The present application relates generally to a roof flashing for sealing a conduit protruding from the roof of a building.
Roof flashings are used to seal openings around conduits extending through the roofs of buildings. Various types of roof flashings are well known. Generally, roof flashings can be shaped to conform to the contour of the roof to create a water-tight seal between the flashing, the conduit, and the roof. To facilitate being conformed to the shape of the roof, roof flashings are typically made from a thin sheet of a malleable metal such as lead, aluminum, or copper.
Lead flashing has been in the market since 1916, and is still used in many areas in the U.S. Lead flashing represents approximately 15% of the total flashing market and is a preferred solution in certain markets due to its ductility and its ability to withstand the environmental elements
The present application discloses exemplary embodiments of a roof flashing, a roof flashing in combination with a roof structure and a conduit, and a method of installing a roof flashing. By way of example to illustrate various aspects of the general inventive concepts, several exemplary embodiments of compositions and methods are disclosed herein.
A roof flashing embodying the principles of the invention is a lead-free alternative to traditional lead flashing. In the roof flashing embodying the principles of the invention, plastically deformable shaping material is attached to a water barrier made from an elastically deformable material. The water barrier provides a water impervious barrier between the roof flashing and the surface of a roof structure and conduit. The shaping material allows the roof flashing to maintain its shape after being formed to match the contours of the roof structure and conduit.
In an exemplary embodiment, the present disclosure is directed to a roof flashing comprising: a base, a flexible tube, and an opening through the base. The base includes a first water barrier attached to a first metallic shaping material. The first water barrier is made from a first elastomer. The base is shapeable to match the contour of a roof structure. The flexible tube includes a second water barrier over-molded onto a second metallic shaping material. The second water barrier is made from a second elastomer. The flexible tube conforms to a conduit extending from the roof structure. The flexible tube is foldable over an upper end of the conduit providing a seal. The flexible tube extends through the opening in the base.
In an exemplary embodiment, the present disclosure is directed to a roof flashing in combination with a roof structure and a conduit extending from the roof structure. The roof flashing comprises a base, a flexible tube, and an opening through the base. The base includes a first water barrier over-molded onto a first metallic shaping material. The first water barrier is made from a first elastomer. The base is shapeable to match the contour of the roof structure. The flexible tube includes a second water barrier over-molded onto a second metallic shaping material. The second water barrier is made from a second elastomer. The flexible tube conforms to the conduit extending from the roof structure. The flexible tube is foldable over an upper end of the conduit providing a seal. The flexible tube extends through the opening in the base.
A method of installing a roof flashing comprising: over-molding a first water barrier made from a first elastomer onto a first metallic shaping material to form a base; over-molding a second water barrier made from a second elastomer onto a second metallic shaping material to form a flexible tube. The method further comprises extending the flexible tube through an opening in the base and shaping the base to match the contour of a roof structure. Additionally, the method includes conforming the flexible tube to a conduit extending from the roof structure and folding the flexible tube over an upper end of the conduit to provide a seal.
Materials for the water barrier and shaping material can be selected with the function of each element in mind, rather than relying on a single material to perform both the sealing and shaping functions. Thus, a material better suited for sealing against water can be selected for the water barrier, while a material better suited for molding and shaping the roof flashing can be selected for the shaping material. If desired, particular embodiments may optionally allow for the shaping material to be embedded within the water barrier, such that the roof flashing appears to be made from a single material. In one such embodiment, a rubber water barrier may contain a shaping material comprising metal strips arranged parallel to each other or in a mesh pattern.
The present application discloses a moldable roof flashing and a combination of a moldable roof flashing, a roof structure, and a conduit protruding from the roof structure. As used herein the term “lead-free” refers to an item having a weighted average of not more than 8% lead, including not more than 0.25% lead.
Referring to
The base 200 has a top surface 202 that is exposed to the elements and a bottom surface 204 that is pressed against the top surface 402 of the roof structure 400. The base 200 is comprised of a water barrier 210 that is attached to a shaping material 220. Alternatively, in certain embodiments the shaping material 220 may be interposed between the water barrier 210. The water barrier 210 covers the bottom surface 204 of the base 200, and in certain embodiments, may cover the top surface 202 of the base 200 as well.
The flexible tube 300 has an outer surface 302 that is exposed to the elements, and an inner surface 304 that is oriented toward the conduit 410. The flexible tube 300 is comprised of a water barrier 310 that is attached to a shaping material 320. Alternatively, in certain embodiments the shaping material 320 may be interposed between the water barrier 310. The water barrier 310 covers the inner surface 304 of the flexible tube 300, and in certain embodiments, may cover the outer surface 302 of the flexible tube 300 as well. The flexible tube 300 extends from a lower end 306 to an upper end 308, and may have any cross-sectional shape that is suitable to accommodate the conduit 410.
An opening 206 in the base 200 allows the flexible tube 300 to extend through the base 200. The opening 206 is roughly the same shape and size as a cross-section of the flexible tube 300. The flexible tube 300 has an upper end 308 that is above the base 200 and a lower end 306 that aligns with, or optionally extends below, the bottom surface 204 of the base 200. A joint 208 sealingly connects the flexible tube 300 to the base 200 where they intersect.
The water barrier 210 in the base 200 and the water barrier 310 in the flexible tube 300 may be formed of any suitable material. Examples of suitable materials include, but are not limited to, silicone or silicone rubber, fluorinated silicone or silicone rubber, polysiloxanes, polydimethylsiloxanes, plasticized PVC, EPDM, Viton, rubber materials, plastic materials, thermoplastic elastomers, or any other elastically deformable and water repellant material. In certain embodiments, the water barrier 210 in the base 200 and the water barrier 310 in the flexible tube 300 are formed of the same material. In certain other embodiments, the water barrier 210 in the base 200 and the water barrier 310 in the flexible tube 300 are formed of different materials.
The shaping material 220 in the base 200 may be formed of any suitable material. Examples of suitable materials include, but are not limited to, aluminum, copper, galvanized steel, other metal or metallic materials, plastic or plastically deformable materials, or any other deformable material, including stainless steel, zinc alloy, lead-coated copper, anodized aluminum, terne-coated copper, galvalume (aluminum-zinc alloy coated sheet steel), polyvinylidene fluoride (sometimes known as kylar or hylar), and metals similar to stone-coated metal roofing. In certain embodiments, the shaping material 220 in the base 200 and the shaping material 320 in the flexible tube 300 are formed of the same material. In certain other embodiments, the shaping material 220 in the base 200 and the shaping material 320 in the flexible tube 300 are formed of different materials.
In certain embodiments, the shaping material 220 in the base 200 is formed of a plurality of metal strips. The arrangement of these metal strips may be adjusted to vary the stiffness of the shaping material 220 in the base 200. For example, the spacing between the strips can be increased to decrease the stiffness of the shaping material 220, or the metal strips can be arranged in a mesh pattern to increase the stiffness of the base 200. The arrangement of the metal strips can also be changed to vary the stiffness of the shaping material 220 depending on the direction in which the base 200 is bent.
Likewise, in certain embodiments, the shaping material 320 in the flexible tube 320 is formed of a plurality of metal strips. The arrangement of these metal strips may be adjusted to vary the stiffness of the shaping material 320 in the flexible tube 300. For example, the spacing between the strips can be increased to decrease the stiffness of the shaping material 320, or the metal strips can be arranged in a mesh pattern to increase the stiffness of the flexible tube 300.
The roof structure 400 may be any roof structure and may comprise many layers of various materials, such as wood, metal, and/or ceramic. The top surface 402 of the roof structure 400 may be covered in shingles or tiles, or any other roofing material. The base 200 is molded to conform to the contours of the top surface 402 of the roof structure 400. The water barrier 210 on the bottom surface 204 of the base 200 prevents water from entering the opening 406 in the roof structure 400 as it flows down the roof structure 400 and is diverted into a drainage system.
The conduit 410 may be any pipe, tube or comparable structure suitable, whether cylindrical, non-cylindrical, for transporting a fluid, including without limitation, liquids, slurries, and gases. The conduit 410 may also be any conduit or passageway that passes through the roof structure 400 to provide access from the interior of the building, for exhaust or for intake, to the atmosphere. The upper end 308 of the flexible tube 300 is folded over the upper end 418 of the conduit 410 to prevent water from passing through the gap between the outer surface 412 of the conduit and the opening 406 in the roof structure 400.
Referring now to
Referring to
Referring now to
Referring to
Referring now to
Referring to
The following examples illustrate exemplary embodiments and features of various roof flashing encompassed by the general inventive concepts. The examples are given solely for the purpose of illustration and are not to be construed as limiting the present disclosure, as many variations thereof are possible and also encompassed by the general inventive concepts.
In order to more thoroughly describe this invention, the following working examples are provided. In these examples, the roof flashings made in accordance with this invention were made using the following exemplary materials. In Example 1, the water barrier is liquid silicone rubber (LSR) having the composition shown below.
In Example 2, the water barrier is solid silicone rubber or high temperature vulcanizing (HTV) rubber having the composition shown below.
Both formulations (LSR and HTV) can be used as a moldable silicone for the water barrier. Other additives can be incorporated in formulation like heat stabilizers, colorants, and fire retardants.
In Examples 3-6, the shaping material is any one of the aluminum alloys having the compositions shown below. In Examples 3-6 below aluminum alloys were used to make an aluminum wire mesh.
The foregoing description of the preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. A roof flashing, a roof flashing in combination with a roof structure and a conduit, and a method of installing a roof flashing in accordance with the present invention may include any combination or sub-combination of the features or concepts disclosed by the present application.
The embodiments were chosen and described to illustrate the principles of the invention and its practical application. It is clear that modifications and variations are within the scope of the invention as determined by the appended claims. The preferred embodiments do not and are not intended to limit the ordinary meaning of the claims in their fair and broad interpretation in any way.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/969,535, filed Mar. 24, 2014, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61969535 | Mar 2014 | US |