The invention relates to mold clamp assemblies for blow molding machines and to related methods.
In blow molding machines, two mold halves are clamped over one or more parisons prior to blowing of the parisons to form plastic containers. High clamp forces are required to close the mold halves on the parisons to pinch off the plastic and to hold the mold halves closed during blow molding.
Conventional mold clamp assemblies for rotary-type blow molding machines and for shuttle-type blow molding machines are mounted on the frame of the machine supporting the assembly and, when actuated, transmit clamping force from a drive on one side of the mold to the other side of the mold through the frame. This means that the frame supporting the molds must be sufficiently strong to counteract bending moments imposed by the high clamp force transmitted through the frame. Deformation of the frame by the clamp force is impermissible because deformation would not permit the mold faces to close parallel with one another.
Transmission of clamp force from one side of the mold through the frame to the other side of the mold without bending requires heavy, strong frame members, increasing the weight and cost of the machine, the size of the drives necessary to operate the blow molding machine and the cost of operating the machine.
Accordingly, there is a need for an improved mold clamp assembly and method for rotary-type and shuttle-type blow molding machines in which the high clamp force required to hold the mold halves together during blow molding is not transmitted from one side of the mold to the other side of the mold through the machine frame. There is a need to reduce the strength and weight of molding machine frame, the cost of the machine, and the operating cost of the machine.
The invention is an improved mold clamp assembly and method for rotary-type and shuttle-type blow molding machines. The blow molding machine includes an extendable and retractable drive located to one side of the mold halves. The drive is directly connected to the adjacent mold half and is connected to the remote mold half through a shift rod and a pivot arm mechanism free of the frame. The support for the pivot arm is connected directly to the extendable and retractable drive by a tension member apart from the machine frame. In this way, opposed clamp forces required to hold the mold closed during molding are transmitted directly from the drive to the mold halves. The drive is extended and retracted to open and close the mold halves. Clamp forces are not transmitted through the machine frame and do not subject the frame to bending moments.
As a result, the strength, weight and cost of the frame supporting the mold clamp assembly are reduced and the operating cost of the machine is reduced.
A number of first embodiment mold clamp assemblies 10 are mounted around the main shaft 12 of a rotary blow molding machine. The assemblies are supported by plates 14, 16, 18 and 20 extending perpendicularly away from the main shaft and rotate with the main shaft and plates. The shaft and plates form a rotary subframe 21 supporting the assemblies 10. The subframe is rotatably supported by a stationary main frame (not illustrated). The rotary blow molding machine includes a drive on the main frame (not illustrated) for rotating shaft 12 and mold assemblies 10 around the axis of the main shaft between extrusion, blow molding, cooling and ejection stations. A fixed, non-rotating cam ring 22 is mounted on the main frame and engages a cam follower in each assembly 10 for opening and closing the assembly mold, as described below.
The subprime 21 in each assembly 10 includes a base 24 mounted on plates 16 and 18 and extending parallel to the axis of the main shaft 12. Mold platens 26 and 28 are mounted on base 24 by slides 30 which permit movement of the platens toward and away from each other during closing and opening of mold halves 32 and 34 mounted on platens 26 and 28 respectively.
Pin 42 is located to one side of mold halves 32 and 34 at plate 20. The adjacent ends of tension rods 38 are secured to the pin. Pivot arm 44 is rotatably mounted on pin 42 between the tension rods 38. The outer end 46 of arm 44 away from the mold halves extends through an opening in plate 20 and is connected to slide car 48 by links 50. The slide car is mounted on the side of the plate 20 away from the mold by slide 52 to permit movement of the car back and forth in the direction of arrow 54 shown in
Shift member 62 is located between mold platen 26 and plate 20. The upper end 64 of member 62 is bolted directly to mold platen 26 so that movement of member 62 toward plate 20 moves the mold half from the closed position of
Link 60 is pivotally connected to the inner link end 45 of arm 44 and to mold shift member 62. The pivot connection between link 60 and member 62 is located halfway between the upper end 64 and lower end 66 of member 62 to balance forces. Shift rod 68 is parallel to the axis of main shaft 12 and extends freely through passages in base 24 and plates 16 and 18. The shift rod 68 is connected to the lower end 66 of member 62. The link 60 and inner link end 45 of arm 44 form a two link extendable and retractable drive 63 for opening and closing mold halves 32 and 34.
Cross pin 70 is mounted on the ends of rods 38 extending past mold half 34 and rotatably supports pivot arm 72. The lower end 74 of arm 72 is connected to the adjacent end of shift rod 68 by pivot link 76. The upper end 78 of arm 72 is connected to mold clamp rod 80 by pivot link 82. Clamp rod 80 is connected to platen 28 through dished washer spring pack 84. Rod 68, arm 72 and rods 38 and 80 are part of a mold shift mechanism 65 for opening and closing mold half 34. Mechanism 65 is connected to drive 63 through member 62.
Operation of the first embodiment mold clamp assembly will now be described.
With the mold halves 32 and 34 in the open position and drive 63 retracted as shown in
Rotation of arm 44 from the position of
During and after closing of the mold, the clamp force exerted on mold half 34 is transmitted directly to drive 63 through mechanism 65. An equal and oppositely directed clamp force exerted on mold half 32 is transmitted to the drive directly through member 62. Clamping forces are not transmitted through frame 21. The end of the mechanism 65 adjacent plate 14 floats on frame 21. As a result, the frame is not subjected to bending moments by the high clamp forces holding molds 32 and 34 closed. The frame need not be strengthened against bending moments. Smaller, more efficient motors may be used to operate the machine.
After closing of the mold to capture the parison, rotation of shaft 12 moves the closed mold halves away from extrusion station to a blow station where the parisons are blown, and, after cooling of the blown parisons, to an ejection station where the mold is opened for ejection of blow molded containers. During rotation to the ejection station, follower 56 is moved radially inwardly by track 58 so that arm end 46 is moved radially inwardly, drive 63 is retracted as shown in
Second embodiment mold clamp assembly 100 illustrated in
In assembly 100, base 24′ is mounted on support members 102 of frame 110 of a shuttle-type blow molding machine. The frame is shiftable in a direction perpendicular to the views of
Assembly 100 includes a force operator 104, which may be a hydraulic or pneumatic cylinder or an electric linear actuator, for moving the mold halves 32′ and 34′ between the open and closed positions. Operator 104 includes a first body member 106 located outwardly of shift member 62′ and connected to the two tension rods 38′, and a second body member 108 connected to shift member 62′ midway between the upper and lower ends 64′ and 66′. Extension of operator 104 moves member 108 away from member 106 to move the shift member 62′ toward base 24′ and move the mold halves 32′ and 34′ from the open position of
Retraction of operator 104 moves member 108 toward member 106 to move the mold halves from the closed position to the open position. Operator 104 is a two ended extendable and retractable drive 112 for assembly 100.
Opening and closing of the mold halves by the second embodiment mold clamp assembly is performed without transmitting clamp forces through frame 110 and subjecting the frame to bending moments. The tension rods 38′ and shift rod 68′ transmit clamp force from drive 112 directly to mold half 34′ without transmission of forces through the frame. Mold clamp force is transmitted directly from drive 112 to mold half 32′.
While we have illustrated and described preferred embodiments of our invention, it is understood that this is capable of modification, and we therefore do not wish to be limited to the precise details set forth, but desire to avail ourselves of such changes and alterations as fall within the purview of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4421472 | Martin, Jr. | Dec 1983 | A |
4801260 | Oles et al. | Jan 1989 | A |
4861542 | Shepps | Aug 1989 | A |
4878828 | Wollschlager et al. | Nov 1989 | A |
5039298 | Takakusaki et al. | Aug 1991 | A |
5229143 | Ogura et al. | Jul 1993 | A |
5372495 | Ogura et al. | Dec 1994 | A |
5388981 | Scharrenbroich | Feb 1995 | A |
5551862 | Allred, Jr. | Sep 1996 | A |
5681596 | Mills et al. | Oct 1997 | A |
5705121 | Allred, Jr. | Jan 1998 | A |
5840349 | Brown, Jr. et al. | Nov 1998 | A |
5948346 | Mills et al. | Sep 1999 | A |
Number | Date | Country | |
---|---|---|---|
20080128957 A1 | Jun 2008 | US |