance with an aspect of the present technology.



FIG. 7 illustrates a portion of a frame in accordance with an aspect of the present technology.



FIG. 8 illustrates an exploded view of the frame depicted in FIG. 7 in accordance with an aspect of the present technology.



FIG. 9 illustrates a portion of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 10 illustrates a front a view of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 11 illustrates a portion of a right temple of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 12-A and FIG. 12-B illustrate a gasket of the present technology.



FIG. 13 illustrates a representative block diagram of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 14 illustrates a portion of a right temple of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 15 illustrates a portion of a right temple of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 16 illustrates an electro-active frame in accordance with an aspect of the present technology.



FIG. 17 illustrates electro-active spectacles in accordance with an aspect of the present technology.



FIG. 18 illustrates electro-active spectacles in accordance with an aspect of the present technology employing plug connections among electrical elements.



FIG. 19 illustrates a portion of a right temple of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 20 illustrates a portion of a right temple of electro-active spectacles in accordance with an aspect of the present technology.



FIG. 21 illustrates a temple assembly in accordance with aspects of the present technology.



FIG. 22 illustrates an electro-active lens assembly according to an aspect of the present technology.



FIGS. 23A-23B illustrate portions of a temple assembly of electro-active eyewear in accordance with an aspect of the present technology.



FIGS. 24A-24C illustrate portions of a temple assembly of electro-active eyewear in accordance with an aspect of the present technology.



FIG. 25 illustrates steps in an exemplary method of forming eyewear with electrical connections according to an aspect of the present technology.





DETAILED DESCRIPTION

It is understood that the invention is not limited to the particular methodology, protocols, etc., described herein, as these may vary as the skilled artisan will recognize. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the invention. It also is to be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a lens” is a reference to one or more lenses and equivalents thereof known to those skilled in the art.


Unless defined otherwise, all technical terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which the invention pertains. The embodiments of the invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the invention. The examples used herein are intended merely to facilitate an understanding of ways in which the invention may be practiced and to further enable those of skill in the art to practice the embodiments of the invention. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the invention, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals reference similar parts throughout the several views of the drawings.


While enabling embodiments of the present technology are disclosed in the context of electro-active eyeglasses having at least one electro-active lens as an optical functional member, the technology can find application where the optical functional member is other than an electro-active lens, e.g., in fluid lenses being activated by way of an electronic actuator, mechanical or membrane lenses being activated by way of electronics, electro-chromic lenses, electronic fast tint changing liquid crystal lenses, thermo-chromic lenses, lenses that by way of an electrical charge can resist or reduce the attraction of dust particles, lenses or eyeglass frames housing or having an electronic display affixed thereto, electronic eyewear providing virtual reality, electronic eyewear providing 3-D capabilities, electronic eyewear providing gaming, and electronic eyewear providing augmented reality.



FIG. 1 illustrates electro-active spectacles or eyeglasses 100 in accordance with an aspect of the present technology. The electro-active spectacles 100 shown in FIG. 1 are fully rimmed eyeglasses comprising left and right temples and a frame front (the frame front can comprise left and right eyewires or rims, and a bridge, as will be appreciated by one skilled in the pertinent art). Electro-active spectacles and frames of the present technology can be fully rimmed, partially rimmed, or rimless. The electro-active spectacles 100 can include a frame 102, a first electro-active lens 104, and a second electro-active lens 106. The first and second electro-active lenses 104 and 106 can each be an electro-active lens as described in U.S. patent application Ser. No. 12/408,973 (hereinafter the '973 application), filed Mar. 23, 2009, entitled “Electro-Active Diffractive Lens and Method for Making the Same,” which is hereby incorporated by reference in its entirety. In general, the first and second electro-active lenses 104 and 106 can be any lens or optic capable of changing, varying or tuning the optical power they each provide with the application of electricity.


The right temple portion can be considered to be a first temple portion that is positioned adjacent to the first electro-active lens 104. The left temple portion can be considered to be a second temple portion that is positioned adjacent to the second electro-active lens 106. The bridge can be considered to be part of the frame or to be a separate portion of the electro-active spectacles 100 that connects, joins or supports the first and second electro-active lenses 104 and 106. The electro-active spectacles 100 can include one or more power sources for powering the first and second electro-active lenses 104 and 106. As an example, each power source can include one or more batteries (e.g., conventional rechargeable batteries and/or solar batteries). The electro-active spectacles 100 can also include electronics that can govern operation of the electro-active lenses 104 and 106. The electronics can comprise one or more control units (e.g., a control unit matched to each electro-active lens) to determine when to activate and when to deactivate the electro-active lenses 104 and 106. The one or more power sources and the electronics of the electro-active spectacles 100 can be housed or contained within, or on, any portion of the frame 102. The one or more power sources and the one or more control units of the electro-active spectacles 100 can be grouped together or distributed or dispersed in any manner within, throughout, or on the frame 102.


The operation of the electro-active lenses 104 and 106 can be synchronized. That is, the one or more control units housed in the frame 102 can coordinate the activation and deactivation of the electro-active lenses 104 and 106 such that the electro-active lenses 104 and 106 are activated or deactivated at substantially the same time.


The one or more control units housed in the frame 102 can automatically operate (e.g., activate and deactivate) the electro-active lenses 104 and 106. As an example, the electro-active lenses 104 and 106 can be activated or deactivated based on a user's head tilt as sensed by the one or more control units. The one or more control units can also enable a user to interact with the electro-active lenses 102 and 104. As an example, a user can manually activate or deactivate the electro-active lenses 104 and 106, override automatic operation of the electro-active lenses 104 and 106, place the electro-active spectacles 100 into a standby mode (in which the electro-active lenses 104 and 106 are neither automatically or manually activated or deactivated), or power off the electro-active spectacles 100.


The electronics of the electro-active spectacles 100 can include a processor, memory, a power source (e.g., a battery), a gyroscope, and an accelerometer. As previously mentioned, these components can be grouped together or can be distributed within different portions of the frame 102. As an example, all or a portion of these components can be grouped together to form a self-contained electronic module. The electro-active spectacles 100 can comprise a single electronic module that governs synchronized operation of both the first and second electro-active lenses 104 and 106. Alternatively, operation of the first electro-active lens 104 can be governed by a first electronic module and operation of the second electro-active lens 106 can be governed by a second electronic module. Under this scenario, the first and second electronic modules can communicate using one or modes of electrical connectivity (e.g., wire(s) embedded within a portion of the frame, conductive portion(s) of the frame, conductive metal layer(s) or core(s) encapsulated by non-conductive material, conductive layer(s) of the electro-active lens(es) 104 and 106, optical link(s), wireless radio frequency or magnetic field communication).



FIG. 2 illustrates a side view of the electro-active spectacles 100 depicted in FIG. 1. As shown in FIG. 2, the electro-active spectacles 100 can comprise an electronic module (or control unit) 202. As described above, the electronic module 202 can include various electronics components. The electronic module 202 can be positioned near the front temple of the frame 102. The electronic module 202 can be positioned within the frame 102 (e.g., in an area or cavity of the frame 102) and can be removable and replaceable. Alternatively, the electronic module can be built into the frame 102 and form a part of the frame 102. The electronic module 202 can be located on an outer portion of a temple of the frame 102 (further from a wearer) or can be located on an inner portion of the temple of the frame 102 (closer to the wearer). The electronic module 202 can be positioned on a left temple or a right temple of the frame 102 (i.e., on either side of the frame 102). The electronic module 202, when inserted into the temple of the frame 102, can be flush with the other portions of the frame 102. All or a portion of the electronic components used to operate the electro-active lens 104, 106 can be contained within the electronic module 202.


The electronic module 202 can also control operation (or at least ensure synchronized operation) of the electro-active lens 104, 106. Electrical connections between the electronic module 202 and one or more of the electro-active lenses 104 and 106 can be routed through the frame 102 and/or the electro-active lenses 104 and 106 as will be described in more detail below. According to an aspect of the present technology, connectivity between the electronic module 202 and one or more of the electro-active lenses 104 and 106 can be accomplished by using a single conductive wire.


In some embodiments of the present technology, a first electrical connection (e.g., comprising one or more conductive links or wires) can be used to provide connectivity between one or more power sources of the electro-active spectacles 100 and one or more electronic modules 202 and a second electrical connection (e.g., comprising one or more conductive links or wires) can be used to provide connectivity between the one or more electronic modules 202 and the one or more electro-active lenses (e.g., the electro-active lenses 104 and 106). For example, a battery positioned within the frame 102 can be coupled to an electronic module 202 also positioned within the frame 102 using a first conductive link. A second, distinct conductive link (e.g., electrically isolated from the first conductive link) can be used to couple the electronic module 202 to the electro-active lenses 104 and 106.


In some embodiments of the present technology, the same electrical connection (e.g., comprising one or more electrical wires) can be used to couple the one or more power sources of the electro-active spectacles 100, the one or more electronic modules 202 and the electro-active lenses 104 and 106 as will be appreciated by one skilled in the pertinent art. This can enable a power source to be positioned on one side of the frame 102 (e.g., in a first temple) and an electronic module 202 to be positioned on the other side of the frame 102 (e.g., in a second temple) while using the same conductive link to simultaneously provide power to the electronic module 202 and controlling signals from the electronic module 202 to the electro-active lenses 104 and 106. As a result, the number of conductive links (e.g., embedded wires) positioned within the frame 102 can be minimized.



FIG. 3 illustrates an exemplary configuration of electrical components of the electro-active spectacles 100. Specifically, FIG. 3 shows a battery 302 located near the end of the frame 102 of the electro-active spectacles 100. A portion of the end of the frame 102 is removed for illustration purposes only. The battery 302 can be a rechargeable battery and can provide power to the electrical components located within the electronic module 202. The battery 302 can provide power to one or more electronic modules of the present technology.



FIG. 4 illustrates an exemplary configuration of electrical connectivity between the battery 302 depicted in FIG. 3 and the electronic module 202. A portion of the frame 102 is removed for illustration purposes only. As shown in FIG. 4, conducting wires 402 can couple the battery 302 to the electronic module 202. The conducting wires 402 can be positioned within the frame 102 (e.g., embedded within the frame 102) of the electro-active spectacles 100. Conducting wires 402 are insulated and capable of being heated and bent while retaining conductor and insulator integrity in order to adjust the shape of temple. The conducting wires can be a cable or a flexible cable



FIG. 5 illustrates the electronic module 202 in accordance with an aspect of the present technology. The electronic module 202 can contain all or a portion of the electronic components that govern operation of one or more electro-active lenses including a power source (e.g., a rechargeable battery or a solar battery). As shown in FIG. 5, the electronic module 202 can comprise a housing 502, first contacts 504 and second contacts 506. The housing 502 can contain the electrical components of the electronic module 202—e.g., a processor, memory, power source, and/or a gyroscope/accelerometer.


The first contacts 504 can provide electrical connectivity between the electrical components of the housing 502 and other portions of one or more associated electro-active lens (e.g., the first electro-active lens 104). The second contacts 506 can provide electrical connectivity to a memory of the electronic module 506. The second contacts 506 can be used, for example, to program or reprogram the electronic module 202 directly. Additional contacts (not illustrated for simplicity), or the first and/or second contacts 504 and 506, can also provide connectivity to a remote battery (e.g., the battery 302 depicted in FIG. 3 and FIG. 4) or to another electronic module or control unit. Alternative or additional contacts (e.g., an antenna) can allow wireless programming of the electronic module 202.


In general, the electronic module 202 can be positioned anywhere on the frame 102 (e.g., in any portion of the frame 102 having an area or cavity designed to accept insertion of the electronic module 202). The electronic module 202, as shown in FIG. 2, can be located near the front temple of a wide variety of frame types and styles. Specifically, the electronic module 202 can be located within a portion of a frame that is fully rimmed, partially rimmed, or rimless.


The electronic module 202 can be removed and replaced with a new module or can be reprogrammed. As an example, the electronic module 202 can be initially programmed with a first mode of operation or a first prescription for a user. At a later time, the electronic module 202 can be removed and reprogrammed using the second contacts 506 with a second mode of operation or a second prescription for a user.



FIG. 6 illustrates an electro-active lens 600 in accordance with an aspect of the present technology. The electro-active lens 600 can represent one of the electro-active lenses 104 or 106. The electro-active lens 600 is depicted as a finished lens in FIG. 6. That is, the electro-active lens 600 has been edged and grooved to fit into an eyeglass frame.


As shown in FIG. 6, the electro-active lens 600 can comprise a first substrate (e.g., a top substrate) 602 and a second substrate (e.g., a bottom substrate) 604. During an edging process, a groove 606 can be formed (e.g., near or between the interface of the first and second substrates 602 and 604). The groove 606 can be used to position and stabilize the electro-active lens 600 within an eyeglass frame as is done with conventional lenses.


The electro-active lens 600 can comprise a first electrical lead or connector 608 and a second electrical lead or connector 610. The first and second electrical leads 608 and 610 can provide power (e.g., a drive signal or a control signal) to the electro-active region of the electro-active lens 600. In particular, the first and second electrical leads 608 and 610 can link or connect the electro-active region of the electro-active lens 600 to a power source and electronic components that can be housed within an associated eyeglass frame (e.g., the electronic module/control unit 202 depicted in FIG. 5). The first and second electrical leads 608 and 610 can comprise any conductive material including, but not limited to, silver ink. The first and second electrical leads 608 and 610 can be painted, applied or otherwise deposited onto the transparent conductive layers placed on the substrates 602 and 604.


To ensure or improve connectivity, after edging and grooving the electro-active lens 600, a small quantity of conductive material, paint or paste can be placed on top of the first and second electrical leads 608 and 610. Specifically, as shown in FIG. 6, a first conductive material 612 can be placed in the groove 606 on top of the first electrical lead 608 and a second conductive material 614 can be placed in the groove 604 on top of the second electrical lead 610. The first and second conductive materials 612 and 614 can be substantially transparent and can comprise an indium tin oxide (ITO) paste or a paint containing silver particles (e.g., silver ink).



FIG. 7 illustrates a portion of a frame 700 in accordance with an aspect of the present technology. The frame 700 can provide electrical connectivity between the electro-active lenses (not depicted in FIG. 7 for simplicity) and the electrical components used to operate electro-active lenses.


The frame 700 can include an upper portion of the right eye-wire or rim 702 and a lower portion of the right eye-wire or rim 704. For a fully rimmed frame, the lower portion 704 can extend underneath an electro-active lens to a bridge 706. For a partially-rimmed frame, the lower portion 704 generally does not extend to the bridge 706.


The frame 700 can include an electronic module 202 and an area to accept an electronic module 202. A first conductor 708 can be positioned within a groove of the upper rim portion 702. A second conductor 710 can be positioned within a groove of the lower rim portion 704. The first and second conductors 708 and 710 can comprise flexible, compressible materials. When an electro-active lens, e.g., the electro-active lens 600 depicted in FIG. 6, is positioned within the frame 700, the first and second conductors 708 and 710 can be compressed to fit in the groove of the upper and lower rim portions 708 and 710, respectively, and the groove 606 of the electro-active lens 600. The first conductor 708 can be positioned to make contact with the first conductive material 612. The second conductor 710 can be positioned to make contact with the second conductive material 614.


The frame 700 can include an upper conducting member 712, a lower conducting member 714 and an insulating or isolation member 716. The upper conducting member 712, the lower conducting member 714 and the insulating member 716 can physically couple the temple of the frame 700 to the eye-wire portion (i.e., the upper and lower rim portions 702 and 704).


The upper conducting member 712 can be one link in the electrical connectivity between the electronic module 202 and the first conductor 708. The first conductor 708 can provide connectivity to the first conductive material 612 (and, as a result, connectivity to the first electrical lead 608) depicted in FIG. 6. The lower conducting member can be one link in the connectivity between the electronic module 202 and the second conductor 710. The second conductor 710 can provide connectivity to the second conductive material 614 (and, as a result, connectivity to the second electrical lead 610) depicted in FIG. 6. The insulating member 716 can ensure that the connectivity path between the electronic module 202, the upper conducting member 712 and the first conductor 708 remains insulated or electrically separated from the connectivity path between the electronic module 202, the lower conducting member 714 and the second conductor 710.


Any portion of the upper conducting member 712 and the lower conducting member 714 can provide a conductive link. As an example, the entirety of the upper and lower conducting members 712 and 714 can be conductive (e.g., made of metal and coated with a non-conductive material) or a portion of the upper and lower conducting members 712 and 714 can be conductive (e.g., an internal portion that is encapsulated by non-conductive material).



FIG. 8 illustrates an exploded view of the frame 700 depicted in FIG. 7. As shown in FIG. 8, the frame 700 can be assembled by connecting the upper conducting member 712, the insulating member 716 and the lower conducting member 714 to the upper rim portion 702 and the lower rim portion 704. The first conductor 708 and the second conductor 710 can then be positioned in the groove of the upper rim portion 702 and the lower rim portion 704, respectively. The first and second conductors 708 and 710 can be positioned in areas where they will make contact with the first conductive material 612 and the second conductive material 614, respectively.


The components illustrated in FIG. 7 and FIG. 8 (namely, the upper conducting member 712, the lower conducting member 714, the insulating member 716, the upper rim portion 702, the lower rim portion 704, the first conductor 708 and the second conductor 710) can be used to form a portion of the frame 700 as a partially-rimmed frame or a fully-rimmed frame and to provide connectivity between an electronic module of the present technology and an electro-active lens of the present technology for each type of frame (and a variety of styles therein).


For a fully-rimmed frame, both the upper rim portion 702 and the lower rim portion 704 can extend from the upper conducting member 712 and the lower conducting member 714, respectively, to the bridge 706. For a partially-rimmed frame, generally only the upper rim portion 702 extends from the upper conducting member 712 to the bridge 706 while the lower rim portion 704 does not extend to the bridge 706.


When the frame 700 is implemented as a fully-rimmed frame or a partially-rimmed, the first conductor 708 can be of any size or length. That is, the first conductor 708 can extend along any portion of the upper rim 702 to make electrical connectivity with a desired lead of the electro-active lens 104. When the frame 700 is implemented as a fully-rimmed frame, the second conductor 710 can similarly be of any size or length to make electrical connectivity with a separate or second desired lead of the electro-active lens 104. However, when the frame 700 is implemented as a partially-rimmed frame, the second conductor 710 will be of the same length or shorter than the lower rim portion 704.


Electro-active eyewear or electronic eyewear may be exposed to moisture and liquids. Such moisture may come from the natural environment (e.g., rain, snow), from the human body in the form of oils and perspiration, and from consumer products such as liquid lens cleaners and cosmetics. The ingress of such materials into and between the electronic components of the eyewear can cause damage, e.g., electrical short circuits. In particular, salt residue, e.g., left over from dried perspiration or exposure to salt water, salt spray, or salt fog, can facilitate even small amounts of moisture to form an unintended conductive path in electro-active eyewear.


For example, a rimlock such as the rimlocks shown in FIG. 7 and FIG. 8 may wick moisture into its internal surfaces. If this moisture is water, then the result may be a temporary electrical short circuit across the rimlock (e.g., between metal components 712 and 714), which can result in a hazy or non-functional lens. When the water dries, then normal operation is typically restored.


If the moisture is perspiration, then over time the accumulation of salts and oils due to repeated exposure can result in permanent electrical shorts and/or make the frame even more susceptible to other forms of moisture. Additionally, if the electrical path includes spring-loaded “pogo” pins, such as described in International Pat. App. No. PCT/US2010/020498, exposure to perspiration may corrode and bind such pins, resulting in an unreliable connection between the module and the rim lock.


Also, if the lens and physically compliant conductive materials are exposed to perspiration, then these materials can break down both physically and chemically. Specifically, the conductive primers and inks that are applied to the lens 104 to establish the electrical edge connections may be susceptible to perspiration and can break down over the course of a few weeks, resulting in a lens with high series resistance and a hazy on-state appearance.


Consider a type of rimlock which is assembled by attaching (e.g., welding, soldering, brazing) a piece of eyewire to one metal rimlock component that combines components 712 and 714 such as shown in FIG. 8). This assembly, forming a single electrical node, is then coated with an electrically-insulating color finish and lastly, the coated assembly is bisected (e.g., sawn, cut) to form the upper and lower eye-wire and rimlock portions. One drawback to this approach is that bisecting this assembly after coating exposes uncoated metal that, when exposed to moisture, may create an electrical short.


In some embodiments of the present technology, the rimlock is attached (e.g., welded, soldered, brazed) to the eye-wire (thus forming a single electrical node), bisected (e.g., sawn, but not necessarily in half, to form two separate electrical nodes), and then coated with electrically-insulating color finish. In such embodiments, there are no exposed metal surfaces from which to create a short circuit. Once the frame has been completely coated with finish, said finish can be removed only in the areas where electrical connections are required, e.g., at the very end of the rimlock where electrical connectivity to the module via pins such as pogo pins can occur). In some embodiments, areas in which electrical connection is required are temporarily coated with a removable layer before the finish coating is applied, and then the temporary coating, along with and finish coating directly over it, is removed. By limiting the surface of exposed metal, the risk of moisture-induced and liquid-induced electrical shorts can be reduced as well.


In some embodiments of the present technology, a water repellent material can be used to inhibit moisture and liquids from filling spaces between components of electro-active eyewear such as rimlock components. Electrically-insulating greases, such Dow Corning® 111 valve lubricant and sealant, can be useful in this regard. Electrically-insulating grease can be applied while the frame is being assembled. A syringe equipped with a soft plastic tip can be used for application. Within the context of the rimlock shown in FIG. 8, electrically-insulating grease can be applied to the mating surfaces between the rimlock and the plastic insulating spacer, e.g., the surfaces where upper rimlock 712 mates to insulator 716, and where lower rimlock 714 mates to insulator 716. Other cavities, holes, and spaces between parts, such as those for screws and bushings used to assemble the rimlock can be filled or coated with electrically insulating grease.



FIG. 9 illustrates a portion of electro-active spectacles 900 in accordance with an aspect of the present technology. The electro-active spectacles 900 are implemented as rimless spectacles. That is, no upper or lower rim supports the electro-active lens 104.


As shown in FIG. 9, the electro-active spectacles 900 can include an electronic module 202 and an area to accept an electronic module 202. The electronic module 202 can be electrically coupled to the electro-active lens 104 using upper conducting member 902 and lower conducting member 904 (similar to upper conducting member 712 and lower conducting member 714 depicted in FIG. 7 and FIG. 8). Both the upper and lower conducting members 902 and 904 can be isolated or insulated conductors having a protected, internal conductive routes (e.g., a conductive wire) enclosed by a nonconductive material (e.g., a plastic). Alternatively, the upper and lower conducting members 902 and 904 can entirely comprise conductive material and can be coated with non-conductive material.


The frame of the electro-active spectacles 900 can support the electro-active lens 104 using upper support member 910 and lower support member 912. As an alternative, one of the upper and lower support members 910 and 912 can be used. Both the upper and lower supporting members 910 and 912 can be positioned through holes residing in the electro-active lens 104. The frame of the electro-active spectacles 900 can also be supported by upper contact 906 and lower contact 908. Both the upper and lower contacts 906 and 908 can be positioned through holes residing in the electro-active lens 104. The upper and lower contacts 906 and 908 can be compression pin connectors having a portion that can make electrical contact with appropriate elements of the electro-active lens 104.


While simultaneously supporting the electro-active lens 104, the upper contact 906 can make electrical contact with a first electrical lead of the electro-active lens (e.g., the first electrical lead 608 depicted in FIG. 6). Similarly, the lower contact 908 can support the electro-active lens 104 while also providing electrical contact to a second electrical lead of the electro-active lens (e.g., the second electrical lead 610 depicted in FIG. 6).


Both the upper contact 906 and the upper support member 910 can form part of an arm or extension of the upper conducting member 902. The upper contact 906 and the upper support member 910 can comprise one or more conductors (e.g., a wire) insulated or contained by an insulating material (e.g., plastic). The upper contact 906 and the upper support member 910 can be positioned in front of the electro-active lens 104 (and connect through to the back of the electro-active lens 104—as shown in FIG. 9) or can be positioned behind the electro-active lens 104 (and connect through to the front of the electro-active lens 104—not shown in FIG. 9). The lower contact 908 and the lower support member 912 can be positioned in a manner similar to the upper contact 906 and the upper support member 910 pairing (and can form part of an arm or extension of the upper conducting member 904).



FIG. 10 illustrates a front a view of electro-active spectacles 1000 in accordance with an aspect of the present technology. The electro-active spectacles 1000 are implemented as partially-rimmed spectacles. Electrical connectivity between a right side of the electro-active spectacles (e.g., from a right-side portion of a frame 1002) to a left side of the electro-active spectacles (e.g., from a left-side portion of a frame 1004) can be provided in a variety of ways and is not limited to partially-rimmed designs. Electrical connectivity between the right-side portion 1002 and the left-hand portion 1004 can enable a single electronic module (e.g., the electronic module 202) located on either side to govern operation of both electro-active lenses 104 and 106. Further, this connectivity can ensure synchronized operation of the electro-active lenses 104 and 106 even if each of the electro-active lenses 104 and 106 is driven by separate electronic modules.


One or more conducting elements (e.g., conducting wires) can be embedded in a right-side upper frame or rim member 1006, a left-side upper frame or rim member 1008 and a bridge 1010 (as well as a left-side lower frame or rim member and a right-side lower frame or rim member for some frame designs). The conducting elements can be embedded and surrounded by insulating material. Embedding one or more conducting elements in the right side upper frame member 1006, the bridge 1010 and the left-side upper frame member 1008 can enable an electronic module on either side of the electro-active spectacles 1000 to control and/or synchronize operation of both electro-active lenses 104 and 106.


Rimless frames generally do not include the right-side upper frame member 1006 or the left-side upper frame member 1008. Rimless frames, however, do generally include a bridge 1010. Electrical connectively between the right-side portion 1002 and the left-hand portion 1004 of a rimless frame can be accomplished by using conductive elements incorporated into the manufacture of the electro-active lenses 104 and 106. Specifically, the bridge 1010 can electrically connect (e.g., using an embedded conductive link or a conductive link adjacent to or connected to the bridge) one or more conducting elements of the electro-active lenses 104 and 106 (e.g., using one or more ITO layers) which are themselves coupled to the right-side portion 1002 and the left-hand portion 1004, respectively, of a spectacles lens. Electrical connectively between the right-side portion 1002 and the left-hand portion 1004 of a rimless frame can also be accomplished by using conductive wires positioned within the grooves an electro-active lens (e.g., the groove 606 depicted in FIG. 6) to couple the right-side portion 1002 to the left-hand portion 1004. Portions of the groove on the top part of the electro-active lens or on the bottom part of the electro-active lens can be used to house or contain one or more conductive wires. The conductive wires positioned within such a groove can be insulated.


According to an aspect of the present technology, one or more conductive wires can be embedded in the upper rim members, the bridge and/or the lower rim members of electro-active spectacles and frames of the present technology during a mold casting process. That is, when the upper rim members, the bridge and/or the lower rim members are formed using a casting process, one or more conductive wires can be cast over when the upper rim members, the bridge and/or the lower rim members are prepared. Generally, thicker conductive wires can be used during such a process. Nylon is an example material that can be used to mold over one or more conductive wires to from the upper rim members, the bridge and/or the lower rim members.


According to an aspect of the present technology, one or more conductive wires can be embedded in the upper rim members, the bridge and/or the lower rim members of electro-active spectacles and frames of the present technology as each frame component is assembled. More specifically, any of the upper rim members, the bridge and/or the lower rim members that will be used to embed one or more conductive wires can be fabricated by two or more individual or separate pieces. For example, the upper rim members can be formed from two substantially symmetrical pieces of substantially the same shape—a front piece and a back piece which individually may appear to be a portion of the upper rim member split in half lengthwise. Prior to assembling the front and back pieces to form a complete upper rim member, one or more wires can be embedded (e.g., in a groove formed by mold or machined into the front and/or back pieces) between the front and back pieces (i.e., at the interface between the front and back pieces). The front and back pieces used to form the complete upper rim member can subsequently be combined, for example, using an adhesive.


According to an aspect of the present technology, one or more conductive wires can be embedded in the upper rim members, the bridge and/or the lower rim members of electro-active spectacles and frames of the present technology after the frame is assembled. Specifically, one or more grooves can be machined into the upper rim members, the bridge and/or the lower rim members that can be used to contain one or more conductive wires. The machined grooves can then be filled or covered with material to cosmetically hide the conductive wires. The assembled frame can then be polished to hide or mask the area in which the wires are embedded. Acetate is an example material that can be manipulated in this fashion to embed one or more conductive wires.


In FIG. 11, all of the frame and hinge components have been removed showing only parts of a frame 1100 including electronic module 1102, flexible conductors 1104 and 1106, and physically compliant conductive materials 708 and 710. In this embodiment flexible conductors 1104 and 1106 are permanently attached to electronic module 1102 and nearly all electrically conductive portions are coated or enclosed within electrically insulating materials. The only electrically conductive portion exposed is the connection between the ends of the flexible conductors 1104 and 1106 and the physically compliant conductive materials 708 and 710, which is required to make electrical connection to the lens. The benefits of this embodiment are that the conduction of electrical signals is separate (physically and electrically) from the lens mounting and temple hinge components and that nearly all of the electrically conductive surfaces are insulted from environmental moisture and other liquids. Furthermore, such a design does not require that the frame (or frame components) be constructed from conductive materials (e.g. metal), thus further reducing the risk for electrical shorts.



FIG. 11 illustrates a portion of a right side of frame 1100, such as frame portion 700 of electro-active spectacles in accordance with an aspect of the present technology. The portion of the right side of a frame 1100 depicted in FIG. 11 can be coupled to an electro-active lens (not depicted in FIG. 11 for simplicity) through first conductor 708 and second conductor 710 as described in connection with FIG. 7. An electronics module 1102, similar to electronics module 202, is shown. The electronics module 202 can be coupled to the first conductor 708 through first conductive link 1104. The electronics module 1102 can further be coupled to the second conductor 710 through a second conductive link 1106.


The connection between each of links 1104, 1106, and electronics within module 1102 can be direct and sealed at the entrance to the module, or insulated leads (themselves sealed at entrance to the module 1102) can protrude from the module (not shown). The module 1102 itself can be sealed and potted so as to inhibit undesirable effects of liquid and moisture on the electronics therein.


The first and second link conductors 1104 and 1106 can be shaped and constructed to tolerate bending of other frame members (not depicted in FIG. 11 for simplicity) when the electro-active spectacles are opened and closed. The first and second link conductors 1104 and 1106 can contain one or more conducting elements (e.g., conducting wires) and can enclose them with insulating or non-conductive material or can themselves be entirely conductive. The links 1104, 1106 can be contained in a flexible conductive cable 1108, as shown with respect to a portion 1500 of the right side of a frame in FIG. 14.


In embodiments the electronic module which is located within or on the temple of the electronic eyeglass frame comprises a flexible conductive cable, such as cable 1108, which connects the electronics within the electronic module. This flexible conductive cable can be connected directly to the electronics within the electronic module (in which case the one end of the flexible conductive cable) is sealed within the electronic module or it can be connected directly by way of two insulated leads that protrude from the end of the electronic module. In either event, the flexible electronic cable may provide a constant and flexible electrical connection to the electronics housed within the electronic module. It should be pointed out that the electronic module is sealed, potted and is largely moisture proof.


The flexible conductive cable can be of a length that begins within the electronic module and exits the temple either on the side of the temple or on the front end piece of the temple closest to the hinge of the temple and then bypasses the hinge connection between the temple and the frame front, and proceeds to plug into the back side of the frame front closest to the wearer. The flexible conductive cable can also be made to begin with the two conductive compressible members (by way of example only, conductive rubber) and then proceeds once again to bypass the hinge connecting the temple to the frame front and then on thru the back of the frame's front into the side or front end of the temple connecting to the module. The flexible cable can also connect by way of being incorporating thru the insulation of the bridge between the upper and lower rimlock or the flexible conductive cable can be designed as it passes between the upper and lower rimlocks to become the insulator that separates the upper and lower rimlock from one another.


In some embodiments the flexible conductive cable may be directly connected to two conductive contact points located within the rim of the eyeglass frame, on the lens surface, connected to the lens or frame surface. In other embodiments the flexible conductive cable may connect indirectly by connecting with contact points located within the rim of the eyeglass frame or on the lens surface. When connected indirectly the flexible conductive cable may connect to an intermediate conductive path by way of a moisture resistant connection or connections.


These two conductive contact points may be made of a compressible conductive material; by way of example only, conductive rubber. The flexible conductive cable provides a completely sealed and moisture proof barrier from the sealed electronic module to that of the two conductive contact points (which are spatially removed and/or insulated from one another) which make electrical contact to that of the lens or a display located on or in the lens. The conductive cable being flexible allows for the cable to be flexed or bent as the temple of the eyeglasses or eyewear is being opened and shut. Also the flexible conductive cable allows for in certain frame designs or styles the flexible conductive cable to be threaded or inserted thru certain frame members still allowing for a completely sealed connection from the electronic module to that of the electronic connection points within the frame's eye wire or rim.


In some embodiments, the flexible conductive cable may be directly or indirectly connected in a similar manner to two conductive contact points on or connected to an electronic display and or controller, affixed to the eyeglass frame front, or the lens, or housed within the eyeglass frame front or the lens.


In some embodiments, such as those involving a video display, first conductor 708 and second conductor 710 can be connected to the display. In various embodiments, conductors 1104 and 1106 can be semi-rigid or rigid for at least some of their length. The first and second link conductors 1104 and 1106 can be considered to be continuous conductive links since they provide an uninterruptable physical connection between the module 1102 and the conductive elements of the electro-active lenses, e.g., 612, 614 via conductive elements 708 and 710.


Referring to FIGS. 12A and 12B, another aspect of the present technology for reducing the risk of liquid/moisture damage to electro-active eyewear is illustrated. As described above with reference to FIG. 6, physically compliant conductive material, e.g., 612, 614, can be used along a portion of the edge of lens, e.g., 600. In some embodiments insulating materials can be used along the remainder of the lens edge. In such an approach, moisture, oils, and salt may accumulate, and over time degrade the connections. In some embodiments of the present technology, a gasket, e.g., 1200 of compliant, but electrically insulating material, e.g., silicone, can be used to create a more compliant, and liquid/moisture-resistant fit for the lens around its edge. In some embodiments, the gasket 1200 can stretch around the circumference of the lens, resisting the ingress of moisture, oils, salt, and liquids. To enable electrical connectivity to the lens, apertures 1202 can be provided that accommodate physically compliant conductive material, e.g., 612, 614, formed to mate with the gasket.



FIG. 12B shows sectional views including portions of the gasket without the physically compliant conductive material 614 (upper view), and with the physically compliant conductive material 614 (lower view).



FIG. 13 illustrates a representative block diagram of electro-active spectacles 1300 in accordance with an aspect of the present technology. The electro-active spectacles 1300 can represent the electro-active spectacles of the present technology described above (e.g., the electro-active spectacles 100). The electro-active spectacles 1300 can include a right electro-active lens 1302 and a left electro-active lens 1304. The right and left electro-active lenses 1302 and 1304 can represent the first and second electro-active lenses 104 and 106 described earlier. The electro-active spectacles 1300 can include a right control unit 1306 and a left control unit 1308. The left and right control units 1306 and 1308 can each represent an electronic module 202, or a portion thereof, described above.


The right control unit 1306 can include an isolation switch 1310, driver circuits 1312, and transmitter circuits 1314. The driver circuits 1312 can generate a driver signal for operating (e.g., activating) the right electro-active lens 1302. For example, to activate the right electro-active lens 1302, the driver circuits 1312 can provide, generate or transmit a driver signal or activation signal. Further, to deactivate the right electro-active lens 1302, the driver circuits 1312 can simply stop providing, generating or transmitting the driver signal.


The transmitter circuits 1314 can generate a synchronization signal for coordinating operation of the right and left electro-active lenses 1302 and 1304. Specifically, the transmitter circuits 1314 can transmit a synchronization signal instructing the left electro-active lens 1304 to activate or deactivate. As an example, the left electro-active lens 1304 can be activated based on receipt of the synchronization signal or a synchronization signal of a first type instructing activation. Further, the left electro-active lens can be deactivated based on the absence of the synchronization signal or receipt of a synchronization signal of a second type instructing deactivation. As a result, the right and left electro-active lenses 1302 and 1304 can be activated and deactivated at substantially the same time.


The isolation switch 1310 can determine when the driver circuits 1312 and the transmitter circuits 1314 can access a conductive link 1316 coupling the right electro-active lens 1302 to the control unit 1306. The conductive link 1316 can comprise one or more conductive wires. The conductive link 1316 can represent one or more of the connectivity mechanisms depicted and described above (e.g., the routing and connectivity features illustrated in FIG. 11 and described above).


When the electro-active spectacles are implemented with only a single control unit (e.g., the control unit 1306), then the control unit 1306 can control operation of both the right and the left electro-active lenses 1302 and 1304. Under such a scenario, the isolation switch 1310 and transmitter circuits 1314 can be optional. Further, the left and right electro-active lenses 1302 and 1304 can be activated at substantially the same time by a driver signal provided by the driver circuits 1312.


A communications link between the right and left control units 1306 and 1308 can comprise any portion of the conducive link 1316, conductive elements within the right electro-active lens 1302, a bridge conductive link 1318 contained within or adjacent to a bridge of the electro-active spectacles 1300, conductive elements within the left electro-active lens 1304, and a conductive link 1320. The conductive link 1320 can comprise one or more conductive wires and can represent one or more of the connectivity mechanism depicted and described above (e.g., the routing and connectivity features illustrated in FIG. 11 and FIG. 12 and described above). The communications link between the right and left control units 1306 and 1308 can also include or alternatively include a frame conductive link 1222 (shown in phantom in FIG. 13).


The frame conductive link 1322 can include one or more conductive wires wrapped over the right and left electro-active lens 1302 and 1304—e.g., either embedded within a portion of the frame and/or contained in a groove of the right and left electro-active lenses 1302 and 1304 as described above. The frame conductive link 1322 can also include conductive elements of the right and left electro-active lenses 1302 and 1304 (e.g., one or more layers of ITO or other transparent conductive layers of the right and left electro-active lenses 1302 and 1304). For example, the frame conductive link 1322 can be a wireless link that uses conductive layers of the right and left electro-active lenses 1302 and 1304 as antennas to facilitate communication and/or synchronization between the right and left electro-active lenses 1302 and 1304. Alternatively, other conductive elements can be embedded within the electro-active spectacles of the present technology to facilitate communication and/or synchronization between the right and left electro-active lenses 1302 and 1304. One or more of these embedded antennas could also provide a wireless communication link between the electro-active spectacles of the present technology and a remote communication device.


Overall, the right control unit 1306 can communicate with the left control unit 1308 and/or can operate the left electro-active lens 1304 using a single conductive wire or link. The single conductive wire can also be used to operate the right electro-active lens 1302. The single conductive wire or link can be embedded within a portion of a frame and can include conductive elements of the electro-active lenses.


The left control unit 1308 can include an isolation switch 1324, driver circuits 1326, and receiver circuits 1328. The driver circuits 1326 can generate a driver signal for operating (e.g., activating) the left electro-active lens 1302. The receiver circuits 1326 can receive and process a synchronization signal transmitted by the right electro-active module 1306. The isolation switch 1324 can determine when the driver circuits 1312 and the receiver circuits 1328 can access the conductive link 1320 coupling the left electro-active lens 1304 to the control unit 1308.


The receiver circuits 1326 can listen for a synchronization signal transmitted over conductive link 1320. The receiver circuits 1326 can listen periodically or randomly for a specific or random amount of time. Once a synchronization signal is received, the control unit 1308 can operate accordingly—i.e., either activate or deactivate the left electro-active lens 1304 using a driver signal transmitted by the driver circuits 1328.


The transmitter circuits 1314 can transmit a synchronization signal in response to detection of a head tilt change of the user (e.g., detected by a gyroscope or accelerometer included in the right control unit 1306—not illustrated for clarity) or manual command issued by the user. The synchronization signal transmitted by the transmitter circuits 1314 can be coded to distinguish it from noise and to prevent false triggering.


In FIG. 14, all of the frame and hinge components have been removed showing only parts of a frame 1500 including electronic module 202, flexible conductors 1104 and 1106, physically compliant conductive materials 708 and 710, and flexible cable 1108. In this embodiment, the flexible cable 1108 has one end sealed within the module 202. This sealing is substantially water-resistant or water-proof. The other end of cable 1108 may terminate in a plug (not shown) that mates with a receptacle on the backside of the eyewear frame front (or on an edge of the frame front, or on one of the end pieces of the frame front) whereby connection is provide to the lens. In other embodiments, the plug and receptacle can be reversed.



FIG. 15 illustrates a portion 1600 of the right side of the frame showing the module 202, flexible cable 1108, first conductor 708, second conductor 710, rim wire lower portion 704, lower rimlock 1610, and insulating layer 1620, with the flexible cable 1108 bypassing the hinge elements formed in the insulating layer to the right and around to the front of the eyewear. Flexible conductive links 1104 and 1106 can be used in place of flexible cable 1108. In embodiments of the present technology, such as those illustrated in each of FIG. 11 and FIG. 14, the conductive links 1104, 1106, and the cable 1108, can be of length that begins with the electronic module 200 and exits the temple either on the side of the temple to the front end piece of the temple closest to the hinge of the temple, and then bypasses the hinge connection between the temple and the frame front, and enters the frame front.



FIG. 16 illustrates electro-active frame 1700 in accordance with an aspect of the present technology. Electro-active lenses can be mounted within the electro-active frame 1700. For simplicity, a portion of electronics 1702 that can be used to govern operation of the electro-active lenses are shown. The electronics 1702 can represent a portion of an electronic module 202 described above and/or can represent conductive elements positioned to provide electrical connectivity between a temple of the electro-active frame 1700 and a front portion of the electro-active frame 1700. The electro-active frame 1700 is shown as including electronics 1702 on only one side of the electro-frame 1700 but is not so limited.


As further shown in FIG. 16, the electro-active frame 1700 can include conductive leads 1704 and 1706 and conductive link 1708. Conductive link 1708 can provide electrical connectivity from one side of the electro-active frame 1700 to the other side of the electro-active frame 1700. Conductive leads 1704 can provide electrical connectivity between electronics 1702 and a first electro-active lens mounted within the electro-active frame 1700. Conductive leads 1706 can provide electrical connectivity between the conductive link 1708 and a second electro-active lens mounted within the electro-active frame 1700.


As shown in FIG. 16, the conductive link 1708 can be embedded or positioned within the electro-active frame 1700. The conductive link 1708 can include any number of conductive elements (e.g., wires) that can be insulated or not insulated. If the electro-active frame 1700 uses driver electronics on each side of the frame 1700 (e.g., a master and slave driver electronics or electronic modules 202) then as few as only one single wire can comprise the conductive link 1708). If the electro-active frame 1700 has driver electronics on only one side of the electro-active frame 1700, then at least two wires or conductive elements can be used. The conductive link 1708 can be positioned inside the electro-active frame 1700 in accordance with any of the methods described above for embedding conductive links including, but not limited to, (1) embedding during a mold casting process; (2) embedding during an assembly process of the front frame portion of the electro-active frames 1700; and (3) embedding after assembly of the electro-active frames by providing a groove or route for the conductive link 1708. The conductive link 1708 can also use or can alternatively comprise the conductive layers of the electro-active lenses of the present technology that can be positioned into the frames 1700 as described above.



FIG. 17 illustrates electro-active spectacles 1800 in accordance with an aspect of the present technology. The electro-active spectacles 1800 can include an electronic module 202. The electro-active spectacles 1800 can also include conductive link 1802. Conductive link 1802 can include any number of conductive elements (e.g., wires) that can be insulated or not insulated. Conductive link 1802 can provide electrical connectivity between the electronic module 202 and the electro-active lens 104 and the electro-active lens 106.


As shown in FIG. 17, a portion of the conductive link 1802 can be positioned or embedded within a portion of the frame of the electro-active spectacles 1800. For rimless spectacles, the conductive link 1802 can be routed through a groove in an electro-active lens (e.g., the groove 606 depicted in FIG. 6). As further shown in FIG. 17, the conductive link 1802 can be routed adjacent to a bridge 1804 of the electro-active spectacles 1800. For example, the conductive link can be routed through tubing 1806 that is positioned adjacent to the bridge 1804.


Referring to FIG. 18, embodiments of the present technology using plug/receptacle connections are illustrated in the context of electro-active eyewear 1900. In some of those embodiments, the electrical module 202 has connector leads, e.g., 1108 that have one end sealed within the module 202. This sealing is substantially water-resistant or water-proof. The other end of cable 1108 terminates in a plug 1910 that mates with a receptacle (not shown) on the backside of the eyewear frame front (or on an edge of the frame front, or on one of the end pieces of the frame front) whereby connection is provide to the lens. In other embodiments, the plug and receptacle can be reversed. A plug/receptacle connection 1930 also can be used to connect the module 202 with a battery 302. The plug/receptacle connections can be unpluggable or permanent once plugged. In some embodiments, the intermediate electrical contact is located at one of: a rim of the eyewear, the rear ⅓ of the temple, the middle of the temple, the forward ⅓ of the temple, the rim lock or hinge, of the eyewear, a surface of the optical functional member, a frame front of the eyewear, an electronic display, an electronic controller, and between the rim and the lens of the eyewear.


Referring to FIG. 19, the portion 1100 shown in FIG. 11 is shown as a portion 2000 from another perspective with the body of the temple 2010. The module 202 is shown inside the body of the temple 2010, the conductive links 1104 and 1106 are shown connecting to upper portion first conductor 708 and lower portion second conductor 710 respectively after being routed around a non-conducting upper rimlock 2012 and lower rimlock 2014. Embodiments of the present technology similar to that illustrated in FIG. 19 can use a cable, e.g., 1108, instead of separate conductors 1104, 1006.


In some embodiments, links 1104, 1106 and cable 1108 can be made from conductive compressible members. Conductive compressible members can include conductive rubber and metal rubber. Metal rubber is a name for conductive plastic polymers with metal ions, it is a self-assembling nano-composite, and is flexible and durable across a broad range of pressures, temperatures, tensions, exposure to chemicals. It retains its properties upon being returned to a ground state. It can carry data and electrical power.


In some embodiments, the flexible conductive cable itself can be an insulating element between the upper rimlock and the lower rimlock. In some embodiments, first conductor 708 and second conductor 710 are not used, and the conductive links 1104, 1106 (either as separate links or as elements of cable 1108) connect directly to the leads and conductive material (e.g., 608/612 and 610/614, respectively) of the electro-active lens (e.g., electro-active lens 600).


In some embodiments, the conductive links 1104, 1106 (either as separate links or as elements of cable 1108) are connected to contact point located within the rim of the eyeglass frame, on the lens surface, connected to the lens or frame surface. In other embodiments of the technology, the conductive links 1104, 1106 (either as separate links or as elements of cable 1108) are connected to contact points on or connected to an electronic display or controller, affixed to the eyeglass frame front or the lens, or housed within the eyeglass frame front or lens. In various embodiments, the conductive links 1104, 1106 (either as separate links or as elements of cable 1108) can be conductive sealed wires.


It is noted that the connectivity mechanisms illustrated in FIG. 11, and described above, can be used for any type of frame style—that is, for fully rimmed, partially-rimmed and rimless frames of the present technology.


Referring to FIG. 20, a portion 2100 of electro-active eyewear in accordance with the present technology is shown. Module 202 is shown connected to conductive links 1104 and 1106 as described in connection with FIG. 11, but using upper rimlock 712 and lower rimlock 714 as conducting members connect to links 1104 and 1006 respectively. Insulating layer 716 is shown disposed between upper rimlock 712 and lower rimlock 714. A cable, e.g., 1108 can be used in place of conductive links 1104 and 1106.


Referring to FIG. 21, electro-active eyewear 2110 in accordance with the present technology is shown. Module 2116 is shown in temple portion 2114 and connected via conductor 2112 to a battery 2117 in the distal end of the frame. Flexible conductive cables are also provided between the temple portion 2114 and conductive material of the front portion of the frame.


In some embodiments, a device may be provided including a lens comprising at least a first electrical contact, a lens housing holding the lens, where the lens housing comprises at least a second electrical contact, and a conductive element disposed between the first and the second electrical contact, wherein the conductive element electrically connects the first and second electrical contacts. The first device may further comprise a barrier layer that is disposed so as to cover at least a portion of the conductive material. The “barrier layer” may be disposed so as to cover the conductor (or a portion thereof) at or near the periphery of the lens such that it may not be exposed to the external the location between the electro-active lenses and the lens housing typically tends to be where the conductors are exposed to the external environment. The barrier layer may be moisture resistant, such that it may prevent moisture from contacting the electrical connections. In some embodiments, the barrier layer of moisture resistant material may comprise a polymer substance.


In some embodiments, the barrier layer may be applied or disposed in areas of the electronic spectacles between two components (such as between the lens housing and the electro-active lenses). In some embodiments, these components of the electronic spectacles may be coupled in advance, and the barrier layer may be applied in a later process (e.g. as part of a finishing or sealing process after the electrical connections have been formed). This may be preferred because, for instance, the barrier layer may function to prevent the electrical connection at the interface between the components from being exposed to the external environment. Thus, in some embodiments, once the barrier layer is set, access to this interface may be limited. However, embodiments are not so limited, and the barrier layer may be applied at any suitable time.


The inventors have found that in some embodiments it may be preferred that the barrier layer may comprise a material that has a viscosity that is thin enough such that it may be applied or injected into the areas between the components of the electronic spectacles. As noted above, in some embodiments the barrier layer may be applied to prevent or limit contact with moisture (e.g. water) and, therefore, it may be preferred that the viscosity of the barrier layer material be comparable to water. In this manner, the barrier layer may be applied to (and thereby disposed in) the same areas that would otherwise be accessible to this moisture. In some embodiments, where the barrier layer may comprise a polymer material (such as a two component epoxy), after the barrier layer has been applied to the electronic spectacles, it may be cured to set the material in place. In general, the barrier layer may be cured using any suitable process, such as visible light curing, ultra-violet curing, and/or thermal curing. In some embodiments, where thermal curing is used, the material of the barrier layer may be chosen such that it may be cured at a low enough temperature that the other components of the electronic spectacles (e.g. the lenses, lens housing, and/or electronics) are not affected by the increase in temperature.


The inventors have also found that, in some embodiments, it may be preferred that the material that comprises the barrier layer be flexible and/or soft enough such that it does not damage (or damage other components, such as the lens) when experiencing the typical forces of daily use. For instance, when the barrier layer is disposed in the area between the lens housing and the lens component, there may be forces applied to either one of, or both of these components in various directions. If the barrier layer is too rigid, this force may be applied to the lens, which could cause chipping or cracking. This may result, for example, in exposure of the electrical contacts, damage to the lens, and/or one or more components could be decoupled.


An exemplary embodiment that comprises a barrier layer applied to electronic spectacles so as to prevent or limit exposure of the electrical contacts between a lens and a lens housing to the outside environment (including to moisture) is shown in FIG. 22. The electronic spectacles comprise a lens housing 2201, a conductor 2202 (in this case, shown as a compliant conductive material), conductive paint 2203 that forms a part of an electrical path to one or more electrical components of the lens 2204, and a barrier layer 2205. As shown in FIG. 22, in some instances a space or area may exist between the lens housing 2201 and the lens 2204 shown as air gap 2206. As noted above, this may be created during the manufacturing process (e.g. the lens housing 2201 and a portion of the lens 2204 do not fit tightly so as to seal the components there between from exposure to the outside environment) and/or may develop through use of the spectacles. On the opposite side of the air gap 2206 shown in FIG. 22 is a barrier layer 2205 that has been disposed so as to insulate the conductor 2202 from the external environment. The barrier layer 2205 is shown as disposed within the area between the lens housing 2201 and the lens 2204. As noted above, the barrier layer 2205 could have been injected into this region between these components, and may have been cured thereto so as to be coupled to the lens housing 2201 and/or the electro-active lens 2204.



FIGS. 23A and 23B illustrate further embodiments of the present invention. The electronic module 2300 shown in FIG. 23A includes a flex circuit 2310 with two conductive buses 2320 and 2330 for making electrical contact to the front surface of an electro-active lens. The module includes a drive circuit 2340 placed above a rechargeable battery 2350. Below the battery is a recharging coil 2360. The charging coil is used to inductively recharge the battery without direct contact. In this way, the module may be hermetically sealed while still allowing the battery to be recharged without breaking a moisture resistant seal. A tilt sensor 1070 is also attached to the electronic module. A manual switch 1080 is attached to the top of the electronic module and is integrated with a sealing diaphragm 1090. This module is sealed with an epoxy, silicone, or similar water resistant material to prevent water from contacting the electronic components. This module is shaped to fit into a universal frame electronic component as illustrated in FIG. 23B.



FIG. 23B shows a universal electronic frame component 2301. The universal electronic frame component comprising a housing 2311 for holding the electronic module described in FIG. 23A. A set of thread hinge bolt 2321 and 2331 are mounted on the housing 2311 for accommodating a wide variety of frame stem styles to be attached to the universal electronic frame component. The top of the housing 2311 has an aperture to allow a manual switch 2341 to extend outward so as to be accessed by the wearer. Extending out of an opening in the housing are two electrical contacts 2351 and 2361 from the buses described in FIG. 23A. Near these contact points, there is a through hole 2371 to allow a mounting pin to pass through the front of the universal electronic frame component for attaching to an electro-active lens.


A module 2400, as illustrated schematically FIG. 24A and in cross section in FIG. 24B, contains a battery 2430 for powering an electro-active lens and related drive circuitry, a printed circuit board 2420 with drive and control electronics, and a switch 2410. The module may also contain a membrane switch to allow for manual control of the electro-active lens. FIG. 24C illustrates the module 2400 placed in an eyeglass frame 2450. The frame has a frame stem section 2440 near the front of the frame but also well in front of a frame hinge 2460 that connects a stem 2480 to the front of the frame. The module is preferably placed behind the frame stem section, provided that the frame is not of a full rimless design. In the event of a full rimless design, the inventive electronic module or modules would fit within or near the space (right spatial void and left spatial void) anterior to the hinge and would then attach to the lens. In certain other inventive embodiments where there is no hinge (hinge-less temples) and eyeglass frames that have a continuous temple that attaches directly to the frame front or directly to the lens, the module would preferably be located within or near the space (right spatial void and left spatial void). In fact, the module can be located anywhere within these two spatial voids.


The module may further include one or more of the following: a manual switch (for example, a touch button, photo-detector, motion detector, capacitive touch sensor), a controller and/or micro-processor, a power source (for example, a small battery), a sensor (for example, one or more miniature or micro tilt switches, accelerometer, micro gyro, range finder, view detector, imager), an antenna, a transmitter, a transceiver or a receiver. The module preferably houses any of the aforementioned electrical components in a substantially water-proof and wear resistant/moisture resistant environment and is preferably hermetically sealed. In the event of a malfunction of one or more of the electronic components housed within the module, the module can be replaced without having to repurchase a complete pair of new electronic eyewear (lenses and frames) or just the frames. It should be pointed out that in certain applications, a single inventive electronic module may be sufficient, and in others, two or more modules may be needed. The embodiments described in FIGS. 23 and 24 allow for modification of any number of existing frames that otherwise were not originally designed to support electronics for driving electro-active lenses.


In general, the inventors have found that in some embodiments, any surface or substrate may be utilized to dispose the electronic components thereon prior to insertion into a partial enclosure. However, it may be preferred (such as when a touch switch is utilized as a sensor for the electronic eyewear) that the electronic components be disposed on a surface of the touch switch. As used in this context, a “touch switch” may refer to a type of switch that may be touched by an object to operate (or an object may come into close proximity to the switch). For embodiments comprising electronic eyewear, it may be preferred that a capacitive touch switch is used because such switches may be moisture resistant, which the inventors have found is advantageous given the typical exposure to, for example, perspiration from the wearer, environmental moisture (e.g. humidity, precipitation), moisture from the wearer's finger, etc. A “capacitive touch switch” may refer to any sensor that may utilize an electrical field to detect, for instance, the presence of a human finger or other conducting object to activate a switch. For example, when a conductive object enters the field (e.g. comes into contact with, or in close proximity to, the device), the switch recognizes a change in the capacitance indicating an actuation. This may enable capacitive switches to be “sealed” (i.e. there may not need to be any physical interaction with the sensing components) such that, as noted above, the switches and components thereof need not be exposed to external conditions (e.g. moisture).


Additional steps may also be performed as well in some embodiments. For instance, some embodiments include the step of depositing a conformal layer (e.g. an encasing or encapsulating layer) over the electronic assembly (i.e. comprising the capacitive touch switch and the electronic components disposed thereon) using a film or other protective material layer. This conformal layer may be utilized to seal the electronic components (and particularly the electrical connections between the electronic components) to protect them from damage, particularly external environmental damage. Thus, the conformal layer may generally be moisture proof in some embodiments. However, the entire assembly may not be covered by the conformal layer in some embodiments because one or more electrical connections may be needed to, for instance, electrically couple the electronic components in the electronics module to other electronic components on the electronic eyewear. Thus, during the deposition of the conformal layer (e.g. the encasing or encapsulation process) a mask may be disposed over the electrical contacts that will be used to make such connections. In some embodiments, rather than using a mask, the entire assembly may be encased or encapsulated, and the conformal layer may be selectively removed from portions of the assembly (e.g. portions of the layer that cover the electrical contacts) to expose the electrical contacts and allow one or more connections to be made. The electronic assembly may then be inserted into a partial enclosure (e.g. an electronics module outer casing) and then disposed within the cavity of a temple of the electronic eyewear.


In some embodiments, the first method may further comprise the step of applying a conformal coating to the plurality of electronic components. As used in this context, a “conformal coating” may refer to any coating that is designed to substantially protect or enclose the electrical connections of the plurality of electronic components (and/or the components themselves) that are disposed on the capacitive touch switch. The conformal coating may also protect portions of the capacitive touch switch as well. The conformal coating may be configured to prevent short circuits, foreign materials, atmospheric conditions (such as moisture) or any other external forces from affecting the electrical connections or damaging the electronic components. In this regard, the coating may generally be moisture proof or resistant. The conformal coating may have any suitable thickness, but is typically less than 1 mm thick, and more preferably less than 0.5 mm thick. The coating may comprise any suitable material, such as a brushed, spray or dip applied acrylic, urethane, silicone, or epoxy. It should be noted that components that are intended to form one or more electrical connections with an external component(s) may be masked during the deposition/application process of the conformal coating (or the coating may be later removed) so as to expose the electrical contacts of these components.



FIG. 25 is a flow chart that illustrates exemplary steps that may be performed in accordance with some methods provided herein. For example, at step 2501 a capacitive touch switch may be provided. The capacitive touch switch may serve as the platform or “back bone” on which some of the electronic components of an electronics module or electronic eyewear may be disposed. Next, at step 2502, one or more electronic components may be disposed on a surface of the capacitive touch switch. For instance, electrical connectors may be disposed on the surface (e.g. using reflow soldering). However, embodiments are not so limited, and the components may be coupled to the surface of the capacitive touch switch in any suitable manner. In step 2503, one or more electrical connections may be formed between the capacitive touch switch and the electronic components that were coupled to the capacitive touch switch in step 2502. In some embodiments, the electrical connections may be formed simultaneously with step 2502, such as when reflow soldering is used; however, embodiments are not so limited.


Continuing with reference to FIG. 25, at step 2504 one or more electronic components may be coupled to the one or more of the electronic components that were previously disposed on the capacitive touch switch in step 2502. For instance, electrical connectors coupled to a PCB may be coupled to one or more electrical connectors that may have been reflow soldered to the capacitive touch switch. In this manner, an electronic assembly may be created, wherein each additional electronic component may connect to another electronic component or components. Each of these additional electronic components may be considered to be disposed on the capacitive touch switch, as used in this context. At step 2505, one or more electrical connections may be formed, to the extent that this was not performed during step 2504.


In some embodiments, at step 2506, a conformal layer (e.g. an encasing or encapsulating layer) may be deposited over some or all of the electronic assembly that is now disposed on the capacitive touch switch. The conformal layer may be used to seal and protect the electrical connections that were formed in steps 2503 and/or 2505, as well as to protect the electronic components themselves (such as from moisture, which could damage or affect device performance). As described above, to the extent electrical contacts may be required so as to form electrical connections with other components that are not part of the electronic assembly disposed on the capacitive touch switch, these electrical contacts may be masked during the deposition process of the conformal layer, or the conformal (i.e. encapsulation) material may be subsequently removed to expose the electrical contacts. It should be noted that while it may be preferred in some embodiments to include a conformal layer, embodiments are not so limited. In some embodiments, the conformal layer may have a thickness that is less than 1 mm in thickness (preferably less than 0.5 mm).


At step 2507, the capacitive touch switch (which comprises the assembly of electronic components that were disposed thereon in steps 2502 and 2504) may be coupled to an enclosure. As described above, the enclosure may comprise the outer casing of an electronics module or the cavity of a temple of electronic eyewear. The step of coupling the capacitive touch switch to the enclosure may comprise any suitable method, including pressure fitting the two components (if they are designed and configured to have the structural interface to do so). The enclosure may provide protection for the electronic components from external forces, but need not necessarily support the components because they may be supported by the capacitive touch switch. As noted above, the capacitive touch switch, or at least a portion thereof, may comprise a material that may be firm enough to substantially maintain its shape and structure, even with the electronic components disposed thereon. Finally, at step 2509, one or more electrical connections may be formed between the components disposed on the capacitive touch switch (e.g. that may now be disposed within an electronics module) and one or more electronic components disposed on the electronic eyewear.


While various embodiments of the present technology have been described above, it should be understood that they have been presented by way of example and not limitation. Any conductive element described above (e.g., the upper or lower portions of the frame) can be entirely conductive (and possibly coated with non-conductive material) or can contain an embedded or buried conductive element (e.g., a conductive core) and a non-conductive outer or surrounding layer. Further, any conductive link—e.g., described or referred to as an electrical wire or connection—could alternatively, or in addition thereto, be or include an optical conductive link as will be apparent to one skilled in the pertinent art. The exemplary techniques for coupling or connecting the electrical elements of the electro-active spectacles of the present technology (e.g., the controlling electronics and power supplies and electro-active lenses) using embedded conductive links can be used to embed one or more conductive optical links (e.g., one or more optical fibers) as will be apparent to one skilled in the pertinent art.


These applications can be that of, by way of example only, by way of example only, electronic focusing eyeglasses, electro-active eyeglasses, fluid lenses being activated by way of an electronic actuator, mechanical or membrane lenses being activated by way of electronics, electro-chromic lenses, electronic fast tint changing liquid crystal lenses, lenses whose tint can be altered electronically, lenses that by way of an electrical charge can resist or reduce the attraction of dust particles, lenses or eyeglass frames housing or having an electronic display affixed thereto, electronic eyewear providing virtual reality, electronic eyewear providing 3-D capabilities, electronic eyewear providing gaming, and electronic eyewear providing augmented reality.


Overall, it will be apparent to one skilled in the pertinent art that various changes in form and detail can be made therein without departing from the spirit and scope of the technology. Therefore, the present technology should only be defined in accordance with the following claims and their equivalents.

Claims
  • 1. An eyewear system comprising: an eyewear frame;an electronics assembly comprising electronic components configured to control an electrical functional member;a capacitive touch switch coupled to at least one electronic component in the electronics assembly;at least one electrical connective element electrically connected to the electronic assembly and the electrical functional member; anda conformal layer over the electronic assembly to seal the electronic components;wherein the conformal layer is moisture proof and seals electrical connections of the electronic component;wherein the conformal layer is disposed in an enclosure of the eyewear frame;wherein the eyewear frame comprises a temple; andwherein the electronic assembly is enclosed in the temple.
  • 2. The eyewear system of claim 1, wherein the electrical functional member comprises a lens.
  • 3. The eyewear system of claim 1, wherein the electrical functional member includes at least one of an electro-active lens, an electro-chromic lens, an electronic display, a sensor, an imager, a GPS, an alarm, a hearing aid, a virtual reality function, an augmented reality function, a gaming function, an audio output function, a microphone function, a recording function, a transmitter function, a pedometer, and an active 3D function.
  • 4. The eyewear system of claim 1, wherein the at least one electrical connective element is a conductive compressible member or a multi-conductor cable.
  • 5. The eyewear system of claim 1, wherein the electronic assembly comprises a micro-processor.
  • 6. The eyewear system of claim 1, wherein the enclosure comprises at least one of an outer casing of the electronic assembly or a cavity of the eyewear frame.
  • 7. The eyewear system of claim 1, wherein the conformal layer comprises at least one of an encasing layer or an encapsulating layer.
  • 8. The eyewear system of claim 1, wherein the conformal layer protects the electronic components from external environmental damage.
  • 9. The eyewear system of claim 1, wherein the conformal layer is a conformal coating.
  • 10. The eyewear system of claim 9, wherein a thickness of the conformal coating is less than 1 mm.
  • 11. The eyewear system of claim 9, wherein the conformal coating comprises at least one of an acrylic, urethane, silicone, or epoxy.
  • 12. The eyewear system of claim 11, wherein the conformal coating is brush applied, spray applied, or dip applied.
  • 13. A method of manufacturing an eyewear system comprising: disposing a plurality of electronic components on a capacitive touch switch;connecting the plurality of electronic components via electrical connections to form an electronic assembly;depositing a conformal layer over at least a portion of the electronic assembly and at least a portion of the capacitive touch switch; andcoupling the electronic assembly and the capacitive touch switch with the conformal layer to an enclosure of an eyewear frame.
  • 14. Eyewear comprising: an eyewear frame comprising a temple;a plurality of electronic components disposed within a cavity formed in the temple, the plurality of electronic components comprising (i) at least one of a processor or a controller, iii) a memory, (iii) a power source, (iv) an antenna, (v) at least one of a transmitter or a receiver, and (vi) at least one of an accelerometer or a gyroscope;a conformal coating, deposited over at least a portion of the plurality of electronic components, to protect the plurality of electronic components; anda capacitive touch switch operably coupled to an electronic component in the plurality of electronic components.
  • 15. The eyewear of claim 14, wherein the conformal coating exposes an electrical contact of the electronics assembly.
  • 16. The eyewear of claim 14, wherein the conformal coating has a thickness of less than 1 mm.
  • 17. The eyewear of claim 14, wherein the conformal coating has a thickness of less than 0.5 mm.
  • 18. The eyewear of claim 14, wherein the electronic component is disposed on a surface of the capacitive touch switch.
  • 19. The eyewear of claim 14, wherein the conformal coating protects a portion of the capacitive touch switch.
  • 20. The eyewear of claim 14, wherein the capacitive touch switch is fit to the cavity in the temple.
  • 21. The eyewear of claim 14, wherein the capacitive touch switch is electrically connected to an electronic component disposed on the eyewear frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S. application Ser. No. 13/587,645, filed on Aug. 16, 2012, which claims priority to and incorporates by the reference in the entirety each of the following provisional patent applications: U.S. Prov. Pat App. No. 61/524,567, filed Aug. 17, 2011; U.S. Prov. Pat. App. No. 61/537,205, filed Sep. 21, 2011; and U.S. Prov. Pat. App. No. 61/563,937, filed Nov. 28, 2011, and which is a continuation-in-part of U.S. application Ser. No. 13/372,240, which in turn claims priority to U.S. Prov. Pat. App. No. 61/441,817, filed Feb. 11, 2011. The present application is a continuation-in-part of, and claims priority to and incorporates by the reference in the entirety each of the following patent applications: U.S. application Ser. No. 13/726,267, filed Dec. 24, 2012, which is a continuation of U.S. application Ser. No. 12/834,526, filed Jul. 12, 2010, which in turn is a continuation of U.S. application Ser. No. 12/054,299, filed Mar. 24, 2008, which in turn claims priority of U.S. Prov. Pat. App. No. 60/978,517, filed Oct. 9, 2007; U.S. Prov. Pat. App. No. 60/929,991, filed Jul. 20, 2007; U.S. Prov. Pat. App. No. 60/929,419, filed Jun. 26, 2007; and U.S. Prov. Pat. App. No. 60/924,225, filed May 4, 2007. This application is a continuation-in-part of U.S. application Ser. No. 13,372,240, filed on Feb. 13, 2012, which in turn claims priority to U.S. Prov. Pat. App. No. 61/441,817, filed Feb. 11, 2011. This application is a continuation-in-part of U.S. application Ser. No. 13/169,996, filed Jun. 27, 2011, which claims priority to U.S. Prov. Pat App No. 61/382,963, filed Sep. 15, 2010; U.S. Prov. Pat. App. No. 61/366,746, filed Jul. 22, 2010; and U.S. Prov. Pat. App. No. 61/358,447, filed Jun. 25, 2010, and which is also a continuation-in-part of PCT/US2011/029419, filed Mar. 22, 2011, which in turn claims priority to U.S. Prov. Pat. App. No. 61/382,963, filed Sep. 15, 2010; U.S. Prov. Pat. App. No. 61/366,746, filed Jul. 22, 2010; U.S. application Ser. No. 61/326,703, filed Apr. 22, 2010; and U.S. Prov. Pat. App No. 61/317,100, filed Mar. 24, 2010. This application is a continuation-in-part of U.S. application Ser. No. 12/834,526, filed Jul. 12, 2010, which in turn is a continuation of U.S. application Ser. No. 12/054,299, filed Mar. 24, 2008, which in turn claims priority to U.S. Prov. Pat. App. No. 60/978,517, filed Oct. 9, 2007: U.S. Prov. Pat. App. No. 60/929,991, filed Jul. 20, 2007; U.S. Prov. Pat. App. No. 60/929,419, filed Jun. 26, 2007; and U.S. Prov. Pat. App. No. 60/924,225, filed May 4, 2007. This application is a continuation-in-part of U.S. application Ser. No. 13/298,997, filed Nov. 17, 2011, which is a continuation-in-part of U.S. application Ser. No. 13/179,219, filed Jul. 8, 2011, which in turn claims priority to U.S. Prov. Pat. App. No. 61/481,353, filed May 2, 2011, and of U.S. application Ser. No. 61/362,877, filed Jul. 9, 2010. U.S. application Ser. No. 13/298,997 is also a continuation-in-part of U.S. application Ser. No. 13/175,633, filed Jul. 1, 2011, and of U.S. application Ser. No. 13/175,634, filed Jul. 1, 2011, each of which claims priority to U.S. Prov. Pat. App. No. 61/415,391, filed Nov. 19, 2010; U.S. Prov. Pat. App. No. 61/376,719, filed Aug. 25, 2010; and U.S. Prov. Pat. App. No. 61/361,110, filed Jul. 2, 2010. This application is a continuation-in-part of U.S. application Ser. No. 13/298,992, filed Nov. 17, 2011, which is a continuation-in-part of U.S. application Ser. No. 13/179,219, filed Jul. 8, 2011, which in turn claims priority to U.S. Prov. Pat. App. No. 61/481,353, filed May 2, 2011, and of U.S. Prov. Pat. App. No. 61/362,877, filed Jul. 9, 2010. U.S. application Ser. No. 13/298,992 is also a continuation-in-part of U.S. application Ser. No. 13/175,633, filed Jul. 1, 2011, and of U.S. application Ser. No. 13/175,634, filed Jul. 1, 2011, each of which claims priority to U.S. Prov. Pat. App. No. 61/415,391, filed Nov. 19, 2010; U.S. application Ser. No. 61/376,719, filed Aug. 25, 2010; and U.S. Prov. Pat. App. No. 61/361,110, filed Jul. 2, 2010. This application is a continuation-in-part of U.S. application Ser. No. 13/866,575, filed Apr. 19, 2013, which claims priority to U.S. Prov. Pat. App. No. 61/638,290, filed Apr. 25, 2012.

US Referenced Citations (523)
Number Name Date Kind
2437642 Henroleau Mar 1948 A
2576581 Edwards Nov 1951 A
2930857 Hollingsworth Mar 1960 A
3161718 De Luca Dec 1964 A
3245315 Marks et al. Apr 1966 A
3309162 Kosanke et al. Mar 1967 A
3614215 Mackta Oct 1971 A
3738734 Tait et al. Jun 1973 A
3791719 Kratzer et al. Feb 1974 A
4062629 Winthrop Dec 1977 A
4152846 Witt May 1979 A
4174156 Glorieux Nov 1979 A
4181408 Senders Jan 1980 A
4190330 Berreman Feb 1980 A
4243306 Bononi Jan 1981 A
4254451 Cochran, Jr. Mar 1981 A
4264154 Petersen Apr 1981 A
4279474 Belgorod Jul 1981 A
4283127 Rosenwinket et al. Aug 1981 A
4300818 Schachar Nov 1981 A
4320939 Mueller Mar 1982 A
4373218 Schachar Feb 1983 A
4395736 Fraleux Jul 1983 A
4418990 Gerber Dec 1983 A
4423929 Gomi Jan 1984 A
4431262 Tolies Feb 1984 A
4457585 DuCorday Jul 1984 A
4461550 Legendre Jul 1984 A
4466703 Nishimoto Aug 1984 A
4466706 Lamothe, II Aug 1984 A
4520238 Ikeda May 1985 A
4529268 Brown Jul 1985 A
4537479 Shinohara et al. Aug 1985 A
4564267 Nishimoto Jan 1986 A
4572616 Kowel et al. Feb 1986 A
4577928 Brown Mar 1986 A
4601545 Kern Jul 1986 A
4609824 Munier et al. Sep 1986 A
4712870 Robinson et al. Dec 1987 A
4756605 Okada et al. Jul 1988 A
4772094 Sheiman Sep 1988 A
D298250 Kildall Oct 1988 S
4787733 Silva Nov 1988 A
4787903 Grendahl Nov 1988 A
4795248 Okada et al. Jan 1989 A
4813777 Rainville et al. Mar 1989 A
4818095 Takeuchi Apr 1989 A
4836652 Oishi et al. Jun 1989 A
4842400 Klein Jun 1989 A
4873029 Blum Oct 1989 A
4875030 Chiu Oct 1989 A
4880300 Payner et al. Nov 1989 A
4890903 Treisman et al. Jan 1990 A
4904063 Okada et al. Feb 1990 A
4907860 Noble Mar 1990 A
4909626 Purvis et al. Mar 1990 A
4919520 Okada et al. Apr 1990 A
4921728 Takiguchi May 1990 A
4927241 Kuijk May 1990 A
4929865 Blum et al. May 1990 A
4930884 Tichenor et al. Jun 1990 A
4944584 Maeda et al. Jul 1990 A
4945242 Berger et al. Jul 1990 A
4952788 Berger et al. Aug 1990 A
4955712 Barth et al. Sep 1990 A
4958907 Davis Sep 1990 A
4961639 Lazarus Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4968127 Russell et al. Nov 1990 A
4981342 Fiala Jan 1991 A
4991258 Drlik Feb 1991 A
4991951 Mizuno et al. Feb 1991 A
5015086 Okaue et al. May 1991 A
5030882 Solero Jul 1991 A
5050981 Roffman Sep 1991 A
5066301 Wiley Nov 1991 A
5067795 Senatore Nov 1991 A
5073021 Marron Dec 1991 A
5076665 Petersen Dec 1991 A
5089023 Swanson Feb 1992 A
5091801 Ebstein Feb 1992 A
5108169 Mandell Apr 1992 A
5114218 Black et al. May 1992 A
5114628 Hofer et al. May 1992 A
5130856 Tichenor et al. Jul 1992 A
5142411 Fiala Aug 1992 A
5147585 Blum Sep 1992 A
5150234 Takahashi et al. Sep 1992 A
5171266 Wiley et al. Dec 1992 A
5178800 Blum Jan 1993 A
5182585 Stoner Jan 1993 A
5184156 Black et al. Feb 1993 A
5200859 Payner et al. Apr 1993 A
RE34251 Achatz et al. May 1993 E
5208688 Fergason et al. May 1993 A
5219497 Blum Jun 1993 A
5229797 Futhey et al. Jul 1993 A
5229885 Quaglia Jul 1993 A
5231430 Kohayakawa Jul 1993 A
5239412 Naka et al. Aug 1993 A
D342063 Howitt et al. Dec 1993 S
5305028 Okano Apr 1994 A
5306926 Yonemoto Apr 1994 A
5319397 Ryden Jun 1994 A
5324930 Jech, Jr. Jun 1994 A
D350342 Sack Sep 1994 S
5352886 Kane Oct 1994 A
5359444 Piosenka et al. Oct 1994 A
5375006 Haas Dec 1994 A
5382986 Black et al. Jan 1995 A
5386308 Michel et al. Jan 1995 A
5424927 Schaller et al. Jun 1995 A
5440357 Quaglia Aug 1995 A
5443506 Garabet Aug 1995 A
5451766 Van Berkel Sep 1995 A
5455638 Kallman Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5488439 Weltmann Jan 1996 A
5489302 Skottun Feb 1996 A
5522323 Richard Jun 1996 A
5526067 Cronin et al. Jun 1996 A
5552841 Gallorini et al. Sep 1996 A
5608567 Grupp Mar 1997 A
5615588 Gottschald Apr 1997 A
5654789 Bylander Aug 1997 A
5657107 Wagner et al. Aug 1997 A
5668620 Kurtin et al. Sep 1997 A
5682223 Menezes et al. Oct 1997 A
5683457 Gupta et al. Nov 1997 A
5684637 Floyd Nov 1997 A
RE35691 Theirl et al. Dec 1997 E
5710615 Kitani Jan 1998 A
5712721 Large Jan 1998 A
5728155 Anello et al. Mar 1998 A
5739959 Quaglia Apr 1998 A
5742379 Reifer Apr 1998 A
5760869 Mitamura Jun 1998 A
5764338 Mack Jun 1998 A
5774273 Bornhorst Jun 1998 A
5777719 Williams et al. Jul 1998 A
5815233 Morokawa et al. Sep 1998 A
5815239 Chapman et al. Sep 1998 A
5835185 Kallman et al. Nov 1998 A
5861934 Blum et al. Jan 1999 A
5861936 Sorensen Jan 1999 A
5877876 Birdwell Mar 1999 A
5900720 Kallman et al. May 1999 A
5949521 Williams et al. Sep 1999 A
5953098 Lieberman et al. Sep 1999 A
5956183 Epstein et al. Sep 1999 A
5963300 Horwitz Oct 1999 A
5971540 Ofner Oct 1999 A
5980037 Conway Nov 1999 A
5999328 Kurtin et al. Dec 1999 A
6040947 Kurtin et al. Mar 2000 A
6050687 Bille et al. Apr 2000 A
6069742 Silver May 2000 A
6086203 Blum et al. Jul 2000 A
6086204 Magnante Jul 2000 A
6095651 Williams et al. Aug 2000 A
6097450 Humphrey Aug 2000 A
6099117 Gregory Aug 2000 A
6115177 Vossler Sep 2000 A
6142941 Benhalima et al. Nov 2000 A
6145987 Baude et al. Nov 2000 A
6136926 Watanabe Dec 2000 A
6163926 Watanabe Dec 2000 A
6188525 Silver Feb 2001 B1
6191881 Tajima Feb 2001 B1
6213602 Smarto Feb 2001 B1
6270220 Keren Aug 2001 B1
6271915 Frey et al. Aug 2001 B1
6288846 Stoner, Jr. Sep 2001 B1
6305802 Roffman et al. Oct 2001 B1
6325508 Decreton et al. Dec 2001 B1
6336250 Takeda et al. Jan 2002 B1
6350031 Lashkari et al. Feb 2002 B1
6390623 Kokonaski et al. May 2002 B1
6396622 Alden May 2002 B1
6412941 Xiao Jul 2002 B1
6433913 Bauer Aug 2002 B1
6437762 Birdwell Aug 2002 B1
6437925 Nishioka Aug 2002 B1
6464363 Nishioka et al. Oct 2002 B1
6491391 Blum et al. Dec 2002 B1
6491394 Blum et al. Dec 2002 B1
6501443 McMahon Dec 2002 B1
6517203 Blum et al. Feb 2003 B1
6554425 Roffman et al. Apr 2003 B1
6582075 Swab et al. Jun 2003 B1
6595634 Pilat, Jr. Jul 2003 B1
6607271 Bar et al. Aug 2003 B2
6609794 Levine Aug 2003 B2
6614408 Mann Sep 2003 B1
6616275 Dick et al. Sep 2003 B1
6616279 Davis et al. Sep 2003 B1
6618208 Silver Sep 2003 B1
6619799 Blum et al. Sep 2003 B1
6626532 Nishioka et al. Sep 2003 B1
6631001 Kuiseko Oct 2003 B2
6682195 Dreher Jan 2004 B2
6709105 Menezes Mar 2004 B2
6709108 Levine et al. Mar 2004 B2
6715876 Floyd Apr 2004 B2
6719425 Conner Apr 2004 B2
6733130 Blum et al. May 2004 B2
6738199 Nishioka et al. May 2004 B2
6768536 Okuwaki et al. Jul 2004 B2
6772448 Hockaday et al. Aug 2004 B1
6774871 Birdwell Aug 2004 B2
6778246 Sun et al. Aug 2004 B2
6824265 Harper Nov 2004 B1
6833938 Nishioka Dec 2004 B2
6840619 Dreher Jan 2005 B2
6851805 Blum et al. Feb 2005 B2
6857741 Blum et al. Feb 2005 B2
6866386 Chen Mar 2005 B1
6871951 Blum et al. Mar 2005 B2
6883916 Menezes Apr 2005 B2
6886938 Menezes May 2005 B1
6893124 Kurtin May 2005 B1
6902271 Perrott et al. Jun 2005 B2
6918570 Ahn Jul 2005 B2
6918670 Blum et al. Jul 2005 B2
6927894 Blum et al. Aug 2005 B2
6938277 Lindahl Sep 2005 B2
6948818 Williams et al. Sep 2005 B2
6951391 Morris et al. Oct 2005 B2
6955433 Wooley et al. Oct 2005 B1
6956682 Wooley Oct 2005 B2
6986579 Blum et al. Jan 2006 B2
7008054 Kurtin et al. Mar 2006 B1
7009757 Nishioka et al. Mar 2006 B2
7018040 Blum et al. Mar 2006 B2
7019890 Meredith et al. Mar 2006 B2
7023594 Blum et al. Apr 2006 B2
7030411 Krulevitch et al. Apr 2006 B2
7041133 Azar May 2006 B1
7063420 Lerner et al. Jun 2006 B2
7077519 Blum et al. Jul 2006 B2
7085065 Silver Aug 2006 B2
7090348 Nason et al. Aug 2006 B2
7104645 Pilat, Jr. Sep 2006 B2
7133172 Nishioka Nov 2006 B2
7140727 Pilat, Jr. et al. Nov 2006 B2
7142369 Wu et al. Nov 2006 B2
7159983 Menezes et al. Jan 2007 B2
7188948 Blum et al. Mar 2007 B2
7192136 Howell et al. Mar 2007 B2
7195353 Blum et al. Mar 2007 B2
7209097 Suyama et al. Apr 2007 B2
7229173 Menezes et al. Jun 2007 B2
7234809 Blum et al. Jun 2007 B2
7255437 Howell et al. Aug 2007 B2
7256943 Kobrin et al. Aug 2007 B1
7264354 Blum et al. Sep 2007 B2
7290875 Blum et al. Nov 2007 B2
7290876 Duston et al. Nov 2007 B2
7333272 Oh et al. Feb 2008 B2
7369321 Ren et al. May 2008 B1
7374283 Blum et al. May 2008 B2
7380936 Howell et al. Jun 2008 B2
7396126 Blum et al. Jul 2008 B2
7401918 Howell et al. Jul 2008 B2
7404636 Blum et al. Jul 2008 B2
7425066 Blum et al. Sep 2008 B2
7438410 Howell et al. Oct 2008 B1
7452075 Luliano Nov 2008 B2
7453646 Lo Nov 2008 B2
7475984 Blum et al. Jan 2009 B2
7475985 Blum et al. Jan 2009 B2
7481531 Howell et al. Jan 2009 B2
7500746 Howell et al. Mar 2009 B1
7500747 Howell et al. Mar 2009 B2
7517083 Blum et al. Apr 2009 B2
7527375 Blum et al. May 2009 B2
7533993 Blum et al. May 2009 B2
7543934 Howell et al. Jun 2009 B2
7553019 Kulper et al. Jun 2009 B2
7581833 Howell et al. Sep 2009 B2
7588332 Blum et al. Sep 2009 B2
7594726 Silver Sep 2009 B2
7604349 Blum et al. Oct 2009 B2
7621634 Howell et al. Nov 2009 B2
7654667 Blum et al. Feb 2010 B2
7656509 Haddock et al. Feb 2010 B2
7675686 Lo et al. Mar 2010 B2
7677723 Howell et al. Mar 2010 B2
7728949 Clarke et al. Jun 2010 B2
7731358 Blum et al. Jun 2010 B2
7744215 Blum et al. Jun 2010 B2
7760898 Howell et al. Jul 2010 B2
7771046 Howell et al. Aug 2010 B2
7777660 Chen et al. Aug 2010 B2
7782541 Oh et al. Aug 2010 B2
7784935 Jackson et al. Aug 2010 B2
7806525 Howell et al. Oct 2010 B2
7813048 Lynch et al. Oct 2010 B2
7850304 Jacobs et al. Dec 2010 B2
7883206 Blum et al. Feb 2011 B2
7883207 Iyer et al. Feb 2011 B2
7922321 Howell et al. Apr 2011 B2
7926940 Blum et al. Apr 2011 B2
7926941 Blum et al. Apr 2011 B2
7971994 Blum et al. Jul 2011 B2
7988286 Blum et al. Aug 2011 B2
8016415 Figler et al. Sep 2011 B2
8047651 Blum et al. Nov 2011 B2
8066373 Blum et al. Nov 2011 B2
8075132 Blum et al. Dec 2011 B2
8092016 Blum et al. Jan 2012 B2
8109629 Howell et al. Feb 2012 B2
8154804 McGinn et al. Apr 2012 B2
8197063 Iyer et al. Jun 2012 B2
8215770 Blum et al. Jul 2012 B2
8308295 Blum et al. Nov 2012 B2
8317321 Haddock et al. Nov 2012 B2
8319937 Clarke et al. Nov 2012 B2
8333470 Blum et al. Dec 2012 B2
8337013 Howell et al. Dec 2012 B2
8337014 Kokonaski et al. Dec 2012 B2
8408699 Blum et al. Apr 2013 B2
8430507 Howell et al. Apr 2013 B2
8434863 Howell et al. May 2013 B2
8434864 Gupta et al. May 2013 B2
8465151 Howell et al. Jun 2013 B2
8500271 Howell et al. Aug 2013 B2
8523354 Haddock et al. Sep 2013 B2
8534832 Gupta et al. Sep 2013 B2
8573774 Gupta et al. Nov 2013 B2
8579435 Blum et al. Nov 2013 B2
8641191 Blum et al. Feb 2014 B2
8662665 Iyer et al. Mar 2014 B2
8678581 Blum Mar 2014 B2
8708483 Kokonaski et al. Apr 2014 B2
8770742 Howell et al. Jul 2014 B2
8778022 Blum et al. Jul 2014 B2
8783861 Blum et al. Jul 2014 B2
8801174 Wiley Aug 2014 B2
8827446 Iyer et al. Sep 2014 B2
8830408 Haddock et al. Sep 2014 B2
8854519 Duston et al. Oct 2014 B2
8905541 Blum et al. Dec 2014 B2
8915588 Blum et al. Dec 2014 B2
8921445 Turshani et al. Dec 2014 B2
8922902 Blum et al. Dec 2014 B2
8928796 Van Heugten et al. Jan 2015 B2
8931896 Blum Jan 2015 B2
8944590 Blum et al. Feb 2015 B2
8979259 Haddock et al. Mar 2015 B2
9022563 Blum et al. May 2015 B2
9028062 Kokonaski et al. May 2015 B2
9033494 Blum et al. May 2015 B2
9074040 Turshani et al. Jul 2015 B2
9081208 Blum et al. Jul 2015 B2
9096026 Hall et al. Aug 2015 B2
9122077 Gupta et al. Sep 2015 B2
9122083 Blum et al. Sep 2015 B2
9124796 Blum et al. Sep 2015 B2
9142329 Trajkovska et al. Sep 2015 B2
9146407 Clarke et al. Sep 2015 B2
9155614 Blum et al. Oct 2015 B2
9199420 Trajkovska et al. Dec 2015 B2
9207467 Gupta et al. Dec 2015 B2
9229248 Kokonaski et al. Jan 2016 B2
9268153 Blum et al. Feb 2016 B2
9323101 Blum et al. Apr 2016 B2
D755281 Blum et al. May 2016 S
9329309 Van Heugten et al. May 2016 B2
9411172 Haddock et al. Aug 2016 B2
9442305 Blum et al. Sep 2016 B2
9470909 Willey et al. Oct 2016 B2
9588396 Haddock et al. Mar 2017 B2
9625767 Duston et al. Apr 2017 B2
9690117 Blum et al. Jun 2017 B2
9712738 Van Heugten et al. Jul 2017 B2
9801709 Blum et al. Oct 2017 B2
20010007493 Masunaga et al. Jul 2001 A1
20010043266 Robinson et al. Nov 2001 A1
20010055094 Zhang Dec 2001 A1
20020140899 Blum et al. Oct 2002 A1
20020149739 Perrott et al. Oct 2002 A1
20020186346 Stantz et al. Dec 2002 A1
20030018383 Azar Jan 2003 A1
20030095336 Floyd May 2003 A1
20030151721 Lai et al. Aug 2003 A1
20030210377 Blum et al. Nov 2003 A1
20040000733 Swab et al. Jan 2004 A1
20040001180 Epstein Jan 2004 A1
20040008319 Lai et al. Jan 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040117011 Aharoni et al. Jun 2004 A1
20040130677 Liang et al. Jul 2004 A1
20040156012 Jannard et al. Aug 2004 A1
20040179280 Nishioka Sep 2004 A1
20040196435 Dick et al. Oct 2004 A1
20040223113 Blum et al. Nov 2004 A1
20040246440 Andino et al. Dec 2004 A1
20050073739 Meredith Apr 2005 A1
20050078274 Howell et al. Apr 2005 A1
20050099594 Blum et al. May 2005 A1
20050124983 Frey et al. Jun 2005 A1
20050140922 Bekerman et al. Jun 2005 A1
20050140924 Blum et al. Jun 2005 A1
20050206844 Blum et al. Sep 2005 A1
20050213027 Blum et al. Sep 2005 A1
20050225723 Pilu Oct 2005 A1
20050225823 Ling et al. Oct 2005 A1
20050230596 Howell Oct 2005 A1
20050237477 Lindahl Oct 2005 A1
20050237485 Blum et al. Oct 2005 A1
20050239502 Swab et al. Oct 2005 A1
20050242771 Blum et al. Nov 2005 A1
20050248719 Howell et al. Nov 2005 A1
20050264752 Howell et al. Dec 2005 A1
20050270479 Canavan et al. Dec 2005 A1
20050270481 Blum et al. Dec 2005 A1
20060001827 Howell et al. Jan 2006 A1
20060023158 Howell Feb 2006 A1
20060044510 Williams et al. Mar 2006 A1
20060066808 Blum et al. Mar 2006 A1
20060077562 Silver Apr 2006 A1
20060092340 Blum et al. May 2006 A1
20060095128 Blum et al. May 2006 A1
20060132382 Jannard Jun 2006 A1
20060164593 Peyghambarian et al. Jul 2006 A1
20060203186 Ifergan Sep 2006 A1
20060238701 Blum Oct 2006 A1
20060250699 Silver Nov 2006 A1
20070030442 Howell et al. Feb 2007 A1
20070059503 Park et al. Mar 2007 A1
20070091257 Spivey Apr 2007 A1
20070121061 Kim May 2007 A1
20070159562 Haddock et al. Jul 2007 A1
20070211207 Lo Sep 2007 A1
20070258039 Duston et al. Nov 2007 A1
20070263293 Batchko et al. Nov 2007 A1
20070296918 Blum et al. Dec 2007 A1
20080019015 Fernandez et al. Jan 2008 A1
20080084532 Kurtin Apr 2008 A1
20080100792 Blum et al. May 2008 A1
20080106694 Blum et al. May 2008 A1
20080106695 Kokonaski et al. May 2008 A1
20080129953 Blum et al. Jun 2008 A1
20080218684 Howell et al. Sep 2008 A1
20080316420 Agazarova Oct 2008 A1
20080273166 Kokonaski et al. Nov 2008 A1
20080273167 Clarke Nov 2008 A1
20080273169 Blum et al. Nov 2008 A1
20090002626 Wakabayashi Jan 2009 A1
20090015785 Blum et al. Jan 2009 A1
20090082835 Jaax Mar 2009 A1
20090091818 Haddock et al. Apr 2009 A1
20090116118 Frazier et al. May 2009 A1
20090120901 White et al. May 2009 A1
20090201460 Blum et al. Aug 2009 A1
20090213471 Silver et al. Aug 2009 A1
20090256977 Haddock et al. Oct 2009 A1
20090264966 Blum et al. Oct 2009 A1
20090296044 Howell et al. Dec 2009 A1
20100002190 Clarke et al. Jan 2010 A1
20100039709 Lo Feb 2010 A1
20100177277 Kokonaski et al. Jul 2010 A1
20100201938 Jackson et al. Aug 2010 A1
20100208194 Gupta et al. Aug 2010 A1
20100208195 Gupta et al. Aug 2010 A1
20100265456 Matsui Oct 2010 A1
20100271588 Kokonaski et al. Oct 2010 A1
20100309426 Howell et al. Dec 2010 A1
20110013136 Archambeau Jan 2011 A1
20110058141 Cozzani Mar 2011 A1
20110249230 Blum Oct 2011 A1
20120002159 Blum et al. Jan 2012 A1
20120002160 Blum et al. Jan 2012 A1
20120019773 Blum et al. Jan 2012 A1
20120092775 Duston et al. Apr 2012 A1
20120127420 Blum et al. May 2012 A1
20120127423 Blum et al. May 2012 A1
20120140167 Blum Jun 2012 A1
20120212696 Trajkovska et al. Aug 2012 A1
20120262667 Willey Oct 2012 A1
20120300171 Gupta et al. Nov 2012 A1
20120301604 Hall et al. Nov 2012 A1
20130010256 Haddock et al. Jan 2013 A1
20130050639 Trajkovska et al. Feb 2013 A1
20130070198 Willey et al. Mar 2013 A1
20130201439 Kokonaski et al. Aug 2013 A1
20130208238 Kokonaski et al. Aug 2013 A1
20130215374 Blum et al. Aug 2013 A1
20130235332 Blum et al. Sep 2013 A1
20130242253 Blum et al. Sep 2013 A1
20130250135 Blum et al. Sep 2013 A1
20130250233 Blum et al. Sep 2013 A1
20130282117 Van Heugten et al. Oct 2013 A1
20130293825 Gupta et al. Nov 2013 A1
20130329183 Blum et al. Dec 2013 A1
20130342807 Blum et al. Dec 2013 A1
20140036172 Trajkovska et al. Feb 2014 A1
20140132916 Iyer et al. May 2014 A1
20140198370 Trajkovska-Broach et al. Jul 2014 A1
20140204333 Blum et al. Jul 2014 A1
20140237817 Trajkovska-Broach et al. Aug 2014 A1
20140293215 Dall Longa et al. Oct 2014 A1
20140313473 Willey Oct 2014 A1
20140327875 Blum et al. Nov 2014 A1
20140327950 Trajkovska-Broach et al. Nov 2014 A1
20140347581 Haddock et al. Nov 2014 A1
20150027613 Trajkovska-Broach et al. Jan 2015 A1
20150301338 Van Heugten et al. Oct 2015 A1
20150335420 Blum et al. Nov 2015 A1
20150378177 Blum et al. Dec 2015 A1
20150378180 Blum et al. Dec 2015 A1
20160202399 Van Heugten et al. Jul 2016 A1
20170031181 Blum et al. Feb 2017 A1
20170075141 Blum et al. Mar 2017 A1
20170108713 Blum et al. Apr 2017 A1
20170172729 Blum et al. Jun 2017 A1
20170176777 Blum et al. Jun 2017 A1
20170205680 Trajkovska-Broach et al. Jul 2017 A1
20170242317 Li et al. Aug 2017 A1
20170293197 Milton et al. Oct 2017 A1
20170297283 Van Heugten et al. Oct 2017 A1
20170336637 Van Heugten et al. Nov 2017 A1
Foreign Referenced Citations (71)
Number Date Country
ROC89113088 Oct 2001 CN
2304134 Aug 1973 DE
4223395 Jan 1994 DE
201 03 525 Mar 2003 DE
0 027 339 Apr 1981 EP
0061002 Sep 1982 EP
0154962 Sep 1985 EP
0 225 034 Jun 1987 EP
0233104 Aug 1987 EP
0237365 Sep 1987 EP
0 308 705 Mar 1989 EP
0 578 833 Jan 1994 EP
0 649 044 Apr 1995 EP
1647854 Apr 2006 EP
1727393 Nov 2006 EP
1916561 Apr 2008 EP
2233964 Sep 2010 EP
2 011 640 Jul 1979 GB
1563929 Apr 1980 GB
2170613 Aug 1986 GB
2169417 Jul 1987 GB
55-076323 Jun 1980 JP
61156227 Jul 1986 JP
61177429 Aug 1986 JP
1 237610 Sep 1989 JP
05-100201 Apr 1993 JP
11352445 Dec 1998 JP
2008083299 Apr 2008 JP
09294654 Dec 2009 JP
WO 9201417 Feb 1992 WO
WO 9827863 Jul 1998 WO
WO 9901063 Jan 1999 WO
WO 9921400 Apr 1999 WO
WO 9927334 Jun 1999 WO
WO 1999041624 Aug 1999 WO
WO 0102895 Jan 2001 WO
WO 0135159 May 2001 WO
WO 2001075510 Oct 2001 WO
WO 03050472 Jun 2003 WO
WO 03068059 Aug 2003 WO
WO 04008189 Jan 2004 WO
WO 04015481 Feb 2004 WO
WO 04034095 Apr 2004 WO
WO 2004028203 Apr 2004 WO
WO 04072687 Aug 2004 WO
WO 2005016057 Feb 2005 WO
WO 2006086155 Aug 2006 WO
WO 2006126881 Nov 2006 WO
WO 20061235960 Dec 2006 WO
WO 2007062601 Jun 2007 WO
WO 2007142520 Dec 2007 WO
WO 2007142602 Dec 2007 WO
WO 2007142602 Dec 2007 WO
WO 2008002388 Jan 2008 WO
WO 2008002388 Jan 2008 WO
WO 2008024071 Feb 2008 WO
WO 2008045283 Apr 2008 WO
WO 2008046858 Apr 2008 WO
WO 2008051520 May 2008 WO
WO 2008115251 Sep 2008 WO
WO 2009081542 Jul 2009 WO
WO 2009098719 Aug 2009 WO
WO 2009109749 Sep 2009 WO
WO 2009126946 Oct 2009 WO
WO 2009125184 Oct 2009 WO
WO 2009136667 Nov 2009 WO
WO 2010062504 Jun 2010 WO
WO 2010080999 Jul 2010 WO
WO 2011119601 Sep 2011 WO
WO 2012068527 May 2012 WO
WO 2014184137 Nov 2014 WO
Non-Patent Literature Citations (57)
Entry
“Hearing Mojo: Varibel Hearing-Aid Glasses Integrate Eight Directional Microphones,” Feb. 27, 2009, pp. 1-4, URL-http://hearingmojo.com/blog-mt/blog-mt/2006/04/varibel_hearingaid_glasses_dou.html.
Anderson, M.; Adaptive Optics: Liquid Crystals Lower the Cost of Adaptive Optics; Laser Focus World, Dec. 1999.
Bradley, Arthur; Profile: Larry N. Thibos, PhD., and Donald T. Miller, PhD.; Indiana Journal of Optometry; Spring 1999; vol. 2, No. 1.
International Preliminary Report on Patentability corresponding to the PCT/US2011/042882 application.
International Search Report cited in PCT/US2011/029419 application.
International Search Report corresponding to the PCT/US2011/042048 application.
Davis, Robert A.; Computer Vision Syndrome—The Eyestrain Epidemic; Review of Optometry, Sep. 15, 1997.
Donald T. Miller, Xin Hong, and Larry N. Thibos, “Requirements for segmented spatial light modulators for diffraction-limited imaging through aberrated eyes,” G.D. Love, ed. Proceedings of the 2nd International Workshop on Adaptive Optics for Industry and Medecine, World Scientific, Singapore, 63-68 (Jul. 1999).
European Search Report in related EP07852880.9 application.
Eyecare Business, Oct. 1997.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2008/058056, dated Nov. 10, 2009; 6 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2010/020498, dated Jul. 12, 2011; 9 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2011/042882, dated Jan. 8, 2013; 11 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2011/042883, dated Jan. 8, 2013; 9 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2011/043591, dated Jan. 15, 2013; 10 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2011/061495, dated May 21, 2013; 8 pages.
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2011/061505, dated May 21, 2013; 14 pages.
International Search Report and Written Opinion in corresponding PCT/US2008/058056 application.
International Search Report and Written Opinion of the International Searching Authority directed to related International Patent Application No. PCT/US2008/058056, dated Jul. 17, 2008; 7 pages.
International Search Report corresponding to the PCT/US2011/042882 application.
International Search Report corresponding to the PCT/US2011/042883 application.
International Search Report corresponding to the PCT/US2011/043591 application.
International Search Report corresponding to the PCT/US2011/061495 application.
International Search Report corresponding to the PCT/US2011/061505 application.
International Search Report directed to related International Patent Application No. PCT/US2008/058056, dated Jul. 17, 2008; 1 page.
International Search Report directed to related International Patent Application No. PCT/US2010/020498, dated Jun. 25, 2010; 5 pages.
International Search Report directed to related International Patent Application No. PCT/US2011/042882, dated Feb. 15, 2012; 6 pages.
International Search Report directed to related International Patent Application No. PCT/US2011/042883, dated Feb. 7, 2012; 7 pages.
International Search Report directed to related International Patent Application No. PCT/US2011/043591, dated Feb. 3, 2012; 7 pages.
International Search Report directed to related International Patent Application No. PCT/US2011/061495, dated Feb. 29, 2012; 3 pages.
International Search Report directed to related International Patent Application No. PCT/US2011/061505, dated May 25, 2012; 7 pages.
International Search Report directed to related International Patent Application No. PCT/US2012/051202, dated Jan. 15, 2013; 4 pages.
Kowel, Stephen T., et al; Focusing by electical modulation of refraction in a liquid crystal cell; Applied Optics; Jan. 15, 1984; vol. 23, No. 2.
Lazarus, Stuart M.; The Use of Yoked Base-Up and Base-In Prism for Reducing Eye Strain at the Computer; Journal of the American Optometric Association, Apr. 1996.
Liquid Lenses Eye Commercial Breakthrough; Opto & Laser Europe, Nov. 2003.
Naumov, A.F.; Control Optimization of Spherical Modal Liquid Crystal Lenses; Optics Express, Apr. 26, 1999; vol. 4, No. 9; Optical Society of America.
Naumov, A.F.; Liquid Crystal Adaptive Lenses with Modal Control; Optics Letters, Jul. 1, 1998, vol. 23, No. 13; Optical Society of America.
Partial International Search Report corresponding to PCT/US2012/051202 application.
Partial International Search Report in corresponding. PCT/US2010/020498 application.
Supplementary European Search Report directed to related European Patent Application No. 07852880.9-2217, dated Feb. 9, 2010, 7 pages.
Thibos, Larry N., et al.; Electronic Spectacles for the 2Ist Century, Indian Journal of Optometry, Spring 1999; vol. 2, No. 1.
Thibos, Larry N., et al.; Use of Liquid-Crystal Adaptive-Optics to Alter the Refractive State of the Eye; Optometry and Vision Science; Jul. 1997; vol. 74, No. 7; American Academy of Optometry.
Thibos, Larry N., et al.; Vision through a liquid-crystal spatial light modulator; Adaptive Optics Conference; Jul. 1999; Durham, UK.
Miller, Donald T., et al.; Requirements for Segmented Spatial Light Modulators for Diffraction-Limited Imaging Through Aberrated Eyes; Adaptive Optics Conference; Jul. 1999; Durham, UK.
U.S. Appl. No. 60/796,876, filed May 3, 2006.
U.S. Appl. No. 60/854,677, filed Oct. 27, 2006.
U.S. Appl. No. 60/854,697, filed Oct. 27, 2006.
U.S. Appl. No. 61/326,703, filed Apr. 22, 2010.
U.S. Appl. No. 61/358,447, filed Jun. 25, 2010.
U.S. Appl. No. 61/361,110, filed Jul. 2, 2010.
U.S. Appl. No. 61/362,877, filed Jul. 9, 2010.
U.S. Appl. No. 61/366,746, filed Jul. 22, 2010.
U.S. Appl. No. 61/376,719, filed Aug. 25, 2010.
U.S. Appl. No. 61/382,963, filed Sep. 15, 2010.
U.S. Appl. No. 61/415,391, filed Nov. 19, 2010.
U.S. Appl. No. 61/441,817, filed Feb. 11, 2011.
U.S. Appl. No. 61/481,353, filed May 2, 2011.
Related Publications (1)
Number Date Country
20130250233 A1 Sep 2013 US
Provisional Applications (17)
Number Date Country
61563937 Nov 2011 US
61537205 Sep 2011 US
61524567 Aug 2011 US
61441817 Feb 2011 US
61382963 Sep 2010 US
61366746 Jul 2010 US
61358447 Jun 2010 US
61481353 May 2011 US
61415391 Nov 2010 US
61638290 Apr 2012 US
60978517 Oct 2007 US
60929419 Jun 2007 US
60924225 May 2007 US
61326703 Apr 2010 US
61317100 Mar 2010 US
61376719 Aug 2010 US
60929419 Jun 2007 US
Continuations (5)
Number Date Country
Parent 12834526 Jul 2010 US
Child 13726267 US
Parent 12054299 Mar 2008 US
Child 12834526 US
Parent 13890809 US
Child 12834526 US
Parent 12054299 Mar 2008 US
Child 12834526 US
Parent 13890809 US
Child 12834526 US
Continuation in Parts (18)
Number Date Country
Parent 13587645 Aug 2012 US
Child 13890809 US
Parent 13372240 Feb 2012 US
Child 13587645 US
Parent 13890809 US
Child 13587645 US
Parent 13726267 Dec 2012 US
Child 13890809 US
Parent 13372240 Feb 2012 US
Child 13890809 US
Parent 13890809 US
Child 13890809 US
Parent 13169996 Jun 2011 US
Child 13890809 US
Parent PCT/US2011/029419 Mar 2011 US
Child 13169996 US
Parent 13890809 US
Child 13169996 US
Parent 12834526 Jul 2010 US
Child 13890809 US
Parent 13298997 Nov 2011 US
Child 13890809 US
Parent 13890809 US
Child 13890809 US
Parent 13298992 Nov 2011 US
Child 13890809 US
Parent 13175633 Jul 2011 US
Child 13298992 US
Parent 13175634 Jul 2011 US
Child 13175633 US
Parent 13179219 Jul 2011 US
Child 13175634 US
Parent 13890809 US
Child 13175634 US
Parent 13866575 Apr 2013 US
Child 13890809 US