The present application claims the priority from German Patent Application 103 09 906.9, filed on Feb 25, 2003, the disclosure content of which is hereby expressly also made the object of the present application.
The invention relates to a mould closing unit for an injection molding machine for processing of plastics materials and other plasticizable substances such as ceramic or pulverulent substances in accordance with the preamble of claim 1.
The conventional design of a plastics material injection molding machine, as underlies the preamble of claim 1, is made known in EP 1 121 237 B1 or DE 21 33 540 A. In the case of this type of injection molding machine, a stationary mould carrier is provided and it is fixedly secured to the machine base. A closing mechanism supported on a supporting member moves a movable mould carrier towards this stationary mould carrier and away from this stationary mould carrier in a cyclical manner and thereby closes the injection mould accommodated between the mould carriers. On the injection molding side, an injection molding unit abuts against the stationary mould carrier in order to inject plasticizable material into the mould cavity through an opening of the stationary mould carrier. The angular alignment and also the longitudinal alignment of the machine on the machine base are oriented on the stationary mould carrier. When the closing pressure is built up, the braces interconnecting the mould carriers are forcibly extended. This brace extension leads to a displacement of the supporting member in horizontal direction.
In principle, during injection molding, a precise mould closure is significant to the quality of the parts produced. In this regard, care must be taken to ensure that the mould carriers are disposed parallel to each other and not at an angle one to the other. The necessary angular perfection can certainly be realized with known injection molding machines, however in existing systems distortions can arise to the parallelogram formed between supporting member, stationary mould carrier and movable mould carrier. These problems occur more especially when the mould closing unit is transferred into a vertical disposition. In this case, the fixed plate can tip due to the base securement and consequently a parallelogram is created. This makes it difficult to adjust the parallelity of the mould carriers and at the same time also makes it difficult to maintain the concentricity of the two centering bores in the mould carriers.
Proceeding from this state of the art, the object of the present invention is to create a mould closing unit, which enables precise alignment of the mould carriers one relative to the other.
This object is achieved though a mould closing unit with the features of claim 1.
The supporting member now becomes the fixed point within the system, which means that even the mould carrier, which up to now has been stationary, is displaceably mounted relative to the machine base. At the same time, the support plate can be secured and adjusted at preferably three points on the machine frame or a part thereof. The angularity of the supporting member can be adjusted by means of the adjusting mechanism. The effect of the brace extension on the “stationary” mould carrier is such that it is displaced in a cyclical manner. However, as the injection molding unit is fixedly connected to this mould carrier, this does not result in any reference problems with regard to the injection molding unit.
In an embodiment according to claims 3 and 4, a three-point supporting of the supporting member is produced and this enables precise adjustment. This is effective in particular when the mould closing unit has to be transferred into a vertical position or is in this position permanently. Through the three-point supporting of the supporting member, the supporting member is retained at an angle relative to the machine base or to a pivotable bearing element (claim 8) in such a manner that no parallelogram is created. The entire weight of the injection mould and the mould carriers is supported rathermore centrally via the braces on the supporting member. Consequently, optimum parallelity and centricity is guaranteed in this position also.
Further advantages are produced from the sub claims and the following description.
The invention is described in more detail below by way of the Figures. In which:
The invention is now described in more detail as an example with reference to the enclosed drawings. However, the exemplified embodiments are only examples, which are not to restrict the inventive concept to any one specific arrangement.
The injection molding machine has a first mould carrier 10, on which the injection molding unit S is preferably secured. In addition, an additional movable mould carrier 11 is provided which is displaceable relative to the first mould carrier 10 by means of a mould closing mechanism C. Between the mould carriers 10, 11 is provided a mould clamping area, in which at least one multiple-part injection mould is receivable between the mould carriers, the parts of the injection mould 12 being detachably secured to the mould carriers 10, 11. A supporting member 13 is provided for the mould closing mechanism C. The mould closing mechanism C is for the cyclical opening and closing of the injection mould 12 with the displacement of the additional movable mould carrier 11 towards the first mould carrier 10 and away from this first mould carrier 10 in the closing direction s-s of the injection mould 12.
Mould closing unit F and injection molding unit S are disposed on a machine base 14 and, where applicable, on a part of the machine base. The first mould carrier 10, the additional movable mould carrier 11 and the supporting member 13, in particular, are mounted on the machine base. Force transferring elements, which are provided in the form of braces 18 in the embodiment, absorb the forces occurring between the first mould carrier 10 and the supporting member 13 when the mould is closed and when the plasticizable substances are injected into the injection mould 12. A U-shaped force transferring element, which allows free access to the mould clamping area, can be provided in place of the braces 18.
Consequently, the three-point bearing arrangement firstly guarantees that, via the bearing points 17, a disposition at right angles to the central line of the injection molding machine is guaranteed, whilst via the third point, that is to say via the adjusting mechanism 16, the angularity of the plate is adjustable. The compact supporting member at the same time produces a wide support base, which also meets the demands for vertical operation. The supporting member is stable in itself and no parallelogram is created as the entire weight of injection mould and mould carriers is supported centrally via the four braces 18 relative to the supporting member. Consequently, optimum parallelity and centricity is guaranteed.
According to
FIGS. 3 to 7 show the pivoting mechanism 20. The bearing element 15 is rotationally displaceable relative to the machine base at the pivotal axis 19. The pivoting mechanism 20 is mounted at the pivotal axes 22, 23 on the supporting member 13 and on the machine base, such that when the pivoting mechanism 20 is actuated, as is represented in
According to
It is obvious that this description can be subject to the most varied modifications, changes and adaptations which range in the region of equivalents to the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
103 09 906.9 | Feb 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/01568 | 2/19/2004 | WO | 8/24/2005 |