The present invention relates to a mold for producing molded articles such as concrete blocks, more particularly, to such a mold having one or more mold cores which project into the mold cavity for forming depressions on the outer sides of the molded concrete block.
A concrete block produced with such a mold (see for example German patent DE-AS 1 708 675) has on each of its four sides triangular projections and depressions. When the concrete blocks are assembled to form a surface the triangular projections fit into the corresponding recesses of adjacent concrete blocks. The resulting assembly of inter-fitting concrete blocks has high vertical and horizontal load supports on all four sides of the assembled concrete blocks. The triangular shapes of the projections and depressions facilitates interconnecting the concrete blocks when they are being laid.
In order to form the triangular depressions in a concrete block, it is known to move a triangular mold core point first linearly into the mold cavity. The mold wall of the mold is provided with a recess through which the mold core projects into the mold cavity. However, such a structure is disadvantageous since when the mold core is retracted back out of the mold cavity concrete residue remains on the mold core and such residues tend to build up and accumulate over a period of time. As a result, the finished concrete block has an irregular surface and there is a very poor dimensional accuracy of the depressions which makes it very difficult to precisely join the concrete blocks when they are being laid. Also, when the molded block is being removed from the mold and when the mold is being lifted irregularities will occur on the outer sides of the finished concrete block when the mold core is in the withdrawn position and concrete residues will adhere to the mold core. The mold cores must therefore be cleaned at relatively short time intervals and significantly increase the costs of the molding operation.
It is therefore the principal object of the present invention to provide a novel and improved mold for forming depressions in the sides of a concrete block molded therein.
It is another object of the present invention to provide such a mold in which pivotally mounted mold cores are pivoted into the cavity of the mold to form the depression during the molding operation and then withdrawn or retracted into the mold wall.
It is a further object of the present invention to provide such a mold wherein the mold cores are pivotally mounted within a closely fitting recess which provides for self cleaning of the mold cores and thus a smooth and uniform surface is formed on the finished block.
The objects of the present invention are achieved and the disadvantages of the prior art as described above are overcome by the mold of the present invention in which one or more mold cores are pivotally mounted on a horizontal axis within a recess in the side wall of the mold. The mold cores are pivoted into a first position in which they project into the mold cavity to form depressions in the side walls of a concrete block produced therein and then pivoted back or retracted into a second position back into the recess. The air gap or clearance between the inner edges of the recess and the outside contour of the mold core is very close and so dimensioned that the boundary edge acts as a stripper of the mold material when the mold core is pivoted back into the recess.
The mold core preferably has a body with the shape of a cylinder segment with triangular end faces and the horizontal pivoting axis of the mold core is located in the area of the central axis of the cylinder segment. The sides of the end faces opposite the pivoting axis form an arc segment. As a result, when the mold core is pivoted back into the recess all of the surfaces of the mold core which have come into contact with the concrete molding material are stripped and cleaned on the inner edges of the recesses in the mold wall.
In order to make the depressions in the concrete block somewhat triangular, the end faces of the mold core are beveled in the area of the arc segments so that arches with the shape of a truncated cone segment are formed on the two end faces. This enables the concrete blocks to be readily joined together when they are being laid. Preferably the angle at which the two end faces are beveled toward the arc segment is approximately 45 degrees. The mold cores have a pivoting range of about 90 degrees.
The pivoting drive of the mold cores may comprise a sloped cam slot control which is formed by a drive rod which is movably horizontally and has a control pin which fits slidingly into the sloping slot of the mold core. A drive rod and at least one mold core are positioned on each mold wall of the mold cavity and the drive rods are attached to the inside of a common drive belt which is positioned around the mold and which is connected to the piston rod of a double-acting hydraulic cylinder. Preferably guide rollers are located on the four corners of the mold to control the movement and positioning of the drive belt.
In a modification of the invention the mold core is supported on the outer side of the mold and is pivotable about a vertical axis. Each mold core comprises a prismatic body with a triangular base surface and the vertical pivot axis of the mold core is in the area of the apex of the triangular base surface and the side of the mold core opposite the apex forms an arc segment with the center point of the circle coinciding with the vertical pivoting axis.
In this modification, the side wall of the mold core is positioned in a plane with the inner surface of the mold wall when the mold core is pivoted back into its retracted position. When the molded block is removed from the mold or when the mold is lifted a stripping action will be caused by the smooth walls of the mold and this will provide for a smooth and clean surface of the finished concrete block.
The gap or clearance between the edges of the side wall of the mold core and the inner surface of the mold wall when the mold core is in its retracted position is as small as possible to form a virtually continuous surface. The vertical axis is preferably disposed within the wall thickness of the mold wall. The mold core is provided with a lever which projects to the outside of the mold and is connected to a drive unit mounted on the outside of the mold wall. When a plurality of mold cores are used, the respective levers are connected to each other by a joint rod for the common drive.
A molded concrete block produced with the mold disclosed herein and which may be used as a floor surface is provided with projections on its side walls which are shaped as cylinder segments having triangular end faces with the cylinder axis of the segment being disposed within the molded block and extending horizontally and parallel to the side wall of the molded block. The outer boundary of the cylindrical segment is formed by an arc segment having a central axis coinciding with the cylinder axis and the end faces are beveled in the area of the arc segments so that on the end faces arches are formed with the shape of a segment of a truncated cone. The segment angle of the cylinder segment is about 80 degrees and the angle at which the end faces are beveled toward the arc segments is of the order of 45 degrees.
In addition to each projection on the side wall of the molded block there is a depression which corresponds in shape to the projection. It is preferred that there be one projection and one depression on each side of a rectangular concrete block to facilitate positioning of the blocks in forming a floor.
The self cleaning of the mold cores as disclosed in the present invention enables the cleaning intervals of the mold to be significantly increased and the production process is improved. The pivoting structure of the mold cores insures that all surfaces of the mold core which have come into contact with the concrete material within the mold cavity are stripped clean of such material upon pivoting back within the recess in the side wall of the mold. The surfaces of the concrete block produced in this manner are smoothed so that a clean, regular and dimensionally stable surface of the concrete block is achieved.
Other objects and advantages of the present invention will be apparent upon reference to the accompanying description when taken in conjunction with the following drawings, which are exemplary, wherein;
Proceeding next to the drawings wherein like reference symbols indicate the same parts throughout the various views a specific embodiment and modification of the present invention will be described in detail.
In order that the concrete blocks 5 which are produced with the mold 1 can be connected to each other into a form-fitted and force-fitted block combination when laid to form a surface, each concrete block 5 has on each of its four outer side walls projections 6 and depressions 7 which correspond in shape to the projections 6 and shown in FIG. 10. When the blocks are laid to form the surface the projections 6 fit into the depressions 7 of the adjacent concrete blocks 5. The projections 6 are molded onto the side walls of the concrete block in the conventional manner by the use of correspondingly shaped depressions 8 (
The depressions 7 which correspond to the shape of the projection 6 on the concrete block 5 are produced using correspondingly shaped mold cores 9 which project into the mold cavity 2 through one recess 10 at a time in the mold side walls 3. Each mold core 9 comprises a cylinder segment-shaped body 11 with a segment angle(α) which is substantially 90 degrees (FIG. 5). This structure thus forms triangular end faces 12 on the two ends of the body 11. The cylinder-segment body 11 has a horizontally disposed central axis 13 which also defines the axis about which the mold core 9 is pivoted. The side of the triangular end face 12 which is opposite from the pivot axis 13 forms an arc segment 14 with the pivot axis 13. The end faces 12 are beveled in the area of the arc segments 14 at an angle (β) of approximately 45 degrees so that on the two end faces 12 arches 15 each having the shape of a segment of a truncated cone are formed (FIG. 4). In order to minimize the space required by the mold core when it is pivoted back into its retracted position as shown in
The mold core 9 is provided with a bore 17 having a central axis which coincides with the pivot axis 13 of the mold core. A bearing or journal pin 18 is received within the bore 17 and is attached to the outer side of the mold side wall 3 so as to extend horizontally and parallel to the mold side wall 3 as seen in FIG. 2.
If the cylinder segment-shaped body 11 of the mold core 9 is not beveled on its end faces 12, the resulting mold core will not have the arches 15 and will not be triangular but will be rectangular in a longitudinal section. As a result, one or more pockets are formed on the side walls of the concrete block which are open to the bottom and rainwater will be collected in these pockets. Such rain pockets can be formed in the concrete block itself or in conjunction with the projection 6 and the depression 7.
The pivoting movement of the mold cores 9 is achieved by a sloping cam slot control which comprises a drive rod 19 having a control pin 20 which is slidably received into a cam slot 21 on the mold core as shown in
The mold core 28 has on the top edge of the mold segment 32 a bead 36 which fits into a corresponding arc segment-shaped groove of the mold wall 3. In this manner, the mold core 28 is supported during the vibration and compaction process. In order to execute the pivoting movement of the mold core, a lever 37 which projects to the exterior of the mold is welded onto the mold core 28 and is connected to a drive unit 38 which comprises a hydraulic cylinder. For several mold cores 28, a plurality of individual levers 37 for a common pivoting drive may be connected to one another by a joint rod which is not shown in the drawings.
Prior to filling the mold cavities 2 with the concrete molding material the mold cores 9 and 28 are pivoted into the mold cavities as shown in
The embodiment of the concrete block 5 as shown in
Thus, it can be seen that the present invention has disclosed a mold in which depressions can be formed in the side walls of a molded block by pivotably movable mold cores which are self-cleaned of any concrete residue when the mold cores are pivoted back into a retracted position to enable removal of a molded block from the mold.
It will be understood that this invention is susceptible to modification in order to adopt it to different usages and conditions, and, accordingly, it is desired to comprehend such modifications within this invention as they fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101 10 651 | Mar 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
RE17020 | Healy | Jul 1928 | E |
2050299 | Evers | Aug 1936 | A |
3731899 | Nuzzo | May 1973 | A |
4627764 | Scheiwiller | Dec 1986 | A |
4761095 | Barlechner | Aug 1988 | A |
5409325 | Wu | Apr 1995 | A |
5902069 | Barth et al. | May 1999 | A |
6079902 | Pettee, Jr. | Jun 2000 | A |
D431305 | Barth et al. | Sep 2000 | S |
20030007834 | Bolduc et al. | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20020125403 A1 | Sep 2002 | US |