The present invention relates to a mold for press forming.
Many improvements for molds for press forming have been proposed. For example, Patent Document 1 proposes a device to make it easier to remove a formed workpiece from the mold. Patent Document 2 proposes a mold in which a part of the mold or a punch can be moved, and which can thereby accommodate differing press shapes without exchanging the entire mold.
Patent Document 1: Japanese Patent Application Publication No. H6-269866
Patent Document 2: Japanese Patent Application Publication No. H7-16670
The present specification presents a technique for improving the mold from a viewpoint different from Patent Document 1 and Patent Document 2. The present specification presents a technique for reducing the weight of the mold.
In one aspect of a mold taught in the present specification, a design forming portion of the mold is constructed with a rod shaped member. The design forming portion makes contact with a workpiece during a press forming process and thereby forms a target design on the workpiece. By having the design forming portion be constructed with the rod shaped member, the present invention reduces the weight of the mold. In other words, a design surface for forming the target design on the workpiece is configured of the rod shaped member. Below, the rod shaped member that constitutes the design forming portion is called a design forming rod or a first rod member.
If a member that supports the first rod member (the design forming rod) is also configured of a rod member, the weight is further reduced. Below, the rod member that supports the first rod member is called a supporting rod or a second rod member. The design forming rod and the supporting rod constitute a framework structure. More preferably, with the novel mold taught in the present specification, the design forming rod and the supporting rod constitute a truss structure. The truss structure refers to a structure in which moment does not occur in the rod members, and only load in the axial direction occurs. High strength can be expected from the truss structure. Moreover, for the strength and rigidity of the rod members to withstand the load, the design forming rod and the supporting rod may constitute a Rahmen structure. Further, the Rahmen structure refers to a structure in which both load in the axial direction and moment occur in the rod members.
In the press forming process, a high load is applied from a press machine to the design forming portion (the design forming rod). In order to support the design forming rod strongly, it is preferred that the supporting rod extends parallel to the direction of load applied by the press machine and that a center line of the supporting rod in its longitudinal direction passes through the first rod member. According to such a configuration, the load from the press machine is applied in the axial direction of the supporting rod. Since the rod member is resistant to load in the axial direction, this configuration has the advantage that the load resistance of the design forming rod (the design forming portion) is high.
The mold for press forming requires a block for positioning the mold. Specifically, a block is required for fixing the mold to the press machine. In a more preferred aspect of the above mold, a block for positioning the mold may be connected to the second rod member.
The mold is preferably manufactured by a casting process, in particular, by a full mold casting process.
An embodiment of a mold will be described with reference to figures. To aid understanding, the mold will be described together with a press machine.
The molds 2, 32 will be described. The lower mold 2 is configured of a design forming rod 4, supporting rods 6, 8, 10, 12, and positioning blocks 14. The upper mold 32 is configured of a design forming rod 34, supporting rods 36, 38, 40, and positioning blocks 44. The design forming rods 4, 34 correspond to design forming portions for forming the workpiece W into the target design.
The structure of the lower mold 2 will be described. A rectangular base is formed by the supporting rods 8 and 10, and the four supporting rods 6 extend parallel to one another in a perpendicular manner from the four corners of this base. The design forming rod 4 is fixed to upper ends of the four supporting rods 6. The design forming rod 4, in entirety, forms a rectangular ring with rounded corners. Further, a cross-section of the design forming rod 4 also forms a rectangle with rounded corners. A part of the cross-section of the design forming rod 4 (a part of a side surface of the design forming rod 4) conforms to a target shape. The supporting rod 12 is attached in order to reinforce the design forming rod 4. As shown in
The structure of the upper mold 32 will be described. A rectangular base is formed by the supporting rods 38 and 40, and the four supporting rods 36 extend parallel to one another in a perpendicular manner from the four corners of this base. The design forming rod 34 is fixed to lower ends of the four supporting rods 36. The positioning blocks 44 are connected to end parts of the two supporting rods 38 that extend parallel to one another. When viewing the upper mold 32 from a plan view, the four positioning blocks 44 are seen in four corners surrounding the design forming rod 4. The positioning blocks 44 are parts for fixing the upper mold 32 to the slider 52 of the press machine 50. The reference number 45 indicates through holes through which bolts 46 for fixing the positioning blocks 44 pass.
The overall shape of the design forming rod 34 is similar to the shape of the design forming rod 4 of the lower mold 2. However, the ring of the design forming rod 34 has a size larger than the ring of the design forming rod 4. Specifically, the ring of the design forming rod 34 has the size with which the ring fits with an outside of the ring of the design forming rod 4 with a clearance which is the same as the thickness of the workpiece W. As described above, the workpiece W is sandwiched between the design forming rods 4 and 34, load from above and below is applied, thus forming the target design on the workpiece W. The design forming rods 4, 34 make contact with the workpiece, but the supporting rods do not make contact with the workpiece W. That is, only the design forming rods 4, 34 make contact with the workpiece W, and form the workpiece into a target shape by using the load applied by the press machine 50.
As shown in
As shown in
The same applies for the upper mold 32. That is, the supporting rods 36 extend parallel to the direction in which load is applied by the press machine (the Z direction), and a longitudinal center line CL2 of each supporting rod 36 passes through the design forming rod 34. Consequently, the supporting rods 36 of the upper mold 32 also catch, as the axial thrust load, the load which the design forming rod 34 receives from the press machine. The upper mold 32 also realizes a high load resistance.
The molds 2, 32 are made by a casting process, specifically, by full mold casting. Consequently, evaporative patterns having the same shapes as the molds 2 and 32 shown in
One modification of the mold of the embodiment will be described.
Notes concerning the molds 2, 32 of the embodiment will be given. The design forming rods (4, 34) correspond to one aspect of the first rod member. The supporting rods (6, 8, 10, 12, 36, 38, 40) correspond to one aspect of the second rod member. The cross-sectional shape of the design forming rods 4, 34, in particular the shape of the rod end surface that makes contact with the workpiece W, must be made in a shape corresponding to the pressed shape (the target design) of the workpiece. The cross-sectional shape of the supporting rods (6, 8, 10, 12, 36, 38, 40) may be a shape other than round. The cross-sectional shape of the supporting rods may be oval or polygonal. The supporting rods need not be a straight line, but may be bent, like the supporting rod 12, or may be curved.
The molds 2, 32 have a framework structure that includes the design forming portion. Consequently, the molds 2, 32 also have the advantage that removal of the workpiece from the mold after press forming is easy.
The overall shape of the mold, i.e., the shape of the framework structure, is not limited to the shape of the present embodiment. Further, the shape and number of the design forming rods is not limited to the mold of the present embodiment. For example, in order to achieve a complex press shape, the mold may comprise a plurality of design forming rods.
Specific examples of the present invention are described above in detail, but these examples are merely illustrative and place no limitation on the scope of the claims. The technology described in the claims also encompasses various changes and modifications to the specific examples described above. The technical elements explained in the present specification or drawings provide technical utility either independently or through various combinations. The present invention is not limited to the combinations described at the time the claims are filed. Further, the purpose of the examples illustrated by the present specification or drawings is to satisfy multiple objectives simultaneously, and satisfying any one of those objectives gives technical utility to the present invention.
2: Mold (Lower Mold), 4, 34: Design Forming Rods (First Rod Members), 6, 8, 10, 12, 36, 38, 40: Supporting Rods (Second Rod Members), 14, 44: Positioning Blocks, 32: Mold (Upper Mold), 50: Press Machine, 51: Bolster, 52: Slider, 53: Support, 55: Actuator, 102: Mold (Lower Mold), 107: Rod Main Body, 109: Reinforcing Member
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/051826 | 1/28/2011 | WO | 00 | 4/16/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/101830 | 8/2/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
774818 | Barr | Nov 1904 | A |
1449385 | Dieterich | Mar 1923 | A |
1940305 | Kapitke et al. | Dec 1933 | A |
2133477 | Schade | Oct 1938 | A |
2483597 | Schogren | Oct 1949 | A |
2681027 | Boll | Jun 1954 | A |
2722174 | Albers | Nov 1955 | A |
3172453 | Lauper | Mar 1965 | A |
3418922 | Kip, Jr. | Dec 1968 | A |
3845654 | Fuller et al. | Nov 1974 | A |
3889513 | Iwasaki et al. | Jun 1975 | A |
4088002 | Andrew | May 1978 | A |
4250735 | Spedding | Feb 1981 | A |
4615204 | Yamamoto et al. | Oct 1986 | A |
4706490 | Zeitlin et al. | Nov 1987 | A |
4760729 | Kaminski | Aug 1988 | A |
4878374 | Nelson | Nov 1989 | A |
5040966 | Weisse | Aug 1991 | A |
5184496 | Namba et al. | Feb 1993 | A |
5315856 | Mackey | May 1994 | A |
5433418 | Nowak et al. | Jul 1995 | A |
5701651 | Groves et al. | Dec 1997 | A |
6170560 | Daily et al. | Jan 2001 | B1 |
6907820 | Jin et al. | Jun 2005 | B2 |
8925365 | Schollhammer | Jan 2015 | B2 |
20130255351 | Nanba et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
102007023269 | Nov 2008 | DE |
0 570 212 | Nov 1993 | EP |
2 295 162 | Mar 2011 | EP |
2094681 | Sep 1982 | GB |
A-51-141766 | Dec 1976 | JP |
A-1-197027 | Aug 1989 | JP |
A-6-269866 | Sep 1994 | JP |
A-7-16670 | Jan 1995 | JP |
A-07-323400 | Dec 1995 | JP |
A-2003-245728 | Sep 2003 | JP |
10-0830822 | May 2008 | KR |
Entry |
---|
Written Opinion of the International Searching Authority issued International Application No. PCT/JP2011/051826 dated Mar. 29, 2011 (w/ partial translation). |
Number | Date | Country | |
---|---|---|---|
20130291614 A1 | Nov 2013 | US |