Moisture-resistant solar cells for solar roof tiles

Information

  • Patent Grant
  • 10672919
  • Patent Number
    10,672,919
  • Date Filed
    Tuesday, September 19, 2017
    7 years ago
  • Date Issued
    Tuesday, June 2, 2020
    4 years ago
Abstract
One embodiment can provide a solar module. The solar module can include one or more moisture-resistant photovoltaic structures. A respective photovoltaic structure can include a base layer, an emitter layer positioned on a first side of the base layer, and a moisture barrier layer positioned on a first side of the emitter layer, thereby reducing the amount of moisture that reaches a junction between the base layer and the emitter layer.
Description
FIELD OF THE INVENTION

This is generally related to solar modules. More specifically, this is related to solar roof tile modules.


Definitions

“Solar cell” or “cell” is a photovoltaic structure capable of converting light into electricity. A cell may have any size and any shape, and may be created from a variety of materials. For example, a solar cell may be a photovoltaic structure fabricated on a silicon wafer or one or more thin films on a substrate material (e.g., glass, plastic, or any other material capable of supporting the photovoltaic structure), or a combination thereof.


A “solar cell strip,” “photovoltaic strip,” or “strip” is a portion or segment of a photovoltaic structure, such as a solar cell. A photovoltaic structure may be divided into a number of strips. A strip may have any shape and any size. The width and length of a strip may be the same as or different from each other. Strips may be formed by further dividing a previously divided strip.


A “cascade” is a physical arrangement of solar cells or strips that are electrically coupled via electrodes on or near their edges. There are many ways to physically connect adjacent photovoltaic structures. One way is to physically overlap them at or near the edges (e.g., one edge on the positive side and another edge on the negative side) of adjacent structures. This overlapping process is sometimes referred to as “shingling.” Two or more cascading photovoltaic structures or strips can be referred to as a “cascaded string,” or more simply as a “string.”


“Finger lines,” “finger electrodes,” and “fingers” refer to elongated, electrically conductive (e.g., metallic) electrodes of a photovoltaic structure for collecting carriers.


A “busbar,” “bus line,” or “bus electrode” refers to an elongated, electrically conductive (e.g., metallic) electrode of a photovoltaic structure for aggregating current collected by two or more finger lines. A busbar is usually wider than a finger line, and can be deposited or otherwise positioned anywhere on or within the photovoltaic structure. A single photovoltaic structure may have one or more busbars.


A “photovoltaic structure” can refer to a solar cell, a segment, or solar cell strip. A photovoltaic structure is not limited to a device fabricated by a particular method. For example, a photovoltaic structure can be a crystalline silicon-based solar cell, a thin film solar cell, an amorphous silicon-based solar cell, a poly-crystalline silicon-based solar cell, or a strip thereof.


A “solar roof tile” refers to a solar module that not only is capable of generating electricity by absorbing sunlight but can also function as a conventional roof tile.


BACKGROUND

Advances in photovoltaic technology, which is used to make solar panels, have helped solar energy gain mass appeal among those wishing to reduce their carbon footprint and decrease their monthly energy costs. In the past decade, the number of residential homes equipped with solar panels has grown significantly. However, conventional rooftop solar panels often leave some portion of the roof uncovered, thus missing the opportunity to collect as much solar energy as possible. In addition, these conventional rooftop panels can be industrial-looking and often lack the curb appeal many homeowners desire.


Solar shingles or tiles, on the other hand, are solar modules that have a similar appearance to conventional roof shingles or tiles. In addition to converting sunlight into electricity, the solar shingles or tiles also protect the roof from weather the same way traditional shingles or tiles do. They allow homeowners to turn their roof into an electricity generator while maintaining a conventional roofline.


Compared to traditional solar panels that were placed inside an aluminum frame, solar roof tiles are often frameless. This means that moisture may permeate the encapsulant from the edges of the tiles under wet conditions. On the other hand, many high-efficiency Si heterojunction (SHJ) solar cells use transparent conductive oxide (TCO) (e.g., indium tin oxide (ITO) or zinc oxide (ZnO)) for electrical contact. Compared to diffusion-based solar cells, TCO-based SHJ solar cells are more susceptible to moisture ingress. More specifically, conventional TCO materials tend to lose their material properties when exposed to moisture and may even serve as a medium through which moisture can reach the junction of the solar cell, thus degrading the solar cell performance drastically. Photovoltaic structures encapsulated within the solar roof tiles need to be moisture resistant.


SUMMARY

One embodiment can provide a solar module. The solar module can include one or more moisture-resistant photovoltaic structures. A respective photovoltaic structure can include a base layer, an emitter layer positioned on a first side of the base layer, and a moisture barrier layer positioned on a first side of the emitter layer, thereby reducing the amount of moisture that reaches a junction between the base layer and the emitter layer.


In a variation of the embodiment, the moisture barrier layer can include a moisture-resistant transparent conductive oxide (TCO) layer deposited on a surface of the emitter layer.


In a further variation, the moisture-resistant TCO layer can include an indium tin oxide (ITO) layer with a grain size of at least 40 nm.


In a further variation, the moisture-resistant TCO layer can include one or more of: Ti doped indium oxide, Ti and Ta doped indium oxide, tungsten doped indium oxide cerium doped indium oxide, Si doped ZnO, and Ga and In co-doped ZnO (IGZO).


In a variation of the embodiment, the moisture barrier layer can include a dielectric coating.


In a further variation, the solar module can further include a transparent conductive oxide (TCO) layer positioned between the dielectric coating and the emitter layer.


In a further variation, the dielectric coating can include silicon oxide (SiOx) or silicon nitride (SiNx).


In a further variation, the dielectric coating can be formed using a plasma-enhanced chemical vapor deposition (PECVD) technique.


In a variation of the embodiment, the solar module can include a surface field layer positioned on a second side of the base layer and a second moisture barrier layer positioned on a first side of the surface field layer.


One embodiment can provide a solar roof tile. The solar roof tile can include a front cover, a back cover, and one or more photovoltaic structures positioned between the front cover and the back cover. A respective photovoltaic structure can include a base layer, an emitter layer positioned on a first side of the base layer, and a moisture barrier layer positioned on a first side of the emitter layer, thereby reducing the amount of moisture that reaches a junction between the base layer and the emitter layer.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A shows an exemplary conductive grid pattern on the front surface of a photovoltaic structure.



FIG. 1B shows an exemplary conductive grid pattern on the back surface of a photovoltaic structure.



FIG. 2A shows a string of strips stacked in a cascaded pattern.



FIG. 2B shows the side view of the string of cascaded strips.



FIG. 3A shows an exemplary configuration of solar roof tiles on a house, according to one embodiment.



FIG. 3B shows the structure of an exemplary solar roof tile, according to one embodiment.



FIG. 3C shows the structure of an exemplary photovoltaic strip, according to one embodiment.



FIG. 4A shows the structure of an exemplary solar roof tile, according to one embodiment.



FIG. 4B shows the structure of an exemplary solar roof tile, according to one embodiment.



FIG. 5A shows the structure of an exemplary moisture-resistant photovoltaic structure, according to one embodiment.



FIG. 5B shows the structure of an exemplary moisture-resistant photovoltaic structure, according to one embodiment.



FIG. 6 shows an exemplary fabrication process of a moisture-resistant photovoltaic structure, according to one embodiment.



FIG. 7 shows the top view of an exemplary solar roof tile, according to one embodiment.



FIG. 8 shows a flowchart illustrating an exemplary fabrication process of a solar roof tile, according to one embodiment.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments described herein provide a solution for the technical problem of providing moisture-resistant photovoltaic structures for solar roof tile application. In some embodiments, a moisture-resistant layer (e.g., a dielectric layer) can be deposited on the transparent-conductive oxide (TCO) layer, thus preventing moisture from reaching the solar cell junction via the TCO layer. Alternatively, specially designed TCO material can be used to form a moisture-resistant TCO layer, thus preventing moisture from penetrating the TCO layer.


Solar Roof Tile with Cascaded Strips


As described in U.S. patent application Ser. No. 14/563,867, parallel connecting multiple (such as 3) strings of cascaded solar strips can provide a solar module with a reduced internal resistance. In general, a cell can be divided into a number of (e.g., n) strips, and a module can contain a number of parallel strings of cascaded strips (the number of strings can be the same as or different from the number of strips in the cell). If a string has the same number of strips as the number of undivided photovoltaic structures in a conventional single-string module, the string can output approximately the same voltage as the conventional module. Multiple strings can be connected in parallel to form a module. If the number of strings in the module is the same as the number of strips in the cell, the module can output roughly the same current as the conventional module. On the other hand, the module's total internal resistance can be a fraction (e.g., 1/n) of the resistance of a string. Therefore, in general, the greater n is, the lower the total internal resistance of the module, and the more power one can extract from the module. However, a tradeoff is that as n increases, the number of connections required to interconnect the strings also increases, which increases the amount of contact resistance. Also, the greater n is, the more strips a single cell needs to be divided into, which increases the associated production cost and decreases overall reliability due to the larger number of strips used in a single panel.


Another consideration in determining n is the contact resistance between the electrode and the photovoltaic structure on which the electrode is formed. The greater this contact resistance, the greater n might need to be to reduce effectively the panel's overall internal resistance. Hence, for a particular type of electrode, different values of n might be needed to attain sufficient benefit in reduced total panel internal resistance to offset the increased production cost and reduced reliability. For example, a conventional electrode based on silver-paste or aluminum may require n to be greater than 4, because the process of screen printing and firing silver paste onto a cell does not produce an ideal resistance between the electrode and the underlying photovoltaic structure. In some embodiments, the electrodes, including both the busbars and finger lines, can be fabricated using a combination of physical vapor deposition (PVD) and electroplating of copper as an electrode material. The resulting copper electrode can exhibit lower resistance than an aluminum or screen-printed, silver-paste electrode. Consequently, a smaller n can be used to attain the benefit of reduced panel internal resistance. In some embodiments, n is selected to be three, which is less than the n value generally needed for cells with silver-paste electrodes or other types of electrodes. Correspondingly, two grooves can be scribed on a single cell to allow the cell to be divided into three strips.


In addition to lower contact resistance, electroplated copper electrodes can also offer better tolerance to microcracks, which may occur during a cleaving process. Such microcracks might adversely affect cells with silver-paste electrodes. Plated-copper electrodes, on the other hand, can preserve the conductivity across the cell surface even if there are microcracks in the photovoltaic structure. The copper electrode's higher tolerance for microcracks allows one to use thinner silicon wafers to manufacture cells. As a result, the grooves to be scribed on a cell can be shallower than the grooves scribed on a thicker wafer, which in turn helps increase the throughput of the scribing process. More details on using copper plating to form a low-resistance electrode on a photovoltaic structure are provided in U.S. patent application Ser. No. 13/220,532, entitled “SOLAR CELL WITH ELECTROPLATED GRID,” filed Aug. 29, 2011, the disclosure of which is incorporated herein by reference in its entirety.



FIG. 1A shows an exemplary grid pattern on the front surface of a photovoltaic structure, according to one embodiment. In the example shown in FIG. 1A, grid 102 includes three sub-grids, such as sub-grid 104. This three sub-grid configuration allows the photovoltaic structure to be divided into three strips. To enable cascading, each sub-grid needs to have an edge busbar, which can be located either at or near the edge. In the example shown in FIG. 1A, each sub-grid includes an edge busbar (“edge” here refers to the edge of a respective strip) running along the longer edge of the corresponding strip and a plurality of parallel finger lines running in a direction parallel to the shorter edge of the strip. For example, sub-grid 104 can include edge busbar 106, and a plurality of finger lines, such as finger lines 108 and 110. To facilitate the subsequent laser-assisted scribe-and-cleave process, a predefined blank space (i.e., space not covered by electrodes) is inserted between the adjacent sub-grids. For example, blank space 112 is defined to separate sub-grid 104 from its adjacent sub-grid. In some embodiments, the width of the blank space, such as blank space 112, can be between 0.1 mm and 5 mm, preferably between 0.5 mm and 2 mm. There is a tradeoff between a wider space that leads to a more tolerant scribing operation and a narrower space that leads to more effective current collection. In a further embodiment, the width of such a blank space can be approximately 1 mm.



FIG. 1B shows an exemplary grid pattern on the back surface of a photovoltaic structure, according to one embodiment. In the example shown in FIG. 1B, back grid 120 can include three sub-grids, such as sub-grid 122. To enable cascaded and bifacial operation, the back sub-grid may correspond to the front sub-grid. More specifically, the back edge busbar needs to be located near the opposite edge of the frontside edge busbar. In the examples shown in FIGS. 1A and 1B, the front and back sub-grids have similar patterns except that the front and back edge busbars are located adjacent to opposite edges of the strip. In addition, locations of the blank spaces in back conductive grid 120 correspond to locations of the blank spaces in front conductive grid 102, such that the grid lines do not interfere with the subsequent scribe-and-cleave process. In practice, the finger line patterns on the front and back side of the photovoltaic structure may be the same or different.


In the examples shown in FIGS. 1A and 1B, the finger line patterns can include continuous, non-broken loops. For example, as shown in FIG. 1A, finger lines 108 and 110 both include connected loops with rounded corners. This type of “looped” finger line pattern can reduce the likelihood of the finger lines peeling away from the photovoltaic structure after a long period of usage. Optionally, the sections where parallel lines are joined can be wider than the rest of the finger lines to provide more durability and prevent peeling. Patterns other than the one shown in FIGS. 1A and 1B, such as un-looped straight lines or loops with different shapes, are also possible.


To form a cascaded string, cells or strips (e.g., as a result of a scribing-and-cleaving process applied to a regular square cell) can be cascaded with their edges overlapped. FIG. 2A shows a string of cascaded strips, according to one embodiment. In FIG. 2A, strips 202, 204, and 206 are stacked in such a way that strip 206 partially overlaps adjacent strip 204, which also partially overlaps (on an opposite edge) strip 202. Such a string of strips forms a pattern that is similar to roof shingles. Each strip includes top and bottom edge busbars located at opposite edges of the top and bottom surfaces, respectively. Strips 202 and 204 are coupled to each other via an edge busbar 208 located at the top surface of strip 202 and an edge busbar 210 located at the bottom surface of strip 204. To establish electrical coupling, strips 202 and 204 are placed in such a way that bottom edge busbar 210 is placed on top of and in direct contact with top edge busbar 208.



FIG. 2B shows a side view of the string of cascaded strips, according to one embodiment of the invention. In the example shown in FIGS. 2A and 2B, the strips can be part of a six-inch square or pseudo-square photovoltaic structure, with each strip having a dimension of approximately two inches by six inches. To reduce shading, the overlapping between adjacent strips should be kept as small as possible. In some embodiments, the single busbars (both at the top and the bottom surfaces) are placed at the very edge of the strip (as shown in FIGS. 2A and 2B). The same cascaded pattern can extend along an entire row of strips to form a serially connected string.



FIG. 3A shows an exemplary configuration of solar roof tiles on a house, according to one embodiment. In this example, solar roof tiles 300 can be installed on a house like conventional roof tiles or shingles, and can provide the functions of conventional roof tiles as well as solar cells. Particularly, a solar roof tile can be placed along with other tiles in such a way as to prevent water leakage. At the same time, electrical connections can be made between two adjacent tiles to interconnect multiple tiles into a module, so that a number of solar roof tiles can jointly provide electrical power.



FIG. 3B shows the structure of an exemplary solar roof tile, according to one embodiment. Solar roof tile 310 can include front cover 312, back cover 314, one or more photovoltaic structures 316, and encapsulant 318 that encapsulates photovoltaic structures 316 between front cover 312 and back cover 314.


Front cover 312 can be made of tempered glass and back cover 314 can be made of a wide variety of materials, including but not limited to: glass, polyethylene terephthalate (PET), fluoropolymer, polyvinyl fluoride (PVF), polyamide, etc. For solar roof tile applications where color control is important, non-transparent backsheets (e.g., backsheets made of PET and PVF) are often used as the back cover. However, compared to glass covers, these backsheets are less moisture-resistant.


Photovoltaic structures 316 can include a number of electrically coupled, either in series or in parallel, photovoltaic strips. In some embodiments, photovoltaic structures 316 can include a plurality of cascaded strips, which are arranged in a way similar to the ones shown in FIGS. 2A-2B. FIG. 3C shows the structure of an exemplary photovoltaic strip, according to one embodiment. Photovoltaic strip 320 can include crystalline-Si (c-Si) base layer 322. To enhance efficiency, a quantum tunneling barrier (QTB) layer (e.g., layers 324 and 326) can be deposited on both surfaces of base layer 322. In some embodiments, thin QTB layer can include a thin layer of silicon oxide (SiOx), which can be formed on c-Si base layer 322 using a wet oxidation process. More specifically, the QTB layer can include a layer of silicon monoxide (SiO) having a thickness between 1 and 10 nm.


Photovoltaic strip 320 can also include emitter layer 328, surface field layer 330, and transparent conductive oxide (TCO) layers 332 and 334. Emitter layer 328 can include doped amorphous-Si (a-Si), and surface field layer 330 can include doped c-Si. TCO layers 332 and 334 can be made of typical TCO materials, including but not limited to: indium tin oxide (ITO), tin-oxide (SnOx), aluminum doped zinc-oxide (ZnO:Al or AZO), or gallium doped zinc-oxide (ZnO:Ga). To facilitating shingling, photovoltaic strip 320 can also include edge busbars 336 and 338 that are located on opposite surfaces and edges of photovoltaic strip 320. Details, including fabrication methods, about the photovoltaic strip can be found in U.S. Pat. No. 8,686,283, entitled “Solar Cell with Oxide Tunneling Junctions,” filed Nov. 12, 2010, the disclosure of which is incorporated by reference in its entirety herein.


Returning to FIG. 3B, photovoltaic structures 316 are encapsulated between front cover 312 and back cover 314 by encapsulant 318. Encapsulant 318 typically can include EVA (ethyl vinyl acetate), which can be designed to be transparent (or mostly transparent) to the entire spectrum of visible light.


As shown in FIG. 3B, due to its unique size requirement, unlike a conventional solar panel, a solar roof tile is frameless. This means that encapsulant 318 can be directly exposed to the external environment and moisture can enter the solar roof tile from the edges, as shown by the arrows. In addition, moisture may also enter the roof tile though back cover 314, if back cover 314 is a backsheet. Once inside the solar roof tile, moisture can gradually penetrate encapsulant 318 to reach photovoltaic structures 316, because the widely used encapsulant material EVA has a relatively high moisture vapor transmission rate (MVTR).


Moisture within a solar roof tile can degrade solar cell performance in multiple ways. For example, metal electrodes may corrode when exposed to moisture for a prolonged period, thus reducing power output. Moreover, once moisture reaches the surfaces of the photovoltaic structure, it may change the TCO properties. For example, ZnO or ITO films may become rough or porous when exposed to moisture for a prolonged time. A rough TCO layer may scatter light, reducing the solar cell efficiency, and a porous TCO film can allow the moisture to reach the solar cell junction, thus significantly degrading the energy conversion efficiency. In addition, moisture absorption in the TCO layer can increase the TCO resistivity, which can also cause reduction in output power. Therefore, moisture protection plays a very important role in ensuring long-term reliability of solar roof tiles.


One simple approach for enhanced moisture protection is to use an encapsulant material that is more resistant to moisture. Polyolefin has a low MVTR and can be used as an encapsulant. In addition, studies have also shown that silicone can provide better moisture protection than EVA. However, both polyolefin and silicone are more rigid than EVA and often cannot provide adequate protection to photovoltaic structures against shocks and vibrations. To solve this problem, in some embodiments, a hybrid approach is used when choosing the encapsulant material.



FIG. 4A shows the structure of an exemplary solar roof tile, according to one embodiment. Solar roof tile 400 can include front cover 402, backsheet 404, and one or more photovoltaic structures 406, which are similar to corresponding elements of solar roof tile 310 shown in FIG. 3B. However, unlike solar roof tile 310, which uses a uniform encapsulant to encapsulate the photovoltaic structures between the front cover and the backsheet, solar roof tile 400 can include two different types of encapsulant. More specifically, encapsulant layers 408 and 410 can be made of different materials. Encapsulant layer 408 is situated between photovoltaic structures 406 and backsheet 404 and can include a material having a low MVTR, such as polyolefin. Alternatively, encapsulant layer 408 can include silicone. Both polyolefin and silicone can effectively prevent moisture ingress from backsheet 404. On the other hand, the moisture-resistant requirement for encapsulant layer 410 can be more relaxed, because encapsulant layer 410 is positioned between front glass cover 402 and photovoltaic structures 406 and glass itself can be resistant to moisture ingress. Therefore, encapsulant layer 410 can include EVA, which can be a better shock absorber than polyolefin or silicone.


The hybrid encapsulant approach can also have other forms. For example, FIG. 4B shows the structure of an exemplary solar roof tile, according to one embodiment. In FIG. 4B, photovoltaic structures 426 is surrounded by encapsulant layer 428, which can include EVA. In addition, another layer of encapsulant, encapsulant layer 430 wraps around encapsulant layer 428. Encapsulant layer 430 can be made of moisture-resistant material, such as polyolefin and silicone and can effectively prevent moisture ingress from edges and the backsheet of solar roof tile 420. Both encapsulant layers 428 and 430 can facilitate encapsulation of photovoltaic structures between front cover 422 and backsheet 424.


Another approach for moisture protection of a solar roof tile is to make photovoltaic structures themselves more resistant to moisture. As discussed previously, conventional TCO layers are often permeable to moisture and can sometimes act as a medium for the moisture to reach the solar cell junction. To prevent degradation of the photovoltaic structures in the presence of moisture, one may need to prevent moisture ingress through the TCO layers.


In some embodiments, to prevent moisture ingress through the TCO layers, a moisture-protection coating can be applied onto each TCO layer to serve as a moisture barrier. The moisture-protection coating can be made of dielectric material, such as silicon oxide (SiOx) or silicon nitride (SiNx). Note that, to ensure greater moisture resistance, it is preferred that the SiOx or SiNx films are deposited onto the TCO layers using a plasma-enhanced chemical vapor deposition (PECVD) technique.



FIG. 5A shows the structure of an exemplary moisture-resistant photovoltaic structure, according to one embodiment. Photovoltaic structure 500 can include base layer 502, QTB layers 504 and 506, emitter layer 508, surface field layer 510, TCO layers 512 and 514, moisture-protection coatings 516 and 518, and edge busbars 520 and 522.


Base layer 502 and QTB layers 504 and 506 can be similar to base layer 322 and QTB layers 324 and 326, respectively, shown in FIG. 3C. Emitter layer 508 and surface field layer 510 can be similar to emitter layer 328 and surface field layer 330, respectively, shown in FIG. 3C. TCO layers 512 and 514 can be similar to TCO layers 332 and 334, respectively, shown in FIG. 3C. More specifically, TCO layers 512 and 514 can be made of conventional TCO materials, such as ZnO and ITO, and can be sensitive to moisture.


Moisture-protection coatings 516 and 518 can substantially cover the surface of TCO layers 512 and 514, respectively. More particularly, other than the portions that are in contact with the metal electrode (e.g., the finger lines and the edge busbars), the entire surface of each TCO layer is covered by a moisture-protection coating, thus preventing moisture from reaching the TCO layer. Moisture-protection coatings 516 and 518 can each include one or more dielectric thin films, such as SiOx or SiNx thin films. For good moisture-protection effect, the thickness of moisture-protection coatings 516 and 518 should be sufficiently thick. In some embodiments, moisture-protection coatings 516 and 518 can have a thickness that is between 50 and 500 nm. In further embodiments, a Si3N4 film having a thickness of 100 nm can be deposited onto TCO layers 512 and 514 to form moisture-protection coatings 516 and 518. Various deposition techniques, including chemical vapor deposition (CVD) and physical vapor deposition (PVD), can be used to form moisture-protection coatings 516 and 518. To ensure a strong moisture barrier, moisture-protection coatings 516 and 518 can be deposited onto TCO layers 512 and 514 using a PECVD technique.


In the example shown in FIG. 5A, photovoltaic structure 500 includes TCO layers as part of the electrical contacts. In practice, it is also possible that the photovoltaic structures encapsulated inside a solar roof tile do not have TCO layers. Instead, electrical contacts can be established directly between a metal electrode and the emitter or surface field layer. In such scenarios, a moisture-protecting coating can be deposited onto the emitter or surface field layer. The moisture-protecting coating used here also needs to be patterned to allow electrical coupling between the metal electrode and the emitter or surface field layer.


In addition to applying a moisture-protection coating on the TCO layer to serve as a moisture barrier, in some embodiments, it is also possible to fabricate a moisture-resistant photovoltaic structure by replacing the conventional TCO layers with moisture-resistant TCO layers. The moisture-resistant TCO layers can serve as moisture barriers to prevent moisture from reaching the junction between the base layer and the emitter. As discussed previously, TCO layers fabricated using conventional techniques or materials can be sensitive to moisture and can be permeable to moisture. Therefore, a novel fabrication technique or material is needed to obtain moisture-resistant TCO layers.


It has been shown that, in terms of moisture resistance, ITO significantly outperforms ZnO, such as Al:ZnO (also known as AZO). However, ITO fabricated under conventional conditions cannot meet the moisture-resistant requirement of solar roof tiles. This is because, under conventional conditions, the grain size of a fabricated ITO layer can be relatively small, thus resulting in a higher permeability to moisture. To solve this problem, in some embodiments, an ITO layer with a larger grain size (e.g., the smallest dimension of the grains is larger than 40 nm) can be fabricated. More specifically, the ITO layer can undergo a high temperature (e.g., greater than 400° C.) annealing process to obtain larger grain sizes. Note that, conventional ITO fabrication processes often involve an annealing temperature at about 250° C., which can result in an ITO layer with smaller grain sizes.


In addition to increasing the anneal temperature of the ITO, it is also possible to use Si doped ZnO to obtain a moisture-resistant TCO layer. Alternative dopants, such as Ga and In ions, can also be used to dope ZnO to obtain IGZO films. Studies have shown that by tuning the dopant concentration, more particularly the Ga concentration, one can improve the moisture resistance of the IGZO film. In some embodiments, the concentration of In2O3 is increased to at least 10 wt % to obtain a moisture-resistant IGZO film. Additional types of moisture-resistant TCO material can include indium oxide (In2O3) doped with Ti, Ta, or both. More specifically, the moisture-resistant TCO material can include TiO2 doped In2O3, with the doping concentration (by weight) of TiO2 in the range between 0.2% and 2%, preferably between 0.5% and 1%. Alternatively, the moisture-resistant TCO material can include In2O3 doped with both TiO2 and Ta2O5, with the doping concentration (by weight) of TiO2 in the range between 0.2% and 2%, preferably between 0.5% and 1%, and the doping concentration (by weight) of Ta2O5 in the range between 0 and 1%, preferably between 0.2% and 0.6%. Other types of TCO material are also possible for enhancing moisture resistance, including but not limited to: ITO with low (e.g., less than 2% by weight) SnO2 doping, tungsten doped In2O3 (IWO), and cerium doped indium oxide (ICeO).



FIG. 5B shows the structure of an exemplary moisture-resistant photovoltaic structure, according to one embodiment. Photovoltaic structure 540 can include base layer 542, QTB layers 544 and 546, emitter layer 548, surface field layer 550, moisture-resistant TCO layers 552 and 554, and edge busbars 556 and 558.


Base layer 542 and QTB layers 544 and 546 can be similar to base layer 322 and QTB layers 324 and 326, respectively, shown in FIG. 3C. Emitter layer 548 and surface field layer 550 can be similar to emitter layer 328 and surface field layer 330, respectively, shown in FIG. 3C.


Moisture-resistant TCO layers 552 and 554 can include ITO with a grain size larger than 40 nm, Si doped ZnO, or IGZO with the concentration of In2O3 being greater than 10 wt %. More specifically, the larger grain ITO layers can be fabricated using a low temperature (e.g., less than 200° C.) PVD process followed by a high temperature (e.g., greater than 400° C.) thermal annealing process. When moisture-resistant TCO layers are applied, there is no longer a need for the dielectric moisture-protection coating, thus significantly simplifying the fabrication process. Edge busbars 556 and 558 can be formed on top of moisture-resistant TCO layers 552 and 554, respectively.



FIG. 6 shows an exemplary fabrication process of a moisture-resistant photovoltaic structure, according to one embodiment. During fabrication, a crystalline-Si (c-Si) substrate can be prepared (operation 602). In some embodiments, a standard texturing and cleaning process can be applied to both surfaces of a crystalline-Si wafer. Front and back QTB layers can then be formed (e.g., using a wet oxidation process) on both surfaces of the c-Si base layer (operation 604). Subsequently, a layer of hydrogenated amorphous Si (a-Si) can be deposited on a QTB layer (e.g., the back QTB layer that faces away from sunlight) to form an emitter (operation 606). The emitter typically has a doping type that is opposite to that of the base layer. In some embodiments, the emitter layer can have a graded doping profile. Similarly, a different layer of hydrogenated amorphous Si (a-Si) can be deposited on the other QTB layer (e.g., the front QTB layer) to form a surface field layer (operation 608). The surface field layer typically has a doping type that is the same as that of the base layer.


After the formation of the emitter and surface field layers, front and back TCO layers can be deposited on the emitter and surface field layers (operation 610). In some embodiments, the front and back TCO layers may be formed simultaneously. Alternatively, the front and back TCO layers may be formed sequentially. A PVD process, such as evaporation or sputtering, can be used to deposit the TCO layers.


In some embodiments, the TCO layers can be formed in such a way that they have superior moisture-resistant properties. For example, forming the TCO layers can include depositing, using a low-temperature PVD process, an ITO layer on the emitter or surface field layer, followed by a high temperature thermal annealing process, which can include annealing the ITO at a temperature greater than 400° C. Alternatively, forming the TCO layers can include depositing a Si doped ZnO layer or a Ga and In co-doped ZnO layer on the emitter or surface field layer.


Subsequently, a patterned moisture-protection coating can be formed on each TCO layer (operation 612). More specifically, the moisture-protection coating is patterned according to the pattern of the metal grid (e.g., locations of finger lines and busbars). Because the moisture-protection coating is dielectric, to enable electrical coupling between the metal electrode and the TCO layers, the moisture-protection coating needs to be patterned. Various techniques can be used to form the patterned moisture-protection coatings. In some embodiments, a combination of a photolithography process and a PECVD process can be used to form a patterned moisture-protection layer (e.g., a patterned Si3N4 layer). Operation 612 can be optional if the TCO layers have superior moisture-resistant properties.


Front and back metallic grids, including finger lines and busbars can then be formed on the patterned front and back moisture-protection coatings, respectively, to complete the fabrication of the photovoltaic structure (operation 614). More specifically, metallic material (e.g., Cu ions) can be deposited into the windows of the patterned moisture-protection coating to form a metallic grid. In some embodiments, the metallic grid can include a PVD seed layer and an electroplated bulk layer.



FIG. 7 shows the top view of an exemplary solar roof tile, according to one embodiment. In FIG. 7, solar roof tile 700 can include front glass cover 702 and solar cells 704 and 706. Each solar cell can be a conventional square or pseudo-square solar cell, such as a six-inch solar cell. In some embodiments, solar cells 704 and 706 can each be divided into three separate pieces of similar or different sizes. For example, solar cell 704 can include strips 708, 712, and 712. These strips can be arranged in such a way that adjacent strips partially overlap at the edges, similar to the ones shown in FIGS. 2A-2B. For simplicity of illustration, the electrode grids, including the finger lines and edge busbars, of the strips are not shown in FIG. 7.


To further improve moisture-protection, in some embodiments, the hybrid encapsulant approach can be combined with the moisture-resistant photovoltaic structures. FIG. 8 shows a flowchart illustrating an exemplary fabrication process of a solar roof tile, according to one embodiment. During fabrication, a front cover of an appropriate size can be obtained (operation 802). Depending on the design, in some embodiments, the front cover can be large enough to accommodate at least two 6-inch square solar cells placed side by side. In some embodiments, the front cover can be made of tempered glass.


A front encapsulant layer can be placed on the front cover (operation 804). In some embodiments, the front encapsulant layer may include a layer of EVA. In alternative embodiments, the front encapsulant layer may include multiple layers of encapsulant material. The encapsulant layer that is in direct contact with the photovoltaic structures can include EVA, whereas the encapsulant layer that is in direct contact with the front cover can include moisture-resistant silicone or polyolefin.


Subsequently, moisture-resistant photovoltaic strips can be obtained (operation 806). In some embodiments, the moisture-resistant photovoltaic strips can include dielectric moisture-protection layers deposited onto conventional TCO layers. In some embodiments, the moisture-resistant photovoltaic strips can include moisture-resistant TCO layers. In some embodiments, the moisture-resistant photovoltaic strips can include dielectric moisture-protection layers deposited onto the moisture-resistant TCO layers. A number of photovoltaic strips can be electrically and mechanically coupled to form a string (operation 808), and a string of photovoltaic strips can be placed on the front encapsulant layer (operation 810). In some embodiments, a solar roof tile may include one string that comprises six cascaded strips. More specifically, photovoltaic strips can be obtained by dividing a standard square or pseudo-square solar cell into multiple pieces; and a string of strips can be formed by cascading multiple strips at the edges. The cascading forms a serial connection among the strips. Detailed descriptions about the formation of a cascaded string of photovoltaic strips can be found in U.S. patent application Ser. No. 14/826,129, entitled “PHOTOVOLTAIC STRUCTURE CLEAVING SYSTEM,” filed Aug. 13, 2015; U.S. patent application Ser. No. 14/866,776, entitled “SYSTEMS AND METHODS FOR CASCADING PHOTOVOLTAIC STRUCTURES,” filed Sep. 25, 2015; U.S. patent application Ser. No. 14/804,306, entitled “SYSTEMS AND METHODS FOR SCRIBING PHOTOVOLTAIC STRUCTURES,” filed Jul. 20, 2015; U.S. patent application Ser. No. 14/866,806, entitled “METHODS AND SYSTEMS FOR PRECISION APPLICATION OF CONDUCTIVE ADHESIVE PASTE ON PHOTOVOLTAIC STRUCTURES,” filed Sep. 25, 2015; and U.S. patent application Ser. No. 14/866,817, entitled “SYSTEMS AND METHODS FOR TARGETED ANNEALING OF PHOTOVOLTAIC STRUCTURES,” filed Sep. 25, 2015; the disclosures of which are incorporated herein by reference in their entirety.


Subsequently, a back encapsulant layer can be placed on the photovoltaic string (operation 812). Similar to the front encapsulant layer, the back encapsulant layer can include a single EVA layer or multiple layers of encapsulant material. The encapsulant layer that is in direct contact with the photovoltaic structures can include EVA, whereas the encapsulant layer that is in direct contact with the backsheet can include moisture-resistant silicone or polyolefin. A backsheet can then be placed on the back encapsulant layer (operation 814), followed by a lamination process to form a solar roof tile (operation 816).


The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the invention.

Claims
  • 1. A solar roof tile, comprising: a front cover;a back cover; andone or more photovoltaic structures positioned between the front cover and the back cover, wherein a respective photovoltaic structure comprises: a base layer;an emitter layer positioned on a first side of the base layer;a transparent conductive oxide (TCO) layer positioned on the emitter layer; anda moisture barrier layer directly deposited onto the TCO layer, configured to reduce an amount of moisture that reaches a junction between the base layer and the emitter layer, wherein the moisture barrier layer comprises a patterned dielectric layer in direct contact with the TCO layer and having openings that allow a metallic edge busbar to be in contact with the TCO layer; anda bilayer encapsulant structure positioned between the front cover and the back cover, wherein the bilayer encapsulant structure comprises a first encapsulant layer and a second encapsulant layer,wherein the first encapsulant layer comprises a first material and the second encapsulant layer comprises a second material, andwherein the first material has a higher moisture transmission rate than the second material and the second material is more rigid than the first material.
  • 2. The solar roof tile of claim 1, wherein the TCO layer comprises one or more of: an indium tin oxide (ITO) layer with a grain size of at least 40 nm;Ti doped indium oxide;Ti and Ta doped indium oxide;tungsten doped indium oxide;cerium doped indium oxide;a layer of Si doped ZnO; anda layer of Ga and In co-doped ZnO (IGZO).
  • 3. The solar roof tile of claim 1, wherein the dielectric coating comprises silicon oxide (SiOx) or silicon nitride (SiNx).
  • 4. The solar roof tile of claim 1, wherein the front cover comprises tempered glass, wherein the back cover comprises a photovoltaic backsheet, and wherein the first encapsulant layer is positioned between the photovoltaic structures and the front cover and the second encapsulant layer is positioned between the photovoltaic structures and the back cover.
  • 5. The solar roof tile of claim 4, wherein the first encapsulant layer comprises ethyl vinyl acetate (EVA), and wherein the second encapsulant layer comprises silicone or polyolefin.
  • 6. The solar roof tile of claim 1, wherein the front cover comprises tempered glass, wherein the back cover comprises a photovoltaic backsheet, wherein the first encapsulant layer wraps around the photovoltaic structures, and wherein the second encapsulant layer wraps around the first encapsulant layer and the photovoltaic structures so that the first encapsulant layer and the second encapsulant layer are present between the front cover and the photovoltaic structures and so that the first encapsulant layer and the second encapsulant layer are present between the back cover and the photovoltaic structures.
  • 7. A solar roof tile, comprising: a front cover;a back cover;one or more photovoltaic structures positioned between the front cover and the back cover; and a bilayer encapsulant structure positioned between the front cover and the back cover,wherein the bilayer encapsulant structure comprises a first encapsulant layer and a second encapsulant layer,wherein the first encapsulant layer comprises a first material and the second encapsulant layer comprises a second material,wherein the first material has a higher moisture transmission rate than the second material and the second material is more rigid than the first material,wherein the first encapsulant layer wraps around the photovoltaic structures, andwherein the second encapsulant layer wraps around the first encapsulant layer and the photovoltaic structures so that the first encapsulant layer and the second encapsulant layer are present between the front cover and the photovoltaic structures and so that the first encapsulant layer and the second encapsulant layer are present between the back cover and the photovoltaic structures.
US Referenced Citations (491)
Number Name Date Kind
819360 Mayer Mar 1902 A
2938938 Dickson May 1960 A
3094439 Mann et al. Jun 1963 A
3116171 Nielsen Dec 1963 A
3459597 Baron Aug 1969 A
3676179 Bokros Jul 1972 A
3961997 Chu Jun 1976 A
3969163 Wakefield Jul 1976 A
4015280 Matsushita et al. Mar 1977 A
4082568 Lindmayer Apr 1978 A
4124410 Kotval et al. Nov 1978 A
4124455 Lindmayer Nov 1978 A
4193975 Kotval et al. Mar 1980 A
4200621 Liaw et al. Apr 1980 A
4213798 Williams et al. Jul 1980 A
4228315 Napoli Oct 1980 A
4251285 Yoldas Feb 1981 A
4284490 Weber Aug 1981 A
4315096 Tyan Feb 1982 A
4336648 Pschunder et al. Jun 1982 A
4342044 Ovshinsky et al. Jul 1982 A
4377723 Dalal Mar 1983 A
4431858 Gonzalez et al. Feb 1984 A
4514579 Hanak Apr 1985 A
4540843 Gochermann et al. Sep 1985 A
4567642 Dilts et al. Feb 1986 A
4571448 Barnett Feb 1986 A
4577051 Hartman Mar 1986 A
4586988 Nath et al. May 1986 A
4589191 Green et al. May 1986 A
4612409 Hamakawa et al. Sep 1986 A
4617421 Nath Oct 1986 A
4633033 Nath et al. Dec 1986 A
4652693 Bar-On Mar 1987 A
4657060 Kaucic Apr 1987 A
4667060 Spitzer May 1987 A
4670096 Schwirtlich Jun 1987 A
4694115 Lillington et al. Sep 1987 A
4729970 Nath Mar 1988 A
4753683 Ellion Jun 1988 A
4771017 Tobin et al. Sep 1988 A
4784702 Henri Nov 1988 A
4877460 Flodl Oct 1989 A
4933061 Kulkarni Jun 1990 A
4968384 Asano Nov 1990 A
5053355 von Campe Oct 1991 A
5057163 Barnett Oct 1991 A
5075763 Spitzer et al. Dec 1991 A
5084107 Deguchi Jan 1992 A
5118361 Fraas Jun 1992 A
5131933 Flodl et al. Jul 1992 A
5155051 Noguchi Oct 1992 A
5178685 Borenstein Jan 1993 A
5181968 Nath et al. Jan 1993 A
5213628 Noguchi et al. May 1993 A
5217539 Fraas et al. Jun 1993 A
5279682 Wald et al. Jan 1994 A
5286306 Menezes Feb 1994 A
5364518 Hartig Nov 1994 A
5401331 Ciszek Mar 1995 A
5455430 Noguchi et al. Oct 1995 A
5461002 Safir Oct 1995 A
5563092 Ohmi Oct 1996 A
5576241 Sakai Nov 1996 A
5627081 Tsuo et al. May 1997 A
5676766 Probst et al. Oct 1997 A
5681402 Ichinose et al. Oct 1997 A
5698451 Hanoka Dec 1997 A
5705828 Noguchi et al. Jan 1998 A
5726065 Szlufcik et al. Mar 1998 A
5808315 Murakami Sep 1998 A
5814195 Lehan et al. Sep 1998 A
5903382 Tench et al. May 1999 A
5935345 Kuznicki Aug 1999 A
5942048 Fujisaki Aug 1999 A
6017581 Hooker Jan 2000 A
6034322 Pollard Mar 2000 A
6091019 Sakata et al. Jul 2000 A
6140570 Kariya Oct 2000 A
6232545 Samaras May 2001 B1
6303853 Fraas Oct 2001 B1
6333457 Mulligan et al. Dec 2001 B1
6408786 Kennedy Jun 2002 B1
6410843 Kishi Jun 2002 B1
6441297 Keller Aug 2002 B1
6468828 Glatfelter Oct 2002 B1
6488824 Hollars Dec 2002 B1
6538193 Fraas Mar 2003 B1
6620645 Fraas Mar 2003 B2
6552414 Horzel et al. Apr 2003 B1
6586270 Tsuzuki et al. Jul 2003 B2
2626907 Chandra Sep 2003 A1
6672018 Shingleton Jan 2004 B2
6683360 Dierickx Jan 2004 B1
6736948 Barrett May 2004 B2
6761771 Satoh Jul 2004 B2
6803513 Beernink Oct 2004 B2
6841051 Crowley Jan 2005 B2
6917755 Nguyen Jul 2005 B2
7030413 Nakamura et al. Apr 2006 B2
7128975 Inomata Oct 2006 B2
7164150 Terakawa et al. Jan 2007 B2
7328534 Dinwoodie Feb 2008 B2
7388146 Fraas Jun 2008 B2
7399385 German et al. Jul 2008 B2
7534632 Hu et al. May 2009 B2
7635810 Luch Dec 2009 B2
7737357 Cousins Jun 2010 B2
7749883 Meeus Jul 2010 B2
7769887 Bhattacharyya Aug 2010 B1
7772484 Li Aug 2010 B2
7777128 Montello Aug 2010 B2
7825329 Basol Nov 2010 B2
7829781 Montello Nov 2010 B2
7829785 Basol Nov 2010 B2
7872192 Fraas Jan 2011 B1
7905995 German et al. Mar 2011 B2
7977220 Sanjurjo Jul 2011 B2
7985919 Roscheisen Jul 2011 B1
8070925 Hoffman et al. Dec 2011 B2
8115093 Gui Feb 2012 B2
8119901 Jang Feb 2012 B2
8152536 Scherer Apr 2012 B2
8168880 Jacobs May 2012 B2
8182662 Crowley May 2012 B2
8196360 Metten Jun 2012 B2
8209920 Krause et al. Jul 2012 B2
8222513 Luch Jul 2012 B2
8222516 Cousins Jul 2012 B2
8258050 Cho Sep 2012 B2
8343795 Luo et al. Jan 2013 B2
8569096 Babayan Oct 2013 B1
8586857 Everson Nov 2013 B2
8671630 Lena Mar 2014 B2
8686283 Heng Apr 2014 B2
8815631 Cousins Aug 2014 B2
9029181 Rhodes May 2015 B2
9147788 DeGroot Sep 2015 B2
9287431 Mascarenhas Mar 2016 B2
9761744 Wang Sep 2017 B2
20010008143 Sasaoka et al. Jul 2001 A1
20010023702 Nakagawa Sep 2001 A1
20020015881 Nakamura Feb 2002 A1
20020072207 Andoh Jun 2002 A1
20020086456 Cunningham Jul 2002 A1
20020176404 Girard Nov 2002 A1
20020189939 German Dec 2002 A1
20030000568 Gonsiorawski Jan 2003 A1
20030000571 Wakuda Jan 2003 A1
20030034062 Stern Feb 2003 A1
20030042516 Forbes et al. Mar 2003 A1
20030070705 Hayden et al. Apr 2003 A1
20030097447 Johnston May 2003 A1
20030116185 Oswald Jun 2003 A1
20030118865 Marks Jun 2003 A1
20030121228 Stoehr et al. Jul 2003 A1
20030136440 Machida Jul 2003 A1
20030168578 Taguchi et al. Sep 2003 A1
20030183270 Falk et al. Oct 2003 A1
20030201007 Fraas Oct 2003 A1
20040035458 Beernink Feb 2004 A1
20040065363 Fetzer et al. Apr 2004 A1
20040094196 Shaheen May 2004 A1
20040112419 Boulanger Jun 2004 A1
20040103937 Bilyalov et al. Jul 2004 A1
20040112426 Hagino Jul 2004 A1
20040123897 Ojima et al. Jul 2004 A1
20040126213 Pelzmann Jul 2004 A1
20040135979 Hazelton Jul 2004 A1
20040152326 Inomata Aug 2004 A1
20040185683 Nakamura Sep 2004 A1
20040200520 Mulligan Oct 2004 A1
20050009319 Abe Jan 2005 A1
20050012095 Niira et al. Jan 2005 A1
20050022861 Crowley Jan 2005 A1
20050022746 Lampe Feb 2005 A1
20050061665 Pavani Mar 2005 A1
20050062041 Terakawa Mar 2005 A1
20050064247 Sane Mar 2005 A1
20050074954 Yamanaka Apr 2005 A1
20050109388 Murakami et al. May 2005 A1
20050126622 Mukai Jun 2005 A1
20050133084 Joge et al. Jun 2005 A1
20050172996 Hacke Aug 2005 A1
20050178662 Wurczinger Aug 2005 A1
20050189015 Rohatgi et al. Sep 2005 A1
20050199279 Yoshimine et al. Sep 2005 A1
20050252544 Rohatgi et al. Nov 2005 A1
20050257823 Zwanenburg Nov 2005 A1
20050263178 Montello Dec 2005 A1
20050268963 Jordan Dec 2005 A1
20060012000 Estes et al. Jan 2006 A1
20060060238 Hacke et al. Mar 2006 A1
20060060791 Hazelton Mar 2006 A1
20060130891 Carlson Jun 2006 A1
20060154389 Doan Jul 2006 A1
20060213548 Bachrach et al. Sep 2006 A1
20060231803 Wang et al. Oct 2006 A1
20060255340 Manivannan et al. Nov 2006 A1
20060260673 Takeyama Nov 2006 A1
20060272698 Durvasula Dec 2006 A1
20060283496 Okamoto et al. Dec 2006 A1
20060283499 Terakawa et al. Dec 2006 A1
20070023081 Johnson et al. Feb 2007 A1
20070023082 Manivannan et al. Feb 2007 A1
20070029186 Krasnov Feb 2007 A1
20070108437 Tavkhelidze May 2007 A1
20070110975 Schneweis May 2007 A1
20070132034 Curello et al. Jun 2007 A1
20070137699 Manivannan et al. Jun 2007 A1
20070148336 Bachrach et al. Jun 2007 A1
20070186853 Gurary Aug 2007 A1
20070186968 Nakauchi Aug 2007 A1
20070186970 Takahashi et al. Aug 2007 A1
20070187652 Konno Aug 2007 A1
20070202029 Burns et al. Aug 2007 A1
20070235077 Nagata Oct 2007 A1
20070235829 Levine Oct 2007 A1
20070256728 Cousins Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070283996 Hachtmann et al. Dec 2007 A1
20070283997 Hachtmann Dec 2007 A1
20080000522 Johnson Jan 2008 A1
20080006323 Kalkanoglu Jan 2008 A1
20080011350 Luch Jan 2008 A1
20080035489 Allardyce Feb 2008 A1
20080041436 Lau Feb 2008 A1
20080041437 Yamaguchi Feb 2008 A1
20080047602 Krasnov Feb 2008 A1
20080047604 Korevaar et al. Feb 2008 A1
20080053519 Pearce Mar 2008 A1
20080061293 Ribeyron Mar 2008 A1
20080092942 Kinsey Apr 2008 A1
20080092947 Lopatin et al. Apr 2008 A1
20080121272 Besser et al. May 2008 A1
20080121276 Lopatin et al. May 2008 A1
20080121932 Ranade May 2008 A1
20080128013 Lopatin Jun 2008 A1
20080128017 Ford Jun 2008 A1
20080149161 Nishida et al. Jun 2008 A1
20080149163 Gangemi Jun 2008 A1
20080156370 Abdallah et al. Jul 2008 A1
20080173347 Korevaar Jul 2008 A1
20080173350 Choi et al. Jul 2008 A1
20080178928 Warfield Jul 2008 A1
20080196757 Yoshimine Aug 2008 A1
20080202577 Hieslmair Aug 2008 A1
20080202582 Noda Aug 2008 A1
20080216891 Harkness et al. Sep 2008 A1
20080223439 Deng Sep 2008 A1
20080230122 Terakawa Sep 2008 A1
20080251114 Tanaka Oct 2008 A1
20080251117 Schubert et al. Oct 2008 A1
20080264477 Moslehi Oct 2008 A1
20080276983 Drake et al. Nov 2008 A1
20080283115 Fukawa et al. Nov 2008 A1
20080302030 Stancel et al. Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080308145 Krasnov et al. Dec 2008 A1
20090007965 Rohatgi et al. Jan 2009 A1
20090014055 Beck Jan 2009 A1
20090056805 Barnett Mar 2009 A1
20090065043 Hadorn Mar 2009 A1
20090078318 Meyers et al. Mar 2009 A1
20090084439 Lu et al. Apr 2009 A1
20090101872 Young et al. Apr 2009 A1
20090120492 Sinha May 2009 A1
20090139512 Lima Jun 2009 A1
20090151771 Kothari Jun 2009 A1
20090151783 Lu et al. Jun 2009 A1
20090155028 Boguslayskiy Jun 2009 A1
20090160259 Naiknaware Jun 2009 A1
20090188561 Aiken et al. Jul 2009 A1
20090194233 Tamura Aug 2009 A1
20090211627 Meier Aug 2009 A1
20090221111 Frolov et al. Sep 2009 A1
20090229660 Takizawa Sep 2009 A1
20090229854 Fredenberg Sep 2009 A1
20090239331 Xu et al. Sep 2009 A1
20090250108 Zhou et al. Oct 2009 A1
20090255574 Yu et al. Oct 2009 A1
20090260689 Nishi Oct 2009 A1
20090272419 Sakamoto Nov 2009 A1
20090277491 Nakamura Nov 2009 A1
20090283138 Lin et al. Nov 2009 A1
20090283145 Kim et al. Nov 2009 A1
20090293948 Tucci et al. Dec 2009 A1
20090301549 Moslehi Dec 2009 A1
20090308439 Adibi Dec 2009 A1
20090317934 Scherff Dec 2009 A1
20090320897 Shimomura Dec 2009 A1
20100006145 Lee Jan 2010 A1
20100015756 Weidman et al. Jan 2010 A1
20100043863 Wudu Feb 2010 A1
20100065111 Fu et al. Mar 2010 A1
20100068890 Stockum et al. Mar 2010 A1
20100084009 Carlson Apr 2010 A1
20100087031 Veschetti Apr 2010 A1
20100108134 Ravi May 2010 A1
20100116325 Nikoonahad May 2010 A1
20100124619 Xu et al. May 2010 A1
20100131108 Meyer May 2010 A1
20100132774 Borden Jun 2010 A1
20100132792 Kim et al. Jun 2010 A1
20100147364 Gonzalez Jun 2010 A1
20100154869 Oh Jun 2010 A1
20100169478 Saha Jul 2010 A1
20100175743 Gonzalez Jul 2010 A1
20100186802 Borden Jul 2010 A1
20100193014 Johnson Aug 2010 A1
20100218799 Stefani Sep 2010 A1
20100224230 Luch et al. Sep 2010 A1
20100229914 Adriani Sep 2010 A1
20100236612 Khajehoddin Sep 2010 A1
20100240172 Rana Sep 2010 A1
20100243021 Lee Sep 2010 A1
20100243059 Okaniwa Sep 2010 A1
20100269904 Cousins Oct 2010 A1
20100279492 Yang Nov 2010 A1
20100282293 Meyer Nov 2010 A1
20100295091 Strzegowski Nov 2010 A1
20100300506 Heng et al. Dec 2010 A1
20100300507 Heng et al. Dec 2010 A1
20100300525 Lim Dec 2010 A1
20100307592 Chang Dec 2010 A1
20100313877 Bellman Dec 2010 A1
20100326518 Juso Dec 2010 A1
20110005569 Sauar Jan 2011 A1
20110005920 Ivanov Jan 2011 A1
20110023958 Masson Feb 2011 A1
20110030777 Lim Feb 2011 A1
20110036390 Nelson Feb 2011 A1
20110048491 Taira Mar 2011 A1
20110056545 Ji Mar 2011 A1
20110073175 Hilali Mar 2011 A1
20110088762 Singh Apr 2011 A1
20110089079 Lo Apr 2011 A1
20110120518 Rust May 2011 A1
20110132426 Kang Jun 2011 A1
20110146759 Lee Jun 2011 A1
20110146781 Laudisio et al. Jun 2011 A1
20110156188 Tu Jun 2011 A1
20110168250 Lin et al. Jul 2011 A1
20110168261 Welser Jul 2011 A1
20110174374 Harder Jul 2011 A1
20110177648 Tanner Jul 2011 A1
20110186112 Aernouts Aug 2011 A1
20110197947 Croft Aug 2011 A1
20110220182 Lin Sep 2011 A1
20110245957 Porthouse Oct 2011 A1
20110259419 Hagemann Oct 2011 A1
20110272012 Heng et al. Nov 2011 A1
20110277688 Trujillo Nov 2011 A1
20110277816 Xu Nov 2011 A1
20110277825 Fu et al. Nov 2011 A1
20110284064 Engelhart Nov 2011 A1
20110297224 Miyamoto Dec 2011 A1
20110297227 Pysch et al. Dec 2011 A1
20110300661 Pearce Dec 2011 A1
20110308573 Jaus Dec 2011 A1
20120000502 Wiedeman Jan 2012 A1
20120012153 Azechi Jan 2012 A1
20120012174 Wu Jan 2012 A1
20120028461 Ritchie et al. Feb 2012 A1
20120031480 Tisler Feb 2012 A1
20120040487 Asthana Feb 2012 A1
20120042925 Pfennig Feb 2012 A1
20120060911 Fu Mar 2012 A1
20120073975 Ganti Mar 2012 A1
20120080083 Liang Apr 2012 A1
20120085384 Beitel et al. Apr 2012 A1
20120103408 Moslehi May 2012 A1
20120122262 Kang May 2012 A1
20120125391 Pinarbasi May 2012 A1
20120145233 Syn Jun 2012 A1
20120152349 Cao Jun 2012 A1
20120152752 Keigler Jun 2012 A1
20120167986 Meakin Jul 2012 A1
20120180851 Nagel Jul 2012 A1
20120192932 Wu et al. Aug 2012 A1
20120199184 Nie Aug 2012 A1
20120240995 Coakley Sep 2012 A1
20120248497 Zhou Oct 2012 A1
20120279443 Kommeyer Nov 2012 A1
20120279548 Munch Nov 2012 A1
20120285517 Souza Nov 2012 A1
20120305060 Fu et al. Dec 2012 A1
20120318319 Pinarbasi Dec 2012 A1
20120318340 Heng et al. Dec 2012 A1
20120319253 Mizuno Dec 2012 A1
20120325282 Snow Dec 2012 A1
20130000705 Shappir Jan 2013 A1
20130000715 Moslehi Jan 2013 A1
20130014802 Zimmerman Jan 2013 A1
20130019919 Hoang Jan 2013 A1
20130056051 Jin Mar 2013 A1
20130096710 Pinarbasi Apr 2013 A1
20130098429 Funayama Apr 2013 A1
20130112239 Liptac May 2013 A1
20130130430 Moslehi May 2013 A1
20130139878 Bhatnagar Jun 2013 A1
20130152996 DeGroot Jun 2013 A1
20130160826 Beckerman Jun 2013 A1
20130174897 You Jul 2013 A1
20130199608 Emeraud Aug 2013 A1
20130206213 He Aug 2013 A1
20130206219 Kurtin Aug 2013 A1
20130206221 Gannon Aug 2013 A1
20130213469 Kramer Aug 2013 A1
20130220401 Scheulov Aug 2013 A1
20130228221 Moslehi Sep 2013 A1
20130239891 Sonoda Sep 2013 A1
20130247955 Baba Sep 2013 A1
20130269771 Cheun Oct 2013 A1
20130291743 Endo Nov 2013 A1
20130306128 Kannou Nov 2013 A1
20140000682 Zhao Jan 2014 A1
20140053899 Haag Feb 2014 A1
20140060621 Clark Mar 2014 A1
20140066265 Oliver Mar 2014 A1
20140096823 Fu Apr 2014 A1
20140102502 Luch Apr 2014 A1
20140102524 Xie Apr 2014 A1
20140120699 Hua May 2014 A1
20140124013 Morad et al. May 2014 A1
20140124014 Morad May 2014 A1
20140154836 Kim Jun 2014 A1
20140196768 Heng et al. Jul 2014 A1
20140242746 Albadri Aug 2014 A1
20140261624 Cruz-Campa Sep 2014 A1
20140261654 Babayan Sep 2014 A1
20140261661 Babayan Sep 2014 A1
20140262793 Babayan Sep 2014 A1
20140273338 Kumar Sep 2014 A1
20140284750 Yu Sep 2014 A1
20140299187 Chang Oct 2014 A1
20140318611 Moslehi Oct 2014 A1
20140345674 Yang Nov 2014 A1
20140349441 Fu Nov 2014 A1
20140352777 Hachtmann Dec 2014 A1
20150007879 Kwon Jan 2015 A1
20150020877 Moslehi Jan 2015 A1
20150075599 Yu Mar 2015 A1
20150090314 Yang Apr 2015 A1
20150096613 Tjahjono Apr 2015 A1
20150114444 Lentine Apr 2015 A1
20150129024 Brainard May 2015 A1
20150144180 Baccini May 2015 A1
20150171230 Kapur Jun 2015 A1
20150206997 Fidaner Jul 2015 A1
20150207011 Garnett Jul 2015 A1
20150214409 Pfeiffer Jul 2015 A1
20150236177 Fu Aug 2015 A1
20150270410 Heng Sep 2015 A1
20150280641 Garg Oct 2015 A1
20150303338 Kwon Oct 2015 A1
20150325731 Namjoshi Nov 2015 A1
20150333199 Kim Nov 2015 A1
20150340531 Hayashi Nov 2015 A1
20150349145 Morad Dec 2015 A1
20150349153 Morad Dec 2015 A1
20150349161 Morad Dec 2015 A1
20150349162 Morad Dec 2015 A1
20150349167 Morad Dec 2015 A1
20150349168 Morad Dec 2015 A1
20150349169 Morad Dec 2015 A1
20150349170 Morad Dec 2015 A1
20150349171 Morad Dec 2015 A1
20150349172 Morad Dec 2015 A1
20150349173 Morad Dec 2015 A1
20150349174 Morad Dec 2015 A1
20150349175 Morad Dec 2015 A1
20150349176 Morad Dec 2015 A1
20150349190 Morad Dec 2015 A1
20150349193 Morad Dec 2015 A1
20150349701 Morad Dec 2015 A1
20150349702 Morad Dec 2015 A1
20150349703 Morad Dec 2015 A1
20160163888 Reddy Jun 2016 A1
20160190354 Agrawal Jun 2016 A1
20160204289 Tao Jul 2016 A1
20160233353 Tamura Aug 2016 A1
20160268963 Tsai Sep 2016 A1
20160322513 Martin Nov 2016 A1
20160329443 Wang Nov 2016 A1
20170084766 Yang Mar 2017 A1
20170162722 Fu Jun 2017 A1
20170222082 Lin Aug 2017 A1
20170288081 Babayan Oct 2017 A1
20170373204 Corneille Dec 2017 A1
20180122964 Adachi May 2018 A1
Foreign Referenced Citations (89)
Number Date Country
1253381 May 2000 CN
1416179 Oct 2001 CN
101233620 Jul 2008 CN
101553933 Oct 2009 CN
102012010151 Jan 2010 CN
101305454 May 2010 CN
102088040 Jun 2011 CN
102263157 Nov 2011 CN
104205347 Dec 2014 CN
2626907 Mar 2015 CN
4030713 Apr 1992 DE
102006009194 Aug 2007 DE
202007002897 Aug 2008 DE
102008045522 Mar 2010 DE
102010061317 Jun 2012 DE
10201201051 Nov 2013 DE
H04245683 Nov 2013 DE
1770791 Apr 2007 EP
1816684 Aug 2007 EP
2071635 Jun 2009 EP
2113946 Nov 2009 EP
2362430 Aug 2011 EP
2385561 Nov 2011 EP
2387079 Nov 2011 EP
2002057357 Nov 2011 EP
2479796 Aug 2013 EP
2479796 Jul 2015 EP
2626907 Aug 2015 EP
5789269 Jun 1982 JP
S57089269 Jun 1982 JP
2011008881 Sep 1992 JP
06196766 Jul 1994 JP
2385561 Sep 1995 JP
10004204 Jan 1998 JP
H1131834 Feb 1999 JP
2000164902 Jun 2000 JP
2010085949 Feb 2002 JP
20050122721 Jun 2005 JP
2006523025 Oct 2006 JP
2006324504 Nov 2006 JP
2007123792 May 2007 JP
2008135655 Jun 2008 JP
2009054748 Mar 2009 JP
2009177225 Aug 2009 JP
2011181966 Sep 2011 JP
2012119393 Jun 2012 JP
2013526045 Jun 2013 JP
2013161855 Aug 2013 JP
2013536512 Sep 2013 JP
2013537000 Sep 2013 JP
2013219378 Oct 2013 JP
2013233553 Nov 2013 JP
2013239694 Nov 2013 JP
2013247231 Dec 2013 JP
2003083953 Dec 2005 KR
2005159312 Jan 2006 KR
2006097189 Feb 2009 KR
9120097 Nov 1991 WO
2011005447 Dec 1991 WO
1991017839 Oct 2003 WO
20060003277 Sep 2006 WO
2008089657 Jul 2008 WO
2009094578 Jul 2009 WO
2009150654 Dec 2009 WO
20090011519 Dec 2009 WO
2010070015 Jun 2010 WO
2009150654 Jul 2010 WO
2010075606 Jul 2010 WO
H07249788 Aug 2010 WO
2010075606 Sep 2010 WO
100580957 Oct 2010 WO
2010123974 Oct 2010 WO
2010104726 Jan 2011 WO
2010123974 Jan 2011 WO
2011005447 Jan 2011 WO
2011008881 Jan 2011 WO
2011053006 May 2011 WO
104409402 Oct 2011 WO
2011123646 Jul 2012 WO
2013020590 Feb 2013 WO
2013020590 Feb 2013 WO
2013046351 Apr 2013 WO
2014066265 May 2014 WO
2014074826 May 2014 WO
2014110520 Jul 2014 WO
2014117138 Jul 2014 WO
2015183827 Dec 2015 WO
2015195283 Dec 2015 WO
2016090332 Jun 2016 WO
Non-Patent Literature Citations (37)
Entry
Electrically Conductive Foil Tape for Bus Bar Components in Photovoltaic Modules, Adhesives Research, http://www.adhesivesresearch.com/electrically-conductive-foil-tape-for-bus-bar-components-in-photovoltaic-modules/, accessed Oct. 12, 2017.
Geissbuhler et al., Silicon Heterojunction solar Cells with Copper-Plated Grid Electrodes: Status and Comparison with Silver Thick-Film Techniques, IEEE Journal of Photovoltaics, vol. 4, No. 4, Jul. 2014.
Hamm, Gary, Wei, Lingyum, Jacques, Dave, Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells, EU PVSEC Proceedings, Presented Sep. 2009.
O'Mara, W.C.; Herring, R.B.; Hunt L.P. (1990). Handbook of Semiconductor Silicon Technology. William Andrew Publishing/Noyes. pp. 275-293.
Dosaj V D et al: ‘Single Crystal Silicon Ingot Pulled From Chemically-Upgraded Metallurgical-Grade Silicon’ Conference Record of the IEEE Photovoltaic Specialists Conference, May 6, 1975 (May 6, 1975), pp. 275-279, XP001050345.
Beaucarne G et al: ‘Epitaxial thin-film Si solar cells’ Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH LNKD—DOI:10.1016/J.TSF.2005.12.003, vol. 511-512, Jul. 26, 2006 (Jul. 26, 2006), pp. 533-542, XP025007243 ISSN: 0040-6090 [retrieved on Jul. 26, 2006].
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology;The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011 (Jul. 26, 2011), p. 78402, XP020207379, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402.
Davies, P.C.W., ‘Quantum tunneling time,’ Am. J. Phys. 73, Jan. 2005, pp. 23-27.
National Weather Service Weather Forecast Office (“Why Do We have Seasons?” http://www.crh.noaa.gov/lmk/?n=seasons Accessed Oct. 18, 2014).
Stangl et al., Amorphous/Crystalline Silicon heterojunction solar cells—a simulation study; 17th European Photovoltaic Conference, Munich, Oct. 2001.
WP Leroy et al., “In Search for the Limits of Rotating Cylindrical Magnetron Sputtering”, Magnetron, ION Processing and ARC Technologies European Conference, Jun. 18, 2010, pp. 1-32.
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE/%20343/Chapter/%207%20Dopant%20 diffusion%20_%20I.pptx> and converted to PDF.
Warabisako T et al: ‘Efficient Solar Cells From Metallurgical-Grade Silicon’ Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 19, No. Suppl. 19-01, Jan. 1, 1980 (Jan. 1, 1980), pp. 539-544, XP008036363 ISSN: 0021-4922.
Khattak, C. P. et al., “Refining Molten Metallurgical Grade Silicon for use as Feedstock for Photovoltaic Applications”, 16th E.C. Photovoltaic Solar Energy Conference, May 1-5, 2000, pp. 1282-1283.
Merriam-Webster online dictionary—“mesh”. (accessed Oct. 8, 2012).
Green, Martin A. et al., ‘High-Efficiency Silicon Solar Cells,’ IEEE Transactions on Electron Devices, vol. ED-31, No. 5, May 1984, pp. 679-683.
Mueller, Thomas, et al. “High quality passivation for heteroj unction solar cells by hydrogenated amorphous silicon suboxide films.” Applied Physics Letters 92.3 (2008): 033504-033504.
Collins English Dictionary (Convex. (2000). In Collins English Dictionary. http://search.credoreference.com/content/entry/hcengdict/convex/0 on Oct. 18, 2014).
Roedern, B. von, et al., ‘Why is the Open-Circuit Voltage of Crystalline Si Solar Cells so Critically Dependent on Emitter-and Base-Doping?’ Presented at the 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, CO, Aug. 9-11, 1999.
Chabal, Yves J. et al., ‘Silicon Surface and Interface Issues for Nanoelectronics,’ The Electrochemical Society Interface, Spring 2005, pp. 31-33.
JCS Pires, J Otubo, AFB Braga, PR Mei; The purification of metallurgical grade silicon by electron beam melting, J of Mats Process Tech 169 (2005) 16-20.
Parthavi, “Doping by Diffusion and Implantation”, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/course03/pdf/0306.pdf>.
Weiss, “Development of different copper seed layers with respect to the copper electroplating process,” Microelectronic Engineering 50 (2000) 443-440, Mar 15, 2000.
Tomasi, “Back-contacted Silicon Heterojunction Solar Cells With Efficiency>21%” 2014 IEEE.
Munzer, K.A. “High Throughput Industrial In-Line Boron BSF Diffusion” Jun. 2005. 20th European Photovoltaic Solar Energy Conference, pp. 777-780.
Hornbachner et al., “Cambered Photovoltaic Module and Method for its Manufacture” Jun. 17, 2009.
Machine translation of JP 10004204 A, Shindou et al.
Jianhua Zhao et al. “24% Efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research”; Jun. 1996.
“Nonequilibrium boron doping effects in low-temperature epitaxial silicon” Meyerson et al., Appl. Phys. Lett. 50 (2), p. 113 (1987).
“Doping Diffusion and Implantation” Parthavi, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/content/course03/pdf/0306.pdf>; accessed Jul. 27, 2017.
Mueller, Thomas, et al. “Application of wide-band gap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation.” Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008.
Kanani, Nasser. Electroplating: Basic Principles, Processes and Practice, Chapter 8—“Coating Thickness and its Measurement,” 2004, pp. 247-291.
P. Borden et al. “Polysilicon Tunnel Junctions as Alternates to Diffused Junctions” Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Sep. 1, 2008-Sep. 5, 2008, pp. 1149-1152.
L. Korte et al. “Overview on a-Se:H/c heterojunction solar cells—physics and technology”, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Sep. 3, 2007-Sep. 7, 2007, pp. 859-865.
Meyerson et al. “Nonequilibrium boron doping effects in low-temperature epitaxial silicon”, Appl. Phys. Lett. 50 (2), p. 113 (1987).
Li, “Surface and Bulk Passsivation of Multicrystalline Silicon Solar Cells by Silicon Nitride (H) Layer: Modeling and Experiments”, Ph.D. dissertation,N.J. Inst. of Tech., Jan. 2009.
Cui, et al., Advanced Materials, 2001, col. 13, pp. 1476-1480 (Year:2001).
Related Publications (1)
Number Date Country
20190088802 A1 Mar 2019 US