1. Field of the Invention
The present invention relates to a mold for the production of molded concrete bricks, and to a molded concrete brick produced using it.
2. The Prior Art
A molded concrete brick is known under the designation HYDROVARIO, which can particularly be used as a paving brick for larger areas, and is particularly advantageous for allowing rainwater to seep through the paved surface. In the HYDROVARIO paving brick, which is essentially rectangular, two side surfaces set opposite one another are offset toward the center of the brick, in a center region between corner regions. In this way, narrow slits are present in the paved surface at these locations. These side surfaces have recesses spaced apart from the top of the brick, which are open toward the outside and toward the underside of the brick. Rainwater can quickly drain into the recesses through the narrow slits, and from there seep into the ground underneath by way of the lower openings of the recesses, which are larger than the slits on the top of the brick.
Molds for the production of such molded concrete bricks contain recess bodies to produce the recesses, which bodies can be pushed into the mold insert parallel to the base, and pulled out of it again. It has been shown that the mechanism for displacement of the recess bodies is susceptible to failure.
It is an object of the invention to provide an improved mold for the production of molded concrete bricks, having a recess in at least one side surface. It is a further object to provide a molded concrete brick that can be produced using such a mold.
These and other objects are achieved, according to the invention, by a mold for the production of molded concrete bricks having at least one mold insert, in conventional manner, which insert has an upper opening in an upper delimitation plane and a lower opening in a lower delimitation plane. Essentially vertical side walls of the mold insert, which determine the shape of the molded concrete brick, run between upper and lower delimitation plane. The molded concrete bricks according to the present invention are approximately rectangular, in a preferred embodiment.
For the production of the molded concrete bricks, the mold is set onto a base, particularly onto a surface of a table or onto a board that lies on such a table, and pressed onto the base, so that the lower opening is closed. In operation, base and upper and lower delimitation plane run horizontally and parallel to one another. The information horizontal and vertical relates to the operating position of the mold. Wet concrete mixture is filled into the mold insert through the upper opening, which is still open. Afterwards, a pressure die is introduced into the upper opening, which die presses down onto the concrete mixture. The concrete mixture is compacted during a short vibration movement that acts on the concrete mixture, whereby preferably, a vibration device excites a vertical vibration movement of the table. After the vibration process, the mold is lifted off from the base, vertically relative to it, and the die is displaced all the way to the lower opening in the mold insert, relative to the mold. As this displacement happens, the compacted molded concrete brick is removed from the mold insert, in the downward direction.
For the production of the at least one recess in a side surface of the molded concrete brick, a recess body projects into the mold insert from a side wall of the mold insert. Before the wet concrete mixture is filled into the mold insert, the recess body is displaced into the mold insert in a first position, beyond the side wall. To remove the brick downward out of the mold insert, the recess body is displaced back out of the mold insert, into a second position in which it does not project into the mold insert beyond the side wall.
The displacement between the two positions preferably takes place as a linear displacement parallel to the lower delimitation plane qELr relative to the side wall, particularly in the direction of the surface normal lines of a planar section of the side wall.
The side wall has an opening in which the recess body is guided during displacement. The edging of the opening is adapted to the contour of the recess body and surrounds the recess body at a slight distance. Recess body and opening in the side wall of the mold insert reach all the way to the lower delimitation plane. In this way, the recess produced in the molded concrete brick moves all the way to the underside of the brick. Recess body and opening in the side wall of the mold insert are spaced so far away from the upper delimitation plane that the top of the molded concrete brick compacted in the mold insert lies higher than the highest point of the recess body.
It is essential to the present invention that the contour of the recess body and the edging of the opening in the side wall that is adapted to this body reach all the way to the lower delimitation plane and have at least one section, in their progression from the lower delimitation plane upward, in which the recess body lies above the edging of the opening that lies directly opposite it. Such a section can have both a horizontal progression and a progression inclined between horizontal and vertical. A horizontal progression, or a progression inclined by less than 30°, particularly less than 15°, relative to the horizontal, is particularly advantageous, because tolerances of a gap that exists for the horizontal displaceability of the recess body relative to the contour of the opening in the wall have a particularly slight effect on the vertical position of the recess body in this connection.
Via the aforementioned section, a force on the recess body directed in the direction of the base, particularly during the vibration process, at this section, is advantageously absorbed by the side wall of the mold insert.
It is advantageous if the recess body is mirror-symmetrical with regard to a vertical plane of symmetry. The forces on the recess body are then also symmetrical, and twisting moments are minimized.
In a first preferred embodiment, the width of the recess body, i.e. of the opening, is less at the lower delimitation plane of the mold than the greatest width that occurs at a position offset vertically upward from the underside. The section then advantageously lies at the transition from the lesser width to the greater width. It is advantageous if the width at the lower delimitation plane amounts to less than 60%, particularly less than 70% of the maximal width. The section preferably runs essentially horizontally. In another embodiment, the widening of the width of opening and recess body can also run in trapezoid shape, for example.
In another embodiment, the width of the recess body, i.e. of the opening, can also be reduced from an initially greater width at the lower delimitation plane, in the progression upward, at a distance from the lower delimitation plane, and afterwards widened again, or vice versa. The section can also be present at another progression of the edging of the recess body, i.e. opening. It is advantageous if such a section is present on both of the edging parts of the recess body, i.e. of the mold, that lead upward from the lower delimitation plane of the mold and lie opposite one another on the sides, in each instance.
It is advantageous if a region of the side wall of the mold insert that contains the opening and the recess body is offset toward the center of the mold insert, to a slight degree, as compared with a corner region of the same side wall. For one thing, this offset of the region of the side wall in this region results in a greater wall thickness of the side wall of the mold insert. Therefore this offset results in improved guidance and support of the recess body in the opening of the side wall. For another thing, gaps are formed in a pavement surface, through which water can drain from the top of the pavement surface into the recesses in the side surfaces of the bricks.
It is advantageous if at least one opening having a recess body is present, in each instance, in two side walls of the mold insert that lie opposite one another.
In an advantageous embodiment, a mold contains multiple similar mold inserts having at least one recess body, preferably at least one recess body in two sides that lie opposite one another, in each instance. Recess bodies that correspond to one another in terms of positioning in the mold inserts, in each instance, and in terms of movement direction, are advantageously coupled with one another mechanically, outside of the mold inserts.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It should be understood, however, that the drawings are designed for the purpose of illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Referring now in detail to the drawings,
The molded concrete brick shown in a slanted view from above in
The contour of the upper surface SO of the brick determines the appearance of the brick in a surface paved with similar bricks. The side surfaces SY, ESX, MSX continue the contour of the upper surface SO essentially vertically downward, whereby the vertical surfaces are interrupted by the alignment structures ZS and a recess AU in the region of the partial surface MSX. In the following, however, unless explicitly stated otherwise, the side surfaces are understood to be the vertical surfaces that result from vertical continuation of the edging of the upper surface SO downward, without taking into consideration the alignment structures and recesses.
The recess AU in the partial surface MSX, i.e. in two partial surfaces MSX that are set opposite one another in the x direction, reaches all the way to the underside SU of the brick and is thereby open downward to a substratum on which the brick is laid. The width of the recess in the y direction is less, on the underside of the brick, than a maximal width in a region spaced upward, i.e. in the z direction, from the underside of the brick. A transition from the lesser width to the maximal width is formed by means of sections SK1, SK2 of the edge surface RF of the recess that are inclined relative to the vertical. At these sections SK1, SK2, the edge surface of the recess points more or less strongly upward, depending on the size of the angle relative to the vertical. It is advantageous if the edge surface in these sections is inclined by at least 45° relative to the vertical z direction (i.e. the surface normal line inclined relative to the horizontal y direction). In this connection, the edge surface of the recess AU is understood to be the surface that delimits the recess in the y and z direction. The recess is spaced apart from the top SO of the brick and thereby closed off toward the top. The recess AU is open parallel to the x direction, pointing outward from the center of the brick. The delimitation surface of the recess AU toward the center of the brick is preferably parallel to the partial surface MSX.
The mold FF contains a mold frame FR, in conventional manner, from which frame two flanges FL project on opposite sides, and a multiplicity of mold inserts FN surrounded by the mold frame FR.
The mold inserts FN are delimited on the sides by means of mold insert walls FY having surface normal lines in the y direction, and by means of partial surfaces EFX, MFX having surface normal lines essentially parallel to the x direction. The mold insert walls form side wall surfaces that run vertically, i.e. essentially in the z direction, between an upper opening in an upper delimitation plane EH and a lower opening in a lower delimitation plane EL. Recess bodies AK1 that project into the mold inserts, against the partial surfaces MFX, in the position shown in
In the view according to
The recess bodies are fitted into openings of the side walls, i.e. of the partial surfaces MFX of the side walls, and guided to be displaceable in these, in the x direction. In this connection, the recess bodies AK1, AK2 and the openings in the side walls of the mold inserts adapted to their contour have a lesser width in the y direction, in a y-z section plane at the lower delimitation plane EL, than in a position spaced apart from the lower delimitation plane in the direction of the upper delimitation plane, in the z direction. Transition sections between the lesser width and the greater width can advantageously serve for vertical support of the recess bodies in the openings of the side walls.
The recess bodies AK1, AK2 are displaceable in the x direction in the openings of the side walls that serve at least partially as guides. It is advantageous if the recess bodies that are situated at the corresponding position of multiple mold inserts adjacent to one another in the y direction and following one another are mechanically coupled with one another, for which purpose strips KL11, KL12, KL21, and KL22 that particularly run outside of the mold inserts in the y direction are provided, to which the recess bodies are attached, particularly screwed on. All the recess bodies that lie in the corresponding position are connected with one another by way of the strips, and can advantageously be displaced together, in each instance, parallel to the x direction, by means of drive devices AM1, AM2.
It is advantageous in the case of multiple rows of mold inserts, two in the case of the example shown, which run in the y direction and are offset relative to one another in the x direction, if the recess bodies of the two rows of mold inserts situated in corresponding positions are again connected with one another, for which purpose the strips KL11 and KL12 are connected with one another to form frames by way of frame segments RA1, and the strips KL21 and KL22 are connected with one another to form frames by way of frame segments RA2, in each instance. The frame formed by frame segments RA1 and strips KL11, KL12 is displaceable by means of drive devices AM1, the frame formed by frame segments RA2 and strips KL21, KL22 is displaceable by means of drive devices AM2, parallel to the x direction, in each instance. Thus, all the recess bodies are collectively displaceable in simple and advantageous manner, by means of these two frames. The drive devices AM1 can be driven electrically, pneumatically, or hydraulically, for example.
While
Recess body and opening, respectively, have an initial lower width BU at the lower delimitation plane EL, which widens to a greater width BO in the case of the continuing progression of the contour of recess body AK and opening OS, in the z direction, in sections FK1, FK2, which width, in the example shown, is, at the same time, the maximal width of the recess body and the opening, respectively.
It is advantageous if the lesser lower width BU of the recess amounts to at least 50%, particularly at least 60%, preferably at least 70% of the greater width BO. The lesser width BU is advantageously at least 10% less than BO. At the sections FK1, FK2, corresponding to the edging sections SK1, SK2 of the recesses AU (
In
The depth of the recesses AU relative to the surface sections MSX is designated as WA. The depth WA is advantageously greater than the offset WR of the partial surfaces MSX and MFX, respectively, relative to the partial surfaces ESX, EFX in the partial surfaces adjacent to the center partial surfaces MSX, MFX. The depth WA of the recesses AU is advantageously greater than the offset WR of the partial areas relative to one another. The thickness of the mold insert is designated with W1 in the corner regions having partial surfaces ESX, EFX, and with W2 in the center region with partial surfaces MSX, MFX, whereby W2=W1+WR. The displacement path LV of the recess bodies AK is essentially equal to the depth WA of the recesses AU in the brick, and equal to the difference between the first and the second position of the recess bodies. The expanse of the recess body AK in the x direction, i.e. essentially in the direction of the center partial surface MFX of the side wall of the mold insert, which is assumed to be planar, is at least equal to the sum of the wall thickness W1 and the depth WA of the recess. In the side view according to
The characteristics indicated above and in the claims, as well as evident from the figures, can advantageously be implemented both individually and in various combinations. The invention is not limited to the exemplary embodiments described, but rather can be modified in many ways, within the scope of the skills of a person skilled in the art.
Thus, although only a few embodiments of the present invention have been shown and described, it is to be understood that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 058 404 | Dec 2005 | DE | national |
This application is a continuation-in-part and priority is claimed under 35 U.S.C. §120 of International Application No. PCT/EP2006/010987 filed Nov. 16, 2006, which claims priority from German Application No. 10 2005 058 404.7 filed Dec. 7, 2005.
Number | Name | Date | Kind |
---|---|---|---|
789996 | McCullough | May 1905 | A |
793055 | Clough | Jun 1905 | A |
828140 | Robbins | Aug 1906 | A |
828483 | Keenan | Aug 1906 | A |
837760 | Whisler | Dec 1906 | A |
1219127 | Marshall | Mar 1917 | A |
1220526 | Marshall | Mar 1917 | A |
1235858 | Tanner | Aug 1917 | A |
1347015 | Creason | Jul 1920 | A |
1406460 | Kinzinger | Feb 1922 | A |
1685188 | Beckwith | Sep 1928 | A |
2283968 | Bunch | May 1942 | A |
2460697 | Kreger | Feb 1949 | A |
2498923 | Jordan | Feb 1950 | A |
2499532 | Shearer | Mar 1950 | A |
2550977 | Dimock | May 1951 | A |
3731899 | Nuzzo | May 1973 | A |
4218206 | Mullins | Aug 1980 | A |
4869660 | Ruckstuhl | Sep 1989 | A |
5358214 | Batlle | Oct 1994 | A |
6843461 | Braungardt et al. | Jan 2005 | B2 |
7175414 | Ness et al. | Feb 2007 | B2 |
7261548 | Ness | Aug 2007 | B2 |
7470121 | Ness et al. | Dec 2008 | B2 |
7575217 | Jucha et al. | Aug 2009 | B2 |
20020125403 | Braungardt et al. | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
296 11 484 | Oct 1996 | DE |
196 34 499 | Mar 1998 | DE |
295 22 393 | Oct 2002 | DE |
0 719 622 | Jul 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20080233335 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2006/010987 | Nov 2006 | US |
Child | 12154992 | US |