This application claims priority on Patent Application No. 2008-224827 and Patent Application No. 2008-224991 filed in JAPAN on Sep. 2, 2008. The entire contents of the Japanese Patent Applications are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to molds of golf balls. More particularly, the present invention relates to a mold on the cavity face of which is provided with a large number of pimples for forming dimples.
2. Description of the Related Art
Golf balls have a large number of dimples on the surface thereof. The dimples disrupt the airflow around the golf ball during its flight to cause turbulent flow separation. By causing the turbulent flow separation, separating points of the air from the golf ball shift backwards leading to the reduction of drag. The turbulent flow separation prolongs the gap between the separating point on the upper side and the separating point on the lower side of the golf ball, which results from the backspin, thereby enhancing the lift force that acts upon the golf ball. Reduction in drag and elevation of lift force are referred to as “dimple effect”. Excellent dimples disrupt the air flow more efficiently.
In general, golf balls are formed using a mold having upper and lower mold halves each having a hemispherical cavity. Assuming that the upper mold half cavity is northern hemisphere of the globe and that the lower mold half cavity is southern hemisphere of the globe, the upper mold half and the lower mold half are mated on an equator face (plane including the equator). A large number of pimples are provided on the inner surface of the mold, and dimples are formed on the surface of the golf ball by means of the pimples. The dimple has a shape inverted from the shape of the pimple.
Since the molding material (for example, synthetic resin) leaks outside from a parting face of the upper mold half and the lower mold half, a flash is generated along the equator portion on the surface of the golf ball. The flash is generated along the parting line. This flash is ground and removed with a whetstone or the like. Removal of the flash generated inside the dimple is difficult. In order to facilitate the removal of the flash, any dimple is not formed on the equator. In other words, no pimple is provided on the parting face of the mold. A great circle path is formed on the seam of the golf ball obtained with this mold. The great circle path agrees with the equator. When this great circle path agrees with a part where the greatest circumferential speed of the backspin is attained (hereinafter, may be also referred to as “fastest part”), sufficient dimple effect can not be achieved. The dimple effect achieved when the great circle path agrees with the fastest part is inferior to the dimple effect achieved when the great circle path does not agree with the fastest part. The difference between these dimple effects may deteriorate aerodynamic symmetry of the golf ball. The great circle path further impairs the appearance of the golf ball.
US2002-94886 (JP2002-159598) discloses a mold provided with a parting face having a horizontal plane and an inclined plane. In this mold, pimples can be arranged on the equator except for the parting face. This mold provides a golf ball having a non-smooth seam. This golf ball does not have a great circle path. Similar mold is disclosed also in US2004/41297 (JP2004-89549).
U.S. Pat. No. 5,947,844 (JP10-99469) discloses a mold having pins placed on the parting face. The pin forms a dimple on the golf ball. By this mold, a golf ball not having a great circle path is obtained.
U.S. Pat. No. 6,123,534 (JP11-137727) discloses a mold provided with a parting face having bulges. The bulge forms a dimple on the golf ball. By this mold, a golf ball not having a great circle path is obtained.
According to the golf ball obtained with the mold provided with a parting face having a horizontal plane and an inclined plane, the dimples are sparsely provided in the vicinity of the seam. There remains room for improvement of the aerodynamic symmetry of this golf ball. Also in the case of the golf balls obtained with the mold having a pin or a bulge, their aerodynamic symmetry and appearance are still unsatisfactory.
An object of the present invention is to provide a golf ball that is excellent in aerodynamic symmetry and appearance.
The mold for a golf ball according to the present invention includes a pair of mold halves. On the cavity face of this mold is provided with a large number of pimples for forming dimples. Each mold half is provided with multiple protrusions that project from the equator. Each protrusion includes a part of the pimple.
These multiple protrusions include
(a) one protrusion,
(b) other protrusion adjacent to the protrusion (a), and
(c) still other protrusion adjacent to the protrusion (a). The central angle a between the protrusion (a) and the protrusion (b) is different from the central angle β between the protrusion (a) and the protrusion (c). The absolute value of the difference (α−β) is equal to or greater than 10°.
In other aspect, there is provided a mold for a golf ball according to present invention which includes a pair of mold halves. On the cavity face of this mold is provided with a large number of pimples for forming dimples. Each mold half is provided with multiple protrusions that project from the equator. Each protrusion includes a part of the pimple. The proportion P1 of the number of the protrusion that is adjacent to other protrusion belonging to other mold half that is distinct from the mold half to which itself belongs to, to the total number of the protrusions is equal to or greater than 50%. The proportion P5 of the number of the pimple that is present in the region on a latitude of equal to or less than 20° and has a diameter of less than 4.0 mm, to the total number of the pimples that are present in the region on a latitude of equal to or less than 20° is equal to or greater than 20% and equal to or less than 90%. The standard deviation of the diameters of all the pimples that are present in the region on a latitude of equal to or less than 20° is equal to or less than 0.15.
The method for manufacturing a golf ball according to the present invention includes the steps of
(1) Placing a material into a mold that include
a pair of mold halves,
on the cavity face of the mold being provided with a large number of pimples for forming dimples, wherein:
each mold half is provided with multiple protrusions that project from the equator;
each protrusion includes a part of the pimple;
the multiple protrusions include
(a) one protrusion
(b) other protrusion adjacent to the protrusion (a), and
(c) still other protrusion adjacent to the protrusion (a);
the central angle α between the protrusion (a) and the protrusion (b) is different from the central angle β between the protrusion (a) and the protrusion (c); and
the absolute value of the difference (α−β) is equal to or greater than 10°, and
(2) forming the dimples having a shape inverted from the shape of the pimple by allowing the material to flow in the mold.
In other aspect, the method for manufacturing a golf ball according to the present invention includes the steps of
(1) Placing a material into a mold that include
a pair of mold halves,
on the cavity face of the mold being provided with a large number of pimples for forming dimples, wherein:
each mold half is provided with multiple protrusions that project from the equator;
each protrusion includes a part of the pimple;
the proportion P1 of the number of the protrusions that is adjacent to other protrusion belonging to other mold half that is distinct from the mold half to which itself belongs to, to the total number of the protrusions is equal to or greater than 50%;
the standard deviation of the diameters of all the pimples that are present in the region on a latitude of equal to or less than 20° is equal to or less than 0.15, and
(2) forming the dimples having a shape inverted from the shape of the pimple by allowing the material to flow in the mold.
Hereinafter, the present invention will be described in detail according to the preferred embodiments with appropriate references to the accompanying drawings.
A mold 2 for a golf ball shown in
Since the protrusions 16 of the lower mold half 6 are fitted in the recesses 18 of the upper mold half 4, the number of the recesses 18 of the upper mold half 4 is the same as the number of the protrusions 16 of the lower mold half 6. Since the protrusions 16 of the upper mold half 4 are fitted in the recesses 18 of the lower mold half 6, the number of the protrusions 16 of the upper mold half 4 is the same as the number of the recesses 18 of the lower mold half 6. In this mold 2, each number of the protrusions 16 of the upper mold half 4, the recesses 18 of the upper mold half 4, the protrusions 16 of the lower mold half 6 and the recesses 18 of the lower mold half 6 is 10. This mold 2 has 20 protrusions 16 in total. This mold 2 has 20 recesses 18 in total.
As is seen from
In
In
The angle α at the place shown in
This mold 2 can be used in molding of golf balls. This mold 2 can be used in compression molding, injection molding, cast molding and the like. In any of these methods, a material is placed in the mold 2. The material flows in the mold 2, whereby dimples having a shape inverted from the shape of the pimple 10 are formed.
In
The dimple 22 has a shape inverted from the shape of the pimple 10. The dimple A is formed by means of the pimple A. The dimple B is formed by means of the pimple B. The dimple C is formed by means of the pimple C. The dimple D is formed by means of the pimple D. The mold 2 shown in
As described above, the mold 2 is provided with pimples 10 that intersect with the equator Eq. Therefore, the golf ball 20 obtained with this mold 2 has dimples 22 that intersect with the equator Eq. Any great circle path is not formed on the equator Eq of the golf ball 20. The dimple 22 that intersects with the equator Eq enhances the dimple effect when the equator Eq agrees with the fastest part of the backspin. This golf ball 20 is excellent in the aerodynamic symmetry. This golf ball 20 does not also have a great circle path that does not agree with the equator. This golf ball 20 is excellent in the appearance.
The protrusion 16a shown in
The protrusion 16e shown in
The proportion P1 of the number of the protrusion 16 that meets the following requirement 1 to the total number of the protrusions 16 is equal to or greater than 50%.
Requirement 1: being adjacent to other protrusion 16 belonging to other mold half that is distinct from the mold half to which itself belongs.
According to the golf ball 20 formed with the mold 2 having the proportion P1 of equal to or greater than 50%, when the equator Eq agrees with the fastest part of the backspin, it is highly frequent to yield the sequence of the dimple 20 belonging to the southern hemisphere followed by the dimple 20 belonging to the northern hemisphere, while it is also highly frequent to yield the sequence of the dimple 20 belonging to the northern hemisphere followed by the dimple 20 belonging to the southern hemisphere. This golf ball 20 achieves a superior dimple effect when the equator Eq agrees with the fastest part of the backspin. This golf ball 20 is excellent in the aerodynamic symmetry. In light of the aerodynamic symmetry, the proportion P1 is more preferably equal to or greater than 60%, and particularly preferably 100%. In the mold 2 shown in
As shown in
The mold 2 may include a protrusion 16 which is adjacent to the two protrusions 16 belonging to the mold half to which itself belongs. The mold 2 may include a protrusion 16 which is adjacent to the two protrusions 16 belonging to the mold half that is distinct form the mold half to which itself belongs.
It is preferred that the proportion P2 of the number of the protrusion 16 that meets the following requirement 2 to the total number of the protrusions 16 be equal to or greater than 50%.
Requirement 2: being adjacent to other protrusion 16 belonging to one mold half to which itself belongs, and also being adjacent to still other protrusion 16 belonging to another mold half that is distinct from the mold half to which itself belongs.
The golf ball 20 obtained with the mold 2 having the proportion P2 of equal to or greater than 50% is excellent in the aerodynamic symmetry. In this respect, the proportion P2 is more preferably equal to or greater than 60%, and particularly preferably 100%. In the mold 2 shown in
As shown in
It is preferred that the proportion P3 of the number of the protrusion 16 that meets the following requirement 3 to the total number of the protrusions 16 be equal to or greater than 50%.
Requirement 3: the central angle a with respect to one adjacent protrusion 16 being different from the central angle β with respect to another adjacent protrusion 16.
The golf ball 20 obtained with the mold 2 having the proportion P3 of equal to or greater than 50% is excellent in the aerodynamic symmetry. In this respect, the proportion P3 is more preferably equal to or greater than 60%, and particularly preferably 100%. In the mold 2 shown in
When either the angle α or the angle β is small, an arrangement of protrusion 16 having great absolute value of the difference (α−β) may be achieved. In this respect, the smaller angle between the angle α and the angle β has an angle of preferably less than 10°, more preferably equal to or less than 9°, much more preferably equal to or less than 8°, and particularly preferably equal to or less than 7°. The smaller angle between the angle α and the angle β has an angle of preferably equal to or greater than 5°, and particularly preferably equal to or greater than 6°. The greater angle between the angle α and the angle β has an angle of preferably equal to or greater than 12° and equal to or less than 34°.
The proportion P4 of the number of the protrusion 16 that meets both the aforementioned requirements 2 and 3 to the total number of the protrusions 16 is preferably equal to or greater than 50%. The golf ball 20 obtained with the mold 2 having the proportion P4 of equal to or greater than 50% is excellent in the aerodynamic symmetry. In this respect, the proportion P4 is more preferably equal to or greater than 60%, and particularly preferably 100%. In the mold 2 shown in
The absolute value of the difference (α−β) for the protrusion 16a (see
The proportion P5 of the number of the pimple 10 that is present in the low-latitude region and has the diameter of 4.0 mm or less, to the total number of the pimples that are present in the low-latitude region is preferably equal to or greater than 20% and equal to or less than 90%. The golf ball 20 obtained with a mold having the proportion P5 of 20% or greater and 90% or less is excellent in the aerodynamic symmetry. In this respect, the proportion P5 is more preferably equal to or greater than 25%. The proportion P5 is more preferably equal to or less than 85%. The low-latitude region of the mold 2 shown in
It is preferred that the dimples 22 be densely arranged in the low-latitude region on the golf ball 20. This golf ball 20 achieves a superior dimple effect when the equator Eq agrees with the fastest part of the backspin. This golf ball 20 is excellent in the aerodynamic symmetry. This golf ball 20 is also excellent in the appearance. Arrangement of multiple kinds of the pimples 10 having diameters different from one another in the low-latitude region of the mold 2 enables achievement of high density of the dimples 22 in the low-latitude region. In light of the aerodynamic symmetry and the appearance, the number of the kinds of the pimples 10 that are present in the low-latitude region is preferably equal to or greater than 2, and more preferably equal to or greater than 3. In light of ease in producing the mold 2, the number of the kinds is preferably equal to or less than 10. In the mold 2 shown in
When all the pimples 10 that are present in the low-latitude region are sorted in descending order of the diameter, the ratio (Dx1/Dn1) of the average diameter Dx1 of the pimples 10 in the top 10% and the average diameter Dn1 of the pimples 10 in the bottom 10% is preferably equal to or less than 1.15. The golf ball 20 obtained with this mold 2 achieves a superior dimple effect when the equator Eq agrees with the fastest part of the backspin. This golf ball 20 is excellent in the aerodynamic symmetry. In light of the aerodynamic symmetry, the ratio (Dx1/Dn1) is more preferably equal to or less than 1.10, and particularly preferably equal to or less than 1.07. The low-latitude region of the mold 2 shown in
When all the pimples 10 are sorted in descending order of the diameter, the ratio (Dx2/Dn2) of the average diameter Dx2 of the pimples 10 in the top 10% and the average diameter Dn2 of the pimples 10 in the bottom 10% is preferably equal to or less than 1.30. The golf ball 20 obtained with the mold 2 having the ratio (Dx2/Dn2) of equal to or less than 1.30 is excellent in the flight performance. In light of the flight performance, the ratio (Dx2/Dn2) is preferably equal to or less than 1.20, and more preferably equal to or less than 1.16. The ratio (Dx2/Dn2) is preferably equal to or greater than 1.05. The ratio (Dx2/Dn2) of the mold 2 shown in
The standard deviation Σ1 of the diameters of all the pimples 10 that are present in the low-latitude region is preferably equal to or less than 0.15. The golf ball 20 obtained with this mold 2 achieves a superior dimple effect when the equator Eq agrees with the fastest part of the backspin. This golf ball 20 is excellent in the aerodynamic symmetry. In light of the aerodynamic symmetry, the standard deviation Σ1 is more preferably equal to or less than 0.12. The standard deviation Σ1 is preferably equal to or greater than 0.05. In the low-latitude region of the mold 2 shown in
Σ1=(((4.00−3.93)2×50+(3.90−3.93)2×60+(3.75−3.93)2×10)/120)1/2
In this golf ball 20, the standard deviation Σ1 is 0.07.
The standard deviation Σ2 of the diameters of all the pimples 10 is preferably equal to or less than 0.30. The golf ball 20 obtained with the mold 2 in which the standard deviation Σ2 is equal to or less than 0.30 is excellent in the flight performance. In light of the flight performance, the standard deviation Σ2 is more preferably equal to or less than 0.25, and particularly preferably equal to or less than 0.20. The standard deviation Σ2 of the mold 2 shown in
In
The width of the intersection of the dimple 22 with the equator Eq is nearly the same as the height of the Hp of the protrusion 16. In light of the dimple effect, the width of the intersection is preferably equal to or greater than 0.2 mm, more preferably equal to or greater than 0.3 mm, and particularly preferably equal to or greater than 0.4 mm. In light of ease in manufacturing the golf ball 20, the width of the intersection is preferably equal to or less than 1.5 mm, and more preferably equal to or less than 1.3 mm.
In light of the ease in manufacturing the golf ball 20 and the durability of the mold 2, the absolute value of the difference (Hp1−Hp2) between the height Hp1 of the highest protrusion 16 and the height Hp2 of the lowest protrusion 16 is preferably equal to or less than 0.5 mm. Ideally, the difference (Hp1−Hp2) is zero. In other words, it is preferred that the heights of all the protrusions 16 from the equator be the same.
According to the present invention, the rate of sum total of the area of all the dimples 22 to the surface area of the phantom sphere of the golf ball 20 is referred to as an occupation rate. From the standpoint that a sufficient dimple effect is achieved, the occupation rate is preferably equal to or greater than 75%, more preferably equal to or greater than 76%, and particularly preferably equal to or greater than 77%. The occupancy rate is preferably equal to or less than 86%, more preferably equal to or less than 85%, and particularly preferably equal to or less than 84%.
According to the present invention, the term “dimple volume” means a volume of a part surrounded by a plane that includes the contour of the dimple 22, and the surface of the dimple 22. In light of suppression of hopping of the golf ball 20, the total volume of the dimples 22 is preferably equal to or greater than 250 mm3, more preferably equal to or greater than 260 mm3, and particularly preferably equal to or greater than 270 mm3. In light of suppression of dropping of the golf ball 20, the total volume is preferably equal to or less than 400 mm3, more preferably equal to or less than 390 mm3, and particularly preferably equal to or less than 380 mm3.
In light of suppression of hopping of the golf ball 20, the depth of the dimple 22 is preferably equal to or greater than 0.05 mm, more preferably equal to or greater than 0.08 mm, and particularly preferably equal to or greater than 0.10 mm. In light of suppression of dropping of the golf ball 20, the depth is preferably equal to or less than 0.60 mm, more preferably equal to or less than 0.45 mm, and particularly preferably equal to or less than 0.40 mm.
The diameter of the dimple 22 is preferably 2.00 mm or greater and 6.00 mm or less. By setting the diameter to be equal to or greater than 2.00 mm, a superior dimple effect can be achieved. In this respect, the diameter is more preferably equal to or greater than 2.20 mm, and particularly preferably equal to or greater than 2.40 mm. By setting the diameter to be equal to or less than 6.00 mm, fundamental feature of the golf ball 20 which is substantially a sphere can be maintained. In this respect, the diameter is more preferably equal to or less than 5.80 mm, and particularly preferably equal to or less than 5.60 mm.
In light of achievement of sufficient dimple effect, total number of the dimples 22 is preferably equal to or greater than 250, and particularly preferably equal to or greater than 270. In light of the possibility that respective dimples 22 can have a sufficient diameter, the total number is preferably equal to or less than 400, and particularly preferably equal to or less than 370.
A rubber composition was obtained by kneading 100 parts by weight of polybutadiene (trade name “BR-730”, available from JSR Corporation), 30 parts by weight of zinc diacrylate, 6 parts by weight of zinc oxide, 10 parts by weight of barium sulfate, 0.5 parts by weight of diphenyl disulfide and 0.5 parts by weight of dicumyl peroxide. This rubber composition was placed into a mold having upper and lower mold halves each having a hemispherical cavity, and heated at 170° C. for 18 minutes to obtain a core having a diameter of 39.7 mm. On the other hand, 50 parts by weight of an ionomer resin (available from Du Pont-MITSUI POLYCHEMICALS Co., Ltd.; trade name “Himilan® 1605”), 50 parts by weight of other ionomer resin (available from Du Pont-MITSUI POLYCHEMICALS Co., Ltd.; trade name “Himilan® 1706”) and 3 parts by weight of titanium dioxide were kneaded to obtain a resin composition. Half shells were formed with this resin composition. The aforementioned core was covered by two half shells, and the core with the half shells was placed in the mold shown in
Golf balls were obtained in a similar manner to Example 1 except that the mold with the specifications presented in the following Tables 1 and 2 was used.
[Travel Distance Test]
A driver with a titanium head (trade name “XXIO”, available from Sumitomo Rubber Industries, Ltd., shaft hardness: X, loft angle: 9°) was attached to a swing machine, available from Golf Lab Co., Ltd. Then the golf ball was hit under the condition to provide a head speed of 49 m/sec, a launch angle being about 11° and give the backspin rate of about 3000 rpm. Accordingly, the distance from the launching point to the point where the ball stopped was measured. Under the condition during the test, it was almost windless. Twenty times measurements were carried out with pole shot and seam shot, respectively. Mean values of the travel distance are presented in Tables 3 to 5 below. The rotation axis of the seam shot passes both pole points. The rotation axis of the pole shot is perpendicular to the rotation axis of the seam shot.
[Appearance]
The appearance of the golf ball was visually observed. The grading was made based on the following criteria:
A: appearance being favorable,
B: appearance being somewhat unfavorable, and
C: appearance being unfavorable.
The results are presented in Tables 3 to 5 below.
Details of proportions P1-P5 in Tables 3 and 4 are as follows.
P1: proportion of the number of the protrusion that meets the following requirement 1 to the total number of the protrusions.
Requirement 1: being adjacent to other protrusion belonging to other mold half that is distinct from the mold half to which itself belongs.
P2: proportion of the number of the protrusion that meets the following requirement 2 to the total number of the protrusions.
Requirement 2: being adjacent to other protrusion belonging to one mold half to which itself belongs, and also being adjacent to still other protrusion belonging to another mold half that is distinct from the mold half to which itself belongs.
P3: proportion of the number of the protrusion that meets the following requirement 3 to the total number of the protrusions.
Requirement 3: the central angle α with respect to one adjacent protrusion being different from the central angle β with respect to another adjacent protrusion.
P4: proportion of the number of the protrusion that meets both the aforementioned requirements 2 and 3 to the total number of the protrusions.
P5: proportion of the number of the protrusion that is present in the region on a latitude of equal to or less than 20° and has a diameter of less than 4.0 mm, to the total number of the protrusions that are present in the region on a latitude of equal to or less than 20°.
As shown in Tables 3 to 5, the golf ball obtained with the mold according to the present invention is excellent in the aerodynamic symmetry. Therefore, advantages of the present invention are clearly suggested by these results of evaluation.
Golf balls having a variety of structures can be manufactured with the mold according to the present invention. The foregoing description is just for illustrative examples, and various modifications can be made in the scope without departing from the principles of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2008-224827 | Sep 2008 | JP | national |
2008-224991 | Sep 2008 | JP | national |