The present invention relates to a molded article production system and molded article production method used in the process of producing a molded article which includes a cured resin, by curing a fluid resin filling the cavity of a mold to form the cured resin.
A resin sealing and molding system, which is one type of the molded article production system, has a mold composed of upper and lower molds facing each other within which the cavity (i.e. the space for molding a cured resin) is formed. In a conventionally proposed resin sealing and molding system, the cavity is composed of two kinds of members, i.e. the bottom member for forming the mold surface of the inner bottom portion of the cavity (inner bottom surface) and the circumferential member (frame member) for forming the mold surface of the circumferential portion of the cavity (inner circumferential surface). (See Patent Literature 1 for an example.)
The following resin sealing and molding system is disclosed in Patent Literature 1 (see claim 1 and
A resin sealing and molding system, characterized by:
a) an upper mold having a lower surface on which a substrate with an electronic part mounted can be held; and
b) a lower mold arranged opposite to the upper mold, having:
Patent Literature 1: JP 2013-247315 A
According to the description of Patent Literature 1, the frame member and the bottom member are individually driven by two separate driving mechanisms. Such an invention described in Patent Literature 1 still has room for improvement in respect to the configuration for performing the resin molding by separately moving the frame member and the bottom member.
The first aspect of the molded article production system according to the present invention is a molded article production system including: a mold having at least a lower mold and an upper mold facing the lower mold; a cavity provided in the lower mold; a bottom member having an inner bottom surface forming the bottom surface of the cavity; a circumferential member having an inner circumferential surface forming the side surface of the cavity; and a mold-driving mechanism provided for opening and closing the mold, the system configured to produce a molded article including a cured resin formed by curing a fluid resin filling the cavity while holding the mold in the closed state, and the system further including: a lower base; a support member vertically provided on the lower base; an upper base provided in the upper portion of the support member and facing the lower base; an elevating platen mounted on the middle portion of the support member in a vertically moveable manner; a first driving mechanism included in the mold-driving mechanism and attached to the lower base; a second driving mechanism included in the mold-driving mechanism and attached to the elevating platen; a main connecting member connecting the first driving mechanism and the elevating platen; a first auxiliary connecting member connected to the circumferential member; and a second auxiliary connecting member connected to the bottom member, wherein: the upper mold is attached to the upper base; the first auxiliary connecting member is connected to the elevating platen; the second auxiliary connecting member is connected to the second driving mechanism; the circumferential member is vertically driven by the elevating platen which is vertically driven by the first driving mechanism; and the bottom member is vertically driven by the second driving mechanism.
The second aspect of the molded article production system according to the present invention is a molded article production system including: a mold having at least a lower mold and an upper mold facing the lower mold; a cavity provided in the lower mold; a bottom member having an inner bottom surface forming the bottom surface of the cavity; a circumferential member having an inner circumferential surface forming the side surface of the cavity; and a mold-driving mechanism provided for opening and closing the mold, the system configured to produce a molded article including a cured resin formed by curing a fluid resin filling the cavity while holding the mold in the closed state, and the system further including: a lower base; a support member vertically provided on the lower base; an upper base provided in the upper portion of the support member and facing the lower base; an elevating platen mounted on the middle portion of the support member in a vertically moveable manner; a first driving mechanism included in the mold-driving mechanism and attached to the lower base; a second driving mechanism included in the mold-driving mechanism and attached to the elevating platen; a main connecting member connecting the first driving mechanism and the elevating platen; a first auxiliary connecting member connected to the circumferential member; and a second auxiliary connecting member connected to the bottom member, wherein: the upper mold is attached to the upper base; the first auxiliary connecting member is connected to the second driving mechanism; the second auxiliary connecting member is connected to the elevating platen; the bottom member is vertically driven by the elevating platen which is vertically driven by the first driving mechanism; and the circumferential member is vertically driven by the second driving mechanism.
In one mode of the molded article production system according to the present invention, the previously described molded article production system further includes: a communicating hole provided in the lower mold, for allowing a mold surface forming the cavity to communicate with an external space outside the lower mold; and an opening formed by the communicating hole on the mold surface forming the cavity.
In one mode of the molded article production system according to the present invention, the previously described molded article production system is further characterized in that: the communicating hole is provided in the circumferential member; and the communicating hole is provided at a position where, after a gap begins to be formed between the mold surface on the circumferential member and the cured resin, the communicating hole allows the gap to communicate with the external space.
In one mode of the molded article production system according to the present invention, the previously described molded article production system is further characterized in that: the communicating hole is provided in a communicating member consisting of at least one of the circumferential member and the bottom member; the lower mold is provided with a pillar-shaped member inserted in the communicating hole in a longitudinally movable fashion, a top surface formed on the pillar-shaped member and configured to fit in the opening, and a widened portion formed in the communicating hole and extending toward the external space from a position receded from the opening along a communicating direction which is the extending direction of the communicating hole, the widened portion including the cross-sectional shape of the pillar-shaped member on a planer view and having a portion larger than that cross-sectional shape; the top surface closes the opening when the pillar-shaped member is advanced toward the cavity until the top surface reaches the opening; and the communicating hole including the opening and the widened portion communicates with the external space when the pillar-shaped member is retracted in the communicating direction.
In one mode of the molded article production system according to the present invention, the previously described molded article production system is further characterized in that: a plurality of molds is provided; the first auxiliary connecting member is connected to the circumferential member of each of the plurality of molds; and the second auxiliary connecting member is connected to the bottom member of each of the plurality of molds.
In one mode of the molded article production system according to the present invention, the previously described molded article production system further includes: an ambient-air shield member provided between the upper base and the first auxiliary connecting member so that a space which minimally includes the cavity becomes a closed space shielded from ambient air; at least one seal member provided between the upper base and the first auxiliary connecting member; and a depressurizing means connected to the closed space, for depressurizing the closed space.
In one mode of the molded article production system according to the present invention, the previously described molded article production system further includes: a material-receiving module for receiving a resin material which is a raw material for a fluid resin; and at least one molding module having at least the mold and the mold-driving mechanism, wherein the molding module is attachable to and detachable from the material-receiving module, and the molding module is attachable to and detachable from another molding module.
The first aspect of the molded article production method according to the present invention is a molded article production method for producing a molded article including a cured resin, using a molded article production system including: a mold having at least a lower mold and an upper mold facing the lower mold; a cavity provided in the lower mold; a bottom member having an inner bottom surface forming the bottom surface of the cavity; a circumferential member having an inner circumferential surface forming the side surface of the cavity; and a mold-driving mechanism provided for opening and closing the mold, the method including the processes of filling the cavity with a fluid resin, closing the mold, and forming the cured resin by curing the fluid resin in the cavity while holding the mold in the closed state, and the method further including the processes of: elevating both the circumferential member connected to a first auxiliary connecting member and the bottom member connected to a second auxiliary connecting member; bringing the circumferential member into contact with a member present on the upper mold and further elevating the bottom member; forming the cavity by stopping the bottom member at a predetermined position; detaching the outer circumferential surface of the cured resin from the inner circumferential surface of the circumferential member by lowering the circumferential member while the top surface of the cured resin is held by the inner bottom surface of the bottom member, after the process of molding the cured resin; detaching the top surface of the cured resin from the inner bottom surface of the bottom member by lowering the bottom member while the outer circumferential surface of the cured resin is held by the inner circumferential surface of the circumferential member, after the process of molding the cured resin; lowering both the circumferential member and the bottom member; and removing the molded article, wherein: the circumferential member connected to an elevating platen with the first auxiliary connecting member is elevated or lowered by vertically driving the elevating platen via a main connecting member by means of a first driving mechanism provided in a lower base included in the molded article production system; and the bottom member connected to a second driving mechanism with the second auxiliary connecting member is elevated or lowered by means of a second driving mechanism provided in the elevating platen.
The second aspect of the molded article production method according to the present invention is a molded article production method for producing a molded article including a cured resin, using a molded article production system including: a mold having at least a lower mold and an upper mold facing the lower mold; a cavity provided in the lower mold; a bottom member having an inner bottom surface forming the bottom surface of the cavity; a circumferential member having an inner circumferential surface forming the side surface of the cavity; and a mold-driving mechanism provided for opening and closing the mold, the method including the processes of filling the cavity with a fluid resin, closing the mold, and forming the cured resin by curing the fluid resin in the cavity while holding the mold in the closed state, and the method further including the processes of: elevating both the circumferential member connected to a first auxiliary connecting member and the bottom member connected to a second auxiliary connecting member; bringing the circumferential member into contact with a member present on the upper mold and further elevating the bottom member; forming the cavity by stopping the bottom member at a predetermined position; detaching the outer circumferential surface of the cured resin from the inner circumferential surface of the circumferential member by lowering the circumferential member while the top surface of the cured resin is held by the inner bottom surface of the bottom member, after the process of molding the cured resin; detaching the top surface of the cured resin from the inner bottom surface of the bottom member by lowering the bottom member while the outer circumferential surface of the cured resin is held by the inner circumferential surface of the circumferential member, after the process of molding the cured resin; lowering both the circumferential member and the bottom member; and removing the molded article, wherein: the bottom member connected to an elevating platen with the second auxiliary connecting member is elevated or lowered by vertically driving the elevating platen via a main connecting member by means of a first driving mechanism provided in a lower base included in the molded article production system; and the circumferential member connected to a second driving mechanism with the first auxiliary connecting member is elevated or lowered by means of a second driving mechanism provided in the elevating platen.
In one mode of the molded article production method according to the present invention, the previously described molded article production method further includes the process of making the surface of the cured resin communicate with an external space outside the lower mold, after the process of molding the cured resin, using a communicating hole provided in the lower mold for allowing a mold surface forming the cavity to communicate with the external space, through an opening of the communicating hole provided on the mold surface forming the cavity.
In one mode of the molded article production method according to the present invention, the previously described molded article production method is further characterized in that: the communicating hole is provided at a position where, after a gap begins to be formed between the mold surface on the circumferential member and the cured resin, the communicating hole allows the gap to communicate with the external space; and the process of making the surface of the cured resin communicate with the external space is performed in the process of detaching the top surface of the cured resin.
In one mode of the molded article production method according to the present invention, the previously described molded article production method is further characterized in that: the communicating hole is provided in a communicating member consisting of at least one of the circumferential member and the bottom member; the lower mold is provided with a pillar-shaped member inserted into the communicating hole in a longitudinally movable fashion, a top surface formed on the pillar-shaped member and configured to fit in the opening, and a widened portion formed in the communicating hole and extending toward the external space from a position receded from the opening along a communicating direction which is the extending direction of the communicating hole, the widened portion including the cross-sectional shape of the pillar-shaped member on a planer view and having a portion larger than that cross-sectional shape; the process of closing the opening by means of the top surface by advancing the pillar-shaped member toward the cavity until the top surface reaches the opening is performed before the process of filling the cavity with the fluid resin is initiated; and the process of making the surface of the cured resin communicate with the external space by retracting the pillar-shaped member in the communicating direction is performed after the process of molding the cured resin.
In one mode of the molded article production method according to the present invention, the previously described molded article production method is further characterized in that: the molded article production system has a plurality of molds; the first auxiliary connecting member is connected to the circumferential member of each of the plurality of molds; and the second auxiliary connecting member is connected to the bottom member of each of the plurality of molds.
In one mode of the molded article production method according to the present invention, the previously described molded article production method further includes the processes of: forming a closed space by shielding a space which minimally includes the cavity from ambient air; and depressurizing the closed space over a period of time which at least continues until the process of closing the mold is completed.
In one mode of the molded article production method according to the present invention, the previously described molded article production method further includes the processes of: preparing a material-receiving module for receiving a resin material which is a raw material for the fluid resin; and preparing at least one molding module having at least the mold and the mold-driving mechanism, wherein the molding module is attachable to and detachable from the material-receiving module, and the molding module is attachable to and detachable from another molding module.
According to the present invention, the cavity provided in the lower mold is formed by the circumferential member and the bottom member. The circumferential member and the bottom member are individually driven with the separate driving mechanisms. This configuration allows the circumferential member and the bottom member to move independently. Therefore, firstly, it is possible to detach the outer circumferential surface of the cured resin from the inner circumferential surface of the circumferential member by lowering the circumferential member while the top surface of the cured resin is held by the inner bottom surface of the bottom member. Secondly, it is possible to detach the top surface of the cured resin from the inner bottom surface of the bottom member by lowering the bottom member while the outer circumferential surface of the cured resin is held by the inner circumferential surface of the circumferential member. By these operations, the molded article can be released from the mold surface of the mold without causing a significant amount of force to act on the molded article.
In a molding module included in a resin-sealing system (which is one type of the molded article production system), the following components are provided: a mold having a lower mold and an upper mold facing the lower mold; a cavity provided in the lower mold; a bottom member forming the inner bottom surface of the cavity; a circumferential member forming the inner circumferential surface of the cavity; and a mold-driving mechanism provided for opening and closing the mold. The molding module is also provided with: a lower base; a support member vertically provided on the lower base; an upper base provided in the upper portion of the support member and facing the lower base; and an elevating platen mounted on the middle of the support member in a vertically moveable manner. Additionally, the molding module further includes: a first driving mechanism included in the mold-driving mechanism and attached to the lower base; a second driving mechanism included in the mold-driving mechanism and attached to the elevating platen; a main connecting member connecting the first driving mechanism and the elevating platen; a first auxiliary connecting member connected to the circumferential member; and a second auxiliary connecting member connected to the bottom member. The upper mold is attached to the upper base.
In the first and third embodiments (which will be described later), the first auxiliary connecting member is connected to the elevating platen, while the second auxiliary connecting member is connected to the second driving mechanism. The circumferential member is vertically driven by the elevating platen which is vertically driven by the first driving mechanism. The bottom member is vertically driven by the second driving mechanism.
In the second and fourth embodiments (which will be described later), the first auxiliary connecting member is connected to the second driving mechanism, while the second auxiliary connecting member is connected to the elevating platen. The bottom member is vertically driven by the elevating platen which is vertically driven by the first driving mechanism. The circumferential member is vertically driven by the second driving mechanism.
The first embodiment of the molded article production system according to the present invention is described with reference to
The molding module 2 provided in the resin-sealing system 1 is described with reference to
An upper mold 7 is fixed to the lower face of the upper base 5. Directly below the upper mold 7, a frame-shaped circumferential member 8 is provided opposite to the upper mold 7. The upper surface of the circumferential member 8 faces the lower surface of the upper mold 7. A through-hole having a rectangular shape on the planer view is provided at the center of the circumferential member 8. Fitted in this through-hole of the circumferential member 8 is a bottom member 9 having a rectangular planer shape. The circumferential member 8 and the bottom member 9 are vertically driven by two driving mechanism, which will be described later. With such a configuration, the circumferential member 8 and the bottom member 9 can be elevated or lowered independently of each other.
The circumferential member 8 and the bottom member 9 combined together constitute the lower mold 10. The upper mold 7 and the lower mold 10 combined together constitute one set of mold 11 (which is hereinafter simply called the “mold 11”). Each of the upper and lower molds 7 and 10 is provided with a heater (not shown).
On the upper side of the lower mold 10, a cavity 12 is formed, which is a space to be filled with a fluid resin. The portion surrounding this cavity 12 is hereinafter called the “side surface of the cavity,” while the portion forming the bottom of the cavity 12 is called the “bottom surface of the cavity.” The side surface of the cavity is formed by the inner circumferential surface 13 of the circumferential member 8. The bottom surface of the cavity 12 is formed by the top surface of the bottom member 9. For convenience, the top surface of the bottom member 9 is hereinafter called the “inner bottom surface 14 of the bottom member 9.” The cavity 12 is the space surrounded by the inner circumferential surface 13 of the circumferential member 8 and the inner bottom surface 14 of the bottom member 9.
For example, the cavity 12 is supplied with a resin material 15 made of a thermosetting resin, such as an epoxy resin or silicone resin. In
On the lower base 3, a motor 16 is fixed as the first driving mechanism. The motor 16 has a ball screw 17, and a ball nut 18 is engaged with this ball screw 17. An elevating platen attachment plate 19 is fixed to the lower face of the elevating platen 6, and the ball nut 18 is fixed to this elevating platen attachment plate 19.
On the upper surface of the elevating platen 6, a frame member 20 is fixed, and a circumferential member attachment plate 21 is fixed to the upper surface of the frame member 20. In place of the frame member 20, a plurality of plate-shaped, pillar-shaped or similar members may be used. On the upper surface of the circumferential member attachment plate 21, a plurality of elastic bodies (e.g. coil springs or disc springs) 22 are disposed, and the circumferential member 8 is placed on these elastic bodies 22. By such a mechanism, the rotation of the motor 16 is sequentially transmitted via the ball nut 18, elevating platen attachment plate 19, elevating platen 6, frame member 20, circumferential member attachment plate 21 and elastic bodies 22, to eventually make the circumferential member 8 move upward or downward.
Another motor 23, which acts as the second driving mechanism, is fixed to the upper surface the elevating platen 6 at the position of corresponding to the center of the bottom member 9 as observed on the planer view. The motor 23 has a ball screw 24, and a ball nut 25 is engaged with this ball screw 24. The ball nut 25 is fixed to a bottom member attachment member 26, which is fixed to the lower portion of the bottom member 9. An elastic body (not shown) may additionally be provided between the bottom member 9 and the bottom member attachment member 26.
The bottom surface attachment member 26 can be moved upward or downward in the through-hole 27 provided in the central portion of the circumferential member attachment plate 21. Between the inner circumferential surface of the circumferential member attachment plate 21 in the through-hole 27 and the outer circumferential surface of the bottom member attachment member 26, a seal member 28 made of a fluorine rubber or similar material is provided along the entire circumference of the through-hole 27. Thus, the space between the bottom member 9 and the circumferential member attachment plate 21 is separated from the space located under the circumferential member attachment plate 21 and within the frame member 20.
On the upper surface of the circumferential member attachment plate 21, a frame-shaped ambient-air shield member 29 is fixed. Between the components located between the upper base 5 and the circumferential member attachment plate 21 (inclusive of the upper base 5 and the circumferential member attachment plate 21 themselves), seal members 30A and 30B made of a fluorine rubber or similar material are provided. For example, between the upper surface of the ambient-air shield member 29 and the lower surface of the upper base 5, a seal member 30A is provided on the upper surface of the ambient-air shield member 29 or the lower surface of the upper base 5, or on both of them. Similarly, a seal member 30B is provided between the lower surface of the ambient-air shield member 29 and the upper surface of the circumferential member attachment plate 21. Providing only one of the seal members 30A and 30B is also possible. It is additionally possible to attach one frame-shaped ambient-air shield member to the upper surface of the circumferential member attachment plate 21 and another frame-shaped ambient-air shield member to the lower surface of the upper base 5 so that these two members face each other. In this case, a seal member is provided on at least one of the mutually facing surfaces of the two frame-shaped ambient-air shield members.
In the circumferential member attachment plate 21, a suction hole 31 is provided outside the circumferential member 8 as observed on the planer view. The suction hole 31 is connected to a depressurizing means 33 with a suction tube 32, such as a vacuum pump or depressurization tank. The suction tube 32 is provided with a switching valve 34 for connecting the suction hole 31 to either the depressurizing means 33 or atmosphere.
On the lower surface of the upper mold 7, a substrate 35 to be sealed (which is hereinafter called the “bare substrate”) is temporarily fixed by suction, clamping or other commonly known methods. The bare substrate 35 has a circuit board 36 as well as a chip 37 consisting of a semiconductor chip and other elements mounted on it. The connection terminal of the bare substrate 35 and that of the chip 37 are electrically connected by wires, bumps or other electrically conductive materials (not shown). A predetermined area on the surface (the lower surface in the figures) of the bare substrate 35, and the chip 37 are to be sealed with a sealing resin formed by curing the fluid resin in the cavity 12. The circumference member 8 has one or more communicating holes 39 for allowing the cavity 12 to communicate with the external space 38, which is the space inside the ambient-air shield member 29 and outside the mold 11. The communicating hole 39 is provided at a position slightly below the level corresponding to the thickness of the sealing resin to be formed (see
In the resin-sealing system 1, firstly, the rotation or stop of the motor 16 (first driving mechanism) is sequentially transmitted via the ball nut 18, elevating platen attachment plate 19, elevating platen 6, frame member 20, circumferential member attachment plate 21 and elastic bodies 22, to eventually drive the circumferential member 8 in the vertical direction or suspend its movement. Thus, the motor 16 makes the circumferential member 8 move upward or downward.
Secondly, the rotation of the motor 23 (second driving mechanism) is transmitted via the ball nut 25 and the bottom member attachment member 26, to eventually drive the bottom member 9 in the vertical direction. Thus, the motor 23 makes the bottom member 9 move upward or downward.
Thirdly, the rotation or stop of the motor 16 causes the motor 23 fixed on the elevating platen 6 to move vertically or suspend its movement. Such a vertical motion of the motor 23 causes a corresponding vertical motion of the bottom member 9 which is mechanically connected to the motor 23 via the ball nut 25 and the bottom member attachment member 26. Thus, the rotation of the motor 16 causes both the circumferential member 8 and the bottom member 9 to move upward or downward.
Additionally, by controlling the motors 16 and 23 in one of the following three modes, it is possible to vertically drive either the circumferential member 8 or the bottom member 9 while maintaining the other member at the same height. In the first mode, the motor 16 is rotated in one (forward) direction to make both the circumferential member 8 and the bottom member 9 move upward at speed V, while the motor 23 is rotated in the other (reverse) direction to make the bottom member 9 move downward at speed V. In this case, when viewed from the outside of the resin-sealing system 1, the circumferential member 8 moves upward at speed V while the movement of the bottom member 9 is suspended.
In the second mode, the motor 16 is rotated in the reverse direction to make both the circumferential member 8 and the bottom member 9 move downward at speed V, while the motor 23 is rotated in the forward direction to make the bottom member 9 move upward at speed V. In this case, when viewed from the outside of the resin-sealing system 1, the circumferential member 8 moves downward at speed V while the movement of the bottom member 9 is suspended.
In the third mode, while the motor 16 is stopped, the motor 23 is rotated to make the bottom member 9 move upward or downward at speed V. In this case, when viewed from the outside of the resin-sealing system 1, the bottom member 9 moves upward or downward at speed V while the movement of the circumferential member 8 is suspended. In summary, those three modes demonstrate that the circumferential member 8 and the bottom member 9 can be independently driven in the vertical direction by appropriately controlling the motors 16 and 23.
A molded article production method according to the present invention is hereinafter described with reference to
Next, as shown in
Subsequently, as shown in
Then, the motor 16 is further rotated in the forward direction to completely compress the seal members 30A and 30B. The state in which the seal members 30A and 30B are completely compressed is hereinafter called the “completely closed state.” By creating the completely closed state, the space inside the ambient-air shield member 29 is made to be a closed space which is shielded from the ambient air. Concurrently, the resin material 15 is melted by heat to produce a fluid resin 40 made of the molten resin. After the completely closed state is reached, the switching valve 34 is operated at an appropriate point in time to make the external space 38 communicate with the atmosphere (see
Next, as shown in
Next, as shown in
By the processes described thus far, the completely closed state of the mold 11 is achieved. In this state, the distance between the upper surface of the circumferential member 8 and the inner bottom surface (top surface) 14 of the bottom member 9 corresponds to the thickness of the sealing resin 41 consisting of the cured resin (see
Subsequently, as shown in
Next, the state where the upper surface of the circumferential member 8 is pressed onto the circuit board 36 to clamp this board (see
Then, from the state shown in
Next, as shown in
As shown in
The first cause is the force of the inner bottom surface 14 of the bottom member 9 pulling the top surface of the sealed resin 41 downward. This force occurs when the inner bottom surface 14 of the bottom member 9 begins to be separated from the top surface of the sealed resin 41, since both surfaces have large areas. In the present embodiment, the gap 43 between the bottom member 9 and the sealing resin 41, which is formed at the outer edge of the top surface of the sealing resin 41 immediately after the inner bottom surface 14 of the bottom member 9 begins to be separated from the top surface of the sealing resin 41, becomes equal to the atmospheric pressure simultaneously with the formation of the gap. Therefore, the inner bottom surface 14 of the bottom member 9 can be easily separated from the top surface of the sealing resin 41, so that the breakage of the sealed substrate 42 does not easily occur.
The second cause is the downward force which acts on the sealed substrate (molded article) 42 due to the atmospheric pressure if a small gap is formed between the lower surface of the upper mold 7 and the nonsealed surface (the upper surface in the figures) including the outer edge of the circuit board 36 in the process of separating the top surface of the sealing resin 41 from the inner bottom surface 14 of the bottom member 9. In the present embodiment, such a downward force due to the atmospheric pressure does not act on the sealed substrate (molded article) 42, since the gap 43 is also at atmospheric pressure. Thus, breakage of the sealed substrate 42 is prevented.
According to the present embodiment, the circumferential member 8 and the bottom member 9 are individually driven by the separate driving mechanisms. Specifically, the circumferential member 8 is driven by the motor 16. The bottom member 9 is driven by the motor 16 and/or the motor 23. In other words, in one situation, the bottom member 9 is driven by only one of the motors 16 and 23. In another situation, the bottom member 9 is concurrently driven by both of the motors 16 and 23. By these driving modes, the circumferential member 8 and the bottom member 9 can be independently moved. Firstly, the circumferential member 8 is lowered while the top surface of the cured resin 41 is supported by the inner bottom surface 14 of the bottom member 9. By this operation, the outer circumferential surface of the cured resin 41 can be separated from the inner circumferential surface 13 of the circumferential member 8. Then secondly, the bottom member 9 is lowered while the outer circumferential surface of the cured resin 41 is supported by the inner circumferential surface 13 of the circumferential member 8. By this operation, the top surface of the cured resin 41 can be separated from the inner bottom surface 14 of the bottom member 9. By these operations, the sealed substrate (molded article) 42 can be released from the mold surface of the mold 11 without causing a significant amount of external force to act on the sealed substrate 42.
According to the present embodiment, the communicating hole 39 for allowing the mold surface forming the cavity 12 to communicate with the external space 38 outside the lower mold 10 is provided in the lower mold 10. In the process of separating the cured resin 41 from the mold surface forming the cavity 12, the surface of the cured resin 41 is made to communicate with the external space 38. Therefore, firstly, the breakage of the sealed substrate 42 due to the force of the inner bottom surface 14 of the bottom member 9 pulling the top surface of the sealed resin 41 downward does not easily occur. Then secondly, the sealed substrate (molded article) 42 is prevented from being pressed toward the gap 43 due to the atmospheric pressure, so that the breakage of the sealed substrate 42 due to such a pressure does not occur.
According to the present embodiment, when the sealed substrate (molded article) 42 is produced, the circumferential member 8 and the bottom member 9 are individually driven. Therefore, the circumferential member 8 and the bottom member 9 can be independently moved. This configuration allows the cavity 12 to be formed with various depths. Accordingly, a plurality of models of sealed substrates 42 having different thicknesses of the cured resin 41 can be easily produced with a single resin-sealing system 1. Accordingly, with the present embodiment, it is possible to easily produce various substrates ranging from a sealed substrate 42 which needs to have a small thickness, to a sealed substrate 42 which needs to have a large thickness. One example of the sealed substrate 42 which needs to have a small thickness is a substrate used for producing semiconductor devices for mobile phones. One example of the sealed substrate 42 which needs to have a large thickness is a substrate used for producing semiconductor devices for power control applications (e.g. circuit modules).
One semiconductor product may be produced from the sealed substrate 42. Additionally, a circuit board 36 having a plurality of areas divided by predetermined boundary lines, with one chip mounted on each area, may be sealed with resin. From this sealed substrate 42, a plurality of semiconductor products can be produced by singulating the sealed substrate 42 along the boundary lines after the resin sealing.
The second embodiment of the molded article production system according to the present invention is described with reference to
The characteristic of the present embodiment, as compared to the molded article production system (resin-sealing system 1) shown in
According to the present invention, the circumferential member 8 and the bottom member 9 are individually driven by the separate driving mechanisms. Specifically, the bottom member 9 is driven by the lower motor (not shown). The circumferential member 8 is driven by the motor 16 and/or the motor 23. In other words, in one situation, the circumferential member 8 is driven by either the lower motor 16 or the motor 23. In another situation, the circumferential member 8 is concurrently driven by both the lower motor 16 and the motor 23. By these driving modes, the circumferential member 8 and the bottom member 9 can be independently moved. Firstly, the circumferential member 8 is lowered while the top surface of the cured resin 41 is supported by the inner bottom surface 14 of the bottom member 9. By this operation, the outer circumferential surface of the cured resin 41 can be separated from the inner circumferential surface 13 of the circumferential member 8. Then secondly, the bottom member 9 is lowered while the outer circumferential surface of the cured resin 41 is supported by the inner circumferential surface 13 of the circumferential member 8. By this operation, the top surface of the cured resin 41 can be separated from the inner bottom surface 14 of the bottom member 9. By these operations, the sealed substrate (molded article) 42 can be released from the mold surface of the mold 11 without causing a significant amount of external force to act on the sealed substrate 42. Accordingly, in terms of the separation of the sealed substrate 42, the present embodiment produces the same effects as that of the first embodiment.
The resin-sealing system 1 shown in
In the resin-sealing system 1 shown in
The third embodiment of the molded article production system according to the present invention is described with reference to
In the present embodiment, it is preferable to provide an elastic body (not shown) between the bottom member 9 and the bottom member attachment member 26 in each mold. This is advantageous in that, even if the plurality of circuit boards 36 (in
The fourth embodiment of the molded article production system according to the present invention is described with reference to
In the present embodiment, it is preferable to provide an elastic body (not shown) between the bottom member 9 and the bottom member attachment member 26 in each mold. This is advantageous in that, even if the plurality of circuit boards 36 (in
The fifth embodiment of the molded article production system according to the present invention is described with reference to
There are two modes for the position at which the communicating hole 39 can be provided. According to the first mode, as shown by the solid line in
According to the second mode, as shown by the broken line in
Inside the communicating hole 39, a widened portion 49 having a larger cross section than that of the communicating hole 39 is formed from a position slightly receded from the opening 45 along the extending direction of the communicating hole 39 (in the direction toward the outside of the bottom member 9, or the lower side in the figure). The cross section of the widened portion 49 is shaped so that it includes the cross-sectional shape of the pillar-shaped member 46 on the planer view and has a portion larger than the cross-sectional shape of the pillar-shaped member 46. For example, the opening 45 and the widened portion 49 may be concentrically formed, with the diameter of the widened portion 49 larger than that of the opening 45. After the sealing resin 41 is formed, the pillar-shaped member 46 is pulled downward before the bottom member 9 begins to move downward. By this operation, before the bottom member 9 begins to move downward, the surface of the sealing resin 41 at the opening 45 is made to communicate with the external space 38 through the communicating hole 39 having the opening 45 and the widened portion 49. In other words, at this point in time, the surface of the sealing resin 41 at the opening 45 is exposed to the atmospheric pressure. Therefore, immediately after the bottom member 9 begins to move downward from the sealing resin 41, the gap 43 between the bottom member 9 and the sealing resin 41 (see
The two configurations respectively shown in
According to the present embodiment, the surface of the cured resin 41 is made to communicate with the external space 38 immediately after the bottom member 9 begins to move downward from the sealing resin 41, or before the bottom member 9 begins this downward movement. Therefore, immediately after the bottom member 9 begins to move downward from the sealing resin 41, or simultaneously with the beginning of this downward movement, the gap 43 between the bottom member 9 and the sealing resin 41 is made to be equal to the atmospheric pressure through the opening 45 and the communicating hole 39. Accordingly, breakage of the sealed substrate 42 can be more effectively prevented.
The sixth embodiment of the molded article production system (resin-sealing system 1) according to the present invention is described with reference to
The material-receiving module 50 and the leftmost molding module 2 in
The material-receiving module 50 has a substrate material receiver 54, a resin material receiver 55 and a material transfer mechanism 56. The substrate material receiver 54 receives a bare substrate from the outside of the resin-sealing system 1. The resin material receiver 55 receives a resin material 15 made of a solid resin from the outside of the resin-sealing system 1. In
The resin-sealing system 1 is provided with an X-directional guide rail 57 extending along the X direction from the material-receiving module 50 through the four molding modules 2 to the dispensing module 51. On the X-directional guide rail 57, a main carrier mechanism 58 is mounted in such a manner that it can move in the X direction. The main carrier mechanism 58 is provided with a Y-directional guide rail 59 extending along the Y direction. On the Y-directional guide rail 59, an auxiliary carrier mechanism 60 (which is a part of the main carrier mechanism 58) is mounted in such a manner that it can move along the Y direction. The auxiliary carrier mechanism 60, with the bare substrate 35 held in the upper portion and the resin material 15 held in the lower portion, moves bidirectionally between a position above the X-directional guide rail 57 and a position above the cavity 12 of the lower mold 10 in one molding module 2. The auxiliary carrier mechanism 60 supplies the bare substrate 35 to the lower surface of the upper mold (not shown) and the resin material 15 to the cavity 12 of the lower mold 10.
The resin-sealing system 1 has a controller 53. A control driver included in this controller 53 produces signals, whereby the direction, number of revolutions and torque of the motors 16 and 23 (see
In the present embodiment, the carrier mechanism consisting of the main carrier mechanism 58 and the auxiliary carrier mechanism 60 carries both the bare substrate 35 and the sealed substrate 42 which is the molded article obtained by resin-sealing the chip 37 (see
The dispensing module 51 has a molded article transfer mechanism 61 for carrying the sealed substrate 42 and a magazine 62 for containing a number of sealed substrates 42. The dispensing module 51 also has a vacuum pump 63. The vacuum pump 63 is a depressurizing source for generating a suction force for holding the bare substrate 35, sealed substrate 42 and other objects within the entire resin-sealing system 1. The vacuum pump 63 may be provided in the material-receiving module 50.
The vacuum pump 63 is also used as the depressurizing source for evacuating the “ambient-air shield space,” which is the space between the upper mold (not shown) and the lower mold 10, inclusive of the cavity 12. The ambient-air shield space is formed within the space between the upper mold and the lower mold 10 inclusive of the cavity 12 during the period of time from the point when the resin material 15 is supplied to the cavity 12, to the point when the mold 11 is completely closed. Specifically, the space between the upper mold and the lower mold 10 inclusive of the cavity 12 is separated from the ambient air by means of seal members (see the seal members 30A and 30B in
According to the present embodiment, the molding modules 2 neighboring each other among the four molding modules 2 can be attached to and detached from each other. Therefore, the number of molding modules 2 can be increased or decreased to meet an increase or decrease in the demand. For example, if the demand for a specific product has increased in a region where Factory “A” is located, the molding modules 2 used for the production of that specific product are detached from the molded article production system (resin-sealing system 1) owned by Factory “B” located in a region where that product is not in high demand. The detached molding modules 2 are transported to Factory “A”, and those transported molding modules 2 are attached to the molded article production system owned by Factory “A.” In other words, the molding modules 2 are added to the molded article production system. In this manner, the increased demand within the region where Factory “A” is located can be met. Thus, according to the present embodiment, a molded article production system which is flexible to adjust to an increase or decrease in the demand can be realized.
The previously described molded article production system (resin-sealing system 1) can be subjected to the following variations: In the first variation, the material-receiving module 50 and the dispensing module 51 are integrated with each other into a single receiving-and-dispensing module 51, and this module is disposed at one end of the resin-sealing system 1 (at the left or right end in
In the second variation, the material-receiving module 50 and one molding module 2 are integrated with each other into a single receiving-and-molding module 2, and this module is disposed at one end (at the left or right end in
In the third variation, the main carrier mechanism 58 and the auxiliary carrier mechanism 60 in the molded article production system (resin-sealing system 1) are only used as the carry-in mechanism, and a carry-out mechanism is provided separately from the carry-in mechanism. In this variation, the carry-in mechanism and the carry-out mechanism operate independently from each other. Therefore, the efficiency of the molding operation in the resin-sealing system 1 improves.
Variations are not limited to the previously described ones; the present embodiment merely requires that the neighboring modules 2 in the molded article production system (resin-sealing system 1) can be attached to and detached from each other. The present invention can be applied in a molded article production system having such a configuration.
The present invention is not limited to the compression molding but can also be applied in the transfer molding and the injection molding. The molded article production system according to the present invention may be any of the previously described molded article production systems in which injection molding, transfer molding or compression molding is employed as the method for molding the molded article. Similarly, the molded article production method according to the present invention may be any of the previously described molded article production methods in which injection molding, transfer molding or compression molding is employed as the method for molding the molded article.
According to the foregoing descriptions, the operation which is initially performed after the completion of the resin sealing is to lower the circumferential member 8 while maintaining the bottom member 9 at a certain height as viewed from the outside of the resin-sealing system 1. It is also possible to initially lower the bottom member 9, while maintaining the circumferential member 8 at a certain height as viewed from the outside of the resin-sealing system 1, after the completion of the resin sealing.
After the sealing resin 41 is molded and the mold is opened, the circumferential member 8 and the bottom member 9 may be made to move upward or downward relative to each other. By this operation, the cured resin formed between the inner circumferential surface 13 of the circumferential member 8 (see
In place of the configuration using the four tie bars, the so-called “hold frame” configuration, in which the upper base, lower base and two pillar-shaped members connecting the two bases are combined together as a single structure, may be adopted. In this case, each of the two pillar-shaped members corresponds to the support member. The upper base, lower base and two pillar-shaped members connecting the two bases may consist of a single frame-shaped member. Alternatively, it may be constructed by combining four separate members.
The position of the two driving mechanisms (motors 16 and 23) is not limited to the central portion of the lower base 3 and that of the elevating platen 6. The motor 16 may be placed near the circumferential edge of the lower base 3. Similarly, the motor 23 may be placed near the circumferential edge of the elevating platen 6. In these cases, for example, the rotation shaft of the motor 16 or 23 is mechanically connected with the central ball screw 17 or 24 via a pulley for the motor, a timing belt, and a pulley for the ball screw.
In place of the electrical mechanism consisting of the motor, a hydraulic mechanism or pneumatic mechanism may be used. A toggle mechanism may be combined with any of these mechanisms.
One example of the sealed substrate 42 (see
The circuit substrate 36 is not limited to a circuit board, such as the printed circuit board. For example, the circuit substrate 36 may be a semiconductor wafer (e.g. silicon wafer), ceramic substrate or metallic lead frame.
The molded article to be produced is not limited to the sealed substrate 42 (see
The descriptions thus far have been concerned with the case where the bottom member 9 has a rectangular planer shape. The shape of the bottom member 9 is not limited to that shape; for example, it may have a circular planer shape or an irregular shape (e.g. a circular shape with projections and/or recesses, or a rectangular shape with projections and/or recesses). In these cases, the through-hole formed in the central portion of the circumferential member 8 should have a planer shape corresponding to that of the bottom member 9 (i.e. a circular shape, a circular shape with projections and/or recesses, or a rectangular shape with projections and/or recesses).
As the resin material 15 to be supplied to the cavity 12, a resin which is in a jelly-like form at room temperature (“jelly-like resin”) may be used, or a resin material which is in a liquid form at room temperature (“liquid resin”) may also be used. In the latter case, the liquid resin supplied to the cavity 12 directly serves as the fluid resin 40. In place of the thermosetting resin, a thermoplastic resin may be used.
The present invention is not limited to any of the previously described embodiments but allows for an arbitrary and appropriate combination, modification or selection according to necessity without any departure from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-242567 | Nov 2014 | JP | national |