The invention relates to the field of molded containers, particularly to a blow-fill-seal (BFS) vial containing an internal elastomeric stopper, where the elastomeric stopper has a raised nipple that projects beyond the outer shell of the vial.
Small vials with elastomeric stoppers are traditionally used to contain small amounts of liquids, particularly liquid medications, or as storage and dispensing vessels for lyophilized medications that are reconstituted prior to use. Safe retention of the elastomeric stopper requires a foil over-cap, to prevent the expulsion of the stopper should pressure within the vial rise. Additionally, the elastomeric stoppers generally require siliconization as a lubricant to insert the stoppers in the vials during the manufacturing process, thus introducing a potentially additional chemical compound. Furthermore, glass vials are inherently liable to breakage. In the end, a stoppered glass vial requires at least three different structural compounds (glass, elastomers, and foil), and assembly requires numerous steps.
More recently, large advances have been made in molded plastic containers, often referred to as “blow-fill-seal” or “BFS” containers. As is well known in the art, resin is extruded and molded into a container, and the container is then filled and the resin container sealed, all is a series of automated steps, generally carried out in a continuous or near-continuous process in a sterile environment within the BFS molding machinery. The evolution of this method of packaging is also well known in the art. Initially, various methods were described for blow molding a hollow thermoplastic article; for example, as seen in U.S. Pat. Nos. 3,137,748 and 3,288,898. More complex process for manufacturing BFS containers are later seen in U.S. Pat. Nos. 3,464,085 and 3,597,793. A further evolutionary step, by way of example only is seen in U.S. Pat. No. 3,919,374; which enabled the addition of an elastomeric stopper to a BFS vial. More recently, methods have been taught, as in U.S. Pat. No. 4,707,966; for molding a flat bottomed thermoplastic container, filling the container from the top, and then, prior to sealing, effecting a secondary operation, such as positioning an insert such as an elastomeric stopper in the top opening of the container, and then partially or completely encapsulating the insert in such a way that the encapsulating portion of the material can easily be broken away to gain access.
The BFS manufacturing process traditionally includes sub-components such as a thermoplastic polymer storage and feeding system; an extruder with a parison head; a sterile air filling chamber; a specialized mandrel capable of filling the container, mold halves capable of opening and closing, and therein forming the container; and various downstream items of equipment, such as inspection and leak detection systems, labelers, and packaging machinery.
Aseptic processing equipment, such as tanks fitted with sterility filters, ensures that the BFS machinery is continuously provided with sterile product. Thermoplastic polymer granules are typically fed via a vacuum tubing system into a hopper in the blow-fill-seal extruder, where they are heated to form a melt, typically at about 215° C. The thermoplastic polymer melt is formed via a circular orifice into a plastic parison (hollow tube), which is held open by a stream of sterile filtered air. The lower part of the divided mold halves then close to seal the bottom of the open parison and the parison wall is blown and/or compressed by vacuum to the cooled mold walls to form the lower part of the BFS container. A filling mandrel fills a predetermined quantity of product into the container, and after withdrawal of the mandrel, the upper portion of the mold closes to form and seal the upper part of the BFS container. For BFS vials with encapsulated stoppers or other inserts, an intermediate step includes placement of the insert in the correct position prior to encapsulation as part of the BFS process. Since multiple cavities may be built within a single mold, the rate of production is substantially related to the number of cavities in each BFS mold.
Vials with encapsulated stoppers generally resemble the type of prior art construction as illustrated in
In its most general configuration, the present invention advances the state of the art with a variety of new capabilities and overcomes many of the shortcomings of prior devices in new and novel ways. The present invention is a molded container having a raised nipple, formed according to the traditional blow-fill-seal (BFS) methods described above. The container comprises a cap portion, a body portion, and with an encapsulated stopper.
The body portion has a body portion wall having a wall shoulder portion with a distal aspect and a proximal aspect. The body portion has an adjoining cap portion such that the body portion wall meets a cap portion wall at an engineered separation site, designed to represent an area of weakness in the walls of the container.
The container has a stopper enclosed within the container shell that prevents the transfer of contents from the body portion to the cap portion. A portion of the stopper is enclosed within the body portion and a portion of the stopper is enclosed within the cap portion. The stopper has a stopper wall and a stopper shoulder with a central raised nipple having a nipple top surface with an injection site and a nipple sidewall. The engineered separation site is adjacent to the nipple sidewall such that when the cap portion is removed from the body portion at the engineered separation site, a portion of the nipple extends out of the body portion.
This projection of a part of the nipple beyond the body portion presents numerous advantages over the prior art. When the cap of a traditionally formed BFS a vial is removed, the surface of the stopper lies essentially in a hole formed by the surrounding BFS shell. Thus, to clean the surface, it is necessary to place a cleaning means into the hole, hoping that the means will reach and adequately clean the surface of the stopper. Additionally, the relatively small hole means that the operator has only a very small surface area to hit with the needle, or other removal means, used to puncture the stopper and access the container contents.
The instant invention allows all of the top surface of the nipple to be easily cleaned, if desired, and allows substantially all of the top surface of the nipple to be accessed by a needle, or other removal means, to puncture the stopper and access the container contents.
The body wall shoulder portion, adjacent to the cap portion, may be configured at a non-orthogonal angle from the longitudinal axis of the container. This also has numerous advantages over the prior art, including but not limited to the following. It can be difficult, when the body wall should of a BFS vial comprises an orthogonal angle, to insure sufficient plastic at the bend to form a sufficiently strong container. Additionally, such a right-angle bend imposes a geometry that makes design of a suitable breakage line between the body and the cap of a BFS vial more difficult.
In another embodiment, the wall shoulder portion further comprises at least one raised gusset, extending from the wall shoulder portion and having a lateral surface substantially parallel to the longitudinal axis of the container. Such gusset(s) not only tend to strengthen the BFS vial, but cooperate with a variety of connectors.
Extending the length of the lateral surface increases the surface area of interaction between the container and the interior surface of a needle-free container, and a larger surface area for interaction results in a more stable cooperation between the elements and a more positive centering of a needle-free connector.
To assist in the separation of the cap portion and the body portion, the cap portion may have a cap portion wall formed with a grip enhancing feature such as a flattened tab (332), see
The hand strength required for one-handed opening may be decreased by increasing the moment arm of the tab, that is, the larger the tab relative to the container, the less force that must be applied at a distal point on the tab to effect a rupture at the engineered separation site. This allows easier removal of the cap portion from the body portion by torquing the cap portion. Such relative elongation of the tab simply increases the leverage available for opening the container at the engineered separation site.
Clean and accurate removal of the cap portion from the body portion may also be facilitated by refinements in the engineered separation site where the body portion wall meets the cap portion wall. In one embodiment of the instant invention, the engineered separation site comprises a line of discontinuity in shell thickness between the body portion wall and the cap portion wall. The discontinuity creates a natural fracture zone between the adjoining body portion and cap portion. In a further embodiment, the engineered separation site is formed by a progressive attenuation of the thickness of the wall shoulder portion tapering from a maximum thickness at the distal aspect of the wall shoulder portion to reach a minimum thickness at the proximal aspect of the wall shoulder portion (221), see
There is disclosed a container (10) with at least one diameter (12) and a longitudinal axis (14), comprising a container shell (50) comprising a body portion (200) with a body portion wall (220) having a wall shoulder portion (221) having a distal aspect (222) and a proximal aspect (223) and an adjoining cap portion (300) having a cap portion wall (320), wherein the body portion wall (220) meets the cap portion wall (320) at an engineered separation site (400); and a stopper (100) enclosed within the container shell (50) and preventing the transfer of contents from the body portion (200) to the cap portion (300), such that a portion of the stopper (100) is enclosed within the body portion (200) and a portion of the stopper(100) is enclosed within the cap portion (300), wherein the stopper (100) has a stopper wall (120) and a stopper shoulder (123) with a central raised nipple (130) having a nipple top surface (134) with an injection site (135) bounded by a raised injection guide (136) and a nipple sidewall (132), and wherein the engineered separation site (400) is adjacent to the nipple sidewall (132) such that when the cap portion (300) is removed from the body portion (200) at the engineered separation site (400) a portion of the nipple (130) extends out of the body portion (200). Further, there is disclosed a container (10) with at least one diameter (12) and a longitudinal axis (14), comprising a container shell (50) comprising a body portion (200) with a body portion wall (220) having a wall shoulder portion (221) configured at a non-orthogonal angle from the longitudinal axis (14) of the container (10) having a distal aspect (222) and a proximal aspect (223) wherein the wall shoulder portion (221) further comprises at least one raised gusset (228) extending from the wall shoulder portion (221) and having a lateral surface (229) substantially parallel to the longitudinal axis (14) of the container (10) wherein the lateral surface (229) begins at the distal aspect (222) of the wall shoulder portion (221) and extends substantially parallel to the longitudinal axis (14) of the container at least 25% of the longitudinal distance from the distal aspect (222) to the injection site (135) measured along the longitudinal axis (14) of the container (10), and an adjoining cap portion (300) having a cap portion wall (320), wherein the body portion wall (220) meets the cap portion wall (320) at an engineered separation site (400) wherein the engineered separation site (400) comprises a line of discontinuity in shell thickness between the body portion wall (220) and the cap portion wall (320) formed by a progressive attenuation of the thickness of the wall shoulder portion (221) tapering from a maximum thickness at the distal aspect (222) of the wall shoulder portion (221) to reach a minimum thickness at the proximal aspect (223) of the wall shoulder portion (221) and a stopper (100) enclosed within the container shell (50) and preventing the transfer of contents from the body portion (200) to the cap portion (300), such that a portion of the stopper (100) is enclosed within the body portion (200) and a portion of the stopper (100) is enclosed within the cap portion (300), wherein the stopper (100) has a stopper wall (120) and a stopper shoulder (123) with a central raised nipple (130)) having a nipple top surface (134) with an injection site (135) and a nipple sidewall (132), and wherein the engineered separation site (400) is adjacent to the nipple sidewall (132) such that when the cap portion (300) is removed from the body portion (200) at the engineered separation site (400) a portion of the nipple (130) extends out of the body portion (200). Further, there is disclosed a container (10) with at least one diameter (12) and a longitudinal axis (14), comprising a container shell (50) comprising a body portion (200) with a body portion wall (220) having a wall shoulder portion (221) configured at a non-orthogonal angle from the longitudinal axis (14) of the container (10) having a distal aspect (222) and a proximal aspect (223) wherein the wall shoulder portion (221) further comprises at least one raised gusset (228) extending from the wall shoulder portion (221) and having a lateral surface (229) substantially parallel to the longitudinal axis (14) of the container (10) wherein the lateral surface (229) begins at the distal aspect (222) of the wall shoulder portion (221) and extends substantially parallel to the longitudinal axis (14) of the container at least 25% of the longitudinal distance from the distal aspect (222) to the injection site (135) measured along the longitudinal axis (14) of the container (10), and an adjoining cap portion (300) having a cap portion wall (320) formed with a grip enhancing feature (330) the grip enhancing feature (330) is a flattened tab (332) formed such that a distance from a most distant point on the tab (332) from a center of the injection site (135) is at least 65% of the largest of the at least one diameter (12) of the container (10), wherein the body portion wall (220) meets the cap portion wall (320) at an engineered separation site (400) wherein the engineered separation site (400) comprises a line of discontinuity in shell thickness between the body portion wall (220) and the cap portion wall (320) formed by a progressive attenuation of the thickness of the wall shoulder portion (221) tapering from a maximum thickness at the distal aspect (222) of the wall shoulder portion (221) to reach a minimum thickness at the proximal aspect (223) of the wall shoulder portion (221); and a stopper (100) enclosed within the container shell (50) and preventing the transfer of contents from the body portion (200) to the cap portion (300), such that a portion of the stopper (100) is enclosed within the body portion (200) and a portion of the stopper (100) is enclosed within the cap portion (300), wherein the stopper (100) has a stopper wall (120) and a stopper shoulder (123) with a central raised nipple (130)) having a nipple top surface (134) with an injection site (135) and a nipple sidewall (132), and wherein the engineered separation site (400) is adjacent to the nipple sidewall (132) such that when the cap portion (300) is removed from the body portion (200) at the engineered separation site (400) a portion of the nipple (130) extends out of the body portion (200).
Without limiting the scope of the present invention as claimed below and referring now to the drawings and figures, all not to scale:
a is a cross section view showing potential misalignment between the body portion of the embodiment of
b is a top plan view of an embodiment of the instant invention, showing raised gussets extending from a wall shoulder portion;
a is a top plan view of a prior art needle-free connector suitable for use with the instant invention;
b is a side elevation view of a prior art needle-free connector suitable for use with the instant invention;
c is a bottom plan view of a prior art needle-free connector suitable for use with the instant invention;
d is a cross section view of a prior art needle-free connector suitable for use with the instant invention;
a is a top plan view of an embodiment of the instant invention;
b is a side elevation view of an embodiment of the instant invention;
a is a top plan view of an embodiment of the instant invention; and
b is a side elevation view of an embodiment of the instant invention.
The molded container (10), see
With reference generally now to
As seen in
The container (10) has a stopper (100), well seen in
This projection of a part of the nipple (130) beyond the body portion (200) presents numerous advantages over the prior art. As discussed above, the traditionally encapsulated stopper within a BFS vial lies entirely within the shell of the BFS vial, as seen in
The instant invention, as seen in
The body wall shoulder portion (221), adjacent to the cap portion (300), may be configured at a non-orthogonal angle, seen in
The instant invention may also be configured so that the body portion wall (220) has an ingress preventer (224), seen in
In another embodiment, the wall shoulder portion (221) further comprises at least one raised gusset (228), seen in
Extending the length of the lateral surface (229), see
The advantage of the at least one raised gusset design may be seen in
Typical features of a needle-free connector (500) may be seen in
The effect of the raised gusset (228) design, particularly embodiments employing a lateral surface (229) substantially parallel to the longitudinal axis of the container (10), may be appreciated by one skilled in the art as illustrated in
As seen in
The hand strength required for one-handed opening may be decreased by increasing the moment arm of the tab (332) that is, the larger the tab (332) relative to the container (10), the less force that must be applied at a distal point on the tab (332) to effect a rupture at the engineered separation site (400). By way of example, a tab (332) is shown in
Clean and accurate removal of the cap portion (300) from the body portion (200) may also be facilitated by refinements in the engineered separation site (400) where the body portion wall (220) meets the cap portion wall (320). Such a site (400) could comprise, by way of example, a score line in the shell wall (52). In one embodiment of the instant invention, as seen in
Numerous alterations, modifications, and variations of the preferred embodiments disclosed herein will be apparent to those skilled in the art and they are all anticipated and contemplated to be within the spirit and scope of the claimed invention. For example, although specific embodiments have been described in detail, those with skill in the art will understand that the preceding embodiments and variations can be modified to incorporate various types of substitute and or additional or alternative materials, relative arrangement of elements, and dimensional configurations. Accordingly, even though only few variations of the present invention are described herein, it is to be understood that the practice of such additional modifications and variations and the equivalents thereof, are within the spirit and scope of the invention as defined in the following claims.
The container with a raised nipple of the instant invention answers a long-felt need in the area of BFS containers having internally encapsulated stoppers. The design of the invention allows a portion of the raised nipple to extend beyond the body portion of the container, after opening, such that it may be easily accessed and cleaned. Additional modifications, including the provision of an improved engineered separation site at the point of opening, and raised gussets that may provide a secure connection with various needle-free connectors improves the safety and efficiency found in this art.
Number | Date | Country | |
---|---|---|---|
Parent | 11542869 | Oct 2006 | US |
Child | 12402047 | US |