The present invention relates to a device for dispensing fluid material from a non-pressurized container. More particularly, the invention relates to a dispenser for liquids and gels from a non-pressurized container configured preferably from a single molded piece operable to be secured to the container body with an over-cap, ring or bayonet lock. Moreover the dispenser spout itself with molded internal inlet and outlet check valves functions as an operational pump. This enables efficient, cost effective manufacture from a single mold material. In addition, use of a single material enhances recycling considerations. The inexpensive nature of a integral molded dispenser enables the dispenser to be inexpensively produced and is thus disposable. In one preferred embodiment the dispenser head and a container retaining ring can be molded in one piece with a single molding operation
The use of conventional pump action devices for dispensing fluid, flowable materials from a non-pressurized container has been known for years. With the rising popularity of pump-dispensed products on the market, consumers have grown to expect this convenience. Multiple part pump dispensers, however, tend to be somewhat expensive to manufacture and often constitute the highest cost component of a store ready product. Moreover dispensers combining plastic and metal components or different compositions of plastic impede recycling efforts.
Most conventional dispensers utilize a compressible fluid chamber in cooperation with pressure responsive supply and discharge check valves to define a fluid pathway between a non-pressurized container and a fluid outlet. The reverse action of the two check valves, one opening as the other is closing, cooperate with a compressing and then expanding chamber to establish a pump action.
One previously known dispenser comprises a disposable spout affixed to a hollow, cylindrical plunger axially sliding into a receiving, complementary accumulator with integral discharge and supply one-way check valves. This assembly communicates with a pick-up tube for material retrieval from the container. In operation a user depresses a finger spout, substantially reducing the pump chamber internal volume, to expel its contents under pressure through a one-way outlet valve in the spout. When released, a helical spring returns the chamber back to a pre-compressed volume creating a vacuum that induces a flow of more dispensable material through the one-way inlet valve. The dispenser is once again ready.
Other types of finger or palm action dispensing pumps utilize resiliently biased, deformable elements to provide compressible pumping chambers. These elements may be simple dome-shaped walls, or foldable bellows used in conjunction with a series of single directional check valves to create pumps. The mechanics of such devises to return to a pre-compressed state relies on a biased nature of plastic, and in some instances assistance from a metal spring. Though these designs utilize fewer components, they require assembly with leak concerns as most snap together, require gluing, or some form of heat welding. Some versions involve difficult molding techniques—such as over-molding. Although dissimilar materials can be used to achieve a resiliently deformable portion abutting a rigid structural base element along a seam this elevates mold and molding costs and involves secondary assembly steps and makes recycling problematic.
The drawbacks of these and other similar designs are the consequential costs associated with manufacture and assembly of several components in the past. In addition a dissimilarity of materials makes recycling less efficient or unacceptable. The subject one piece molded fluid dispenser can be produced for a fraction of the cost of multi-part pump action dispensers, is disposable and can be facially recycled and green friendly.
The relatively expensive nature of prior art assemblies renders them less disposable. This is apparent from the widespread availability of “refills” for many dispensers. Reuse of the dispensers, however, can become problematic due to exposure to environmental contaminants. This is of special concern in hygienic environments such as research labs and medical theatres. Disinfecting and refilling of the devices and storage of the dispensing materials becomes a cost issue.
Although previously known hand action pumps have received considerable attention, it would be highly desirable to provide a pump which could be cheaply molded from a single piece, easy to use, inexpensive to manufacture, recyclable, and adequate to accommodate various dispensable materials.
The difficulties and limitations suggested in the preceding and desired features are not intended to be exhaustive but rather are among many which may tend to reduce the effectiveness and user satisfaction with prior finger or palm action fluid dispensing pumps. Other noteworthy problems and limitations may also exist; however, those presented above should be sufficient to demonstrate that fluid dispensing pumps appearing in the past will admit to worthwhile improvement.
A preferred embodiment of the invention which is intended to address concerns and accomplish at least some of the foregoing objectives comprises a dispenser capable of being disposable and dispensing a variety of fluid materials. In a preferred embodiment the dispenser has a resiliently biased, deformable chamber with an integral outlet valve through which fluid is expelled as a spout is selectively depressed compressing the spout chamber. An integral inlet valve serves to permit fluid to be pushed by ambient air pressure from a container into the spout chamber when pressure on the spout is removed and the chamber is restored to an initial open configuration.
Other objects and advantages of the present invention will become apparent from the following detailed description of preferred embodiments thereof taken in conjunction with the accompanying drawings wherein:
Referring now particularly to the drawings, wherein like reference characters refer to like parts, and initially to
Separately molded in one embodiment is a sealing over-cap 14 which permits full rotational orientation of the dispenser body 16 relative to the container 12. Internal threads (note
Cross-sectional views of
The chamber floor 20 is rotated about a living hinge 38 (note
The pivotal spout 22 is defined by a rigid spout spine 50, a resiliently biased thin wall section 28, an upper collar 52, and an outlet passageway 32. As the spout 22 is pivotally depressed about a living hinge 56, a resiliently biased, thin, chamber wall 28 folds to reduce the internal volume of the spout chamber 42. This pressurizes and expels the spout chamber contents through a unidirectional outlet valve 36 and passageway 32. Once the spout 22 is released, the thin wall section 28 returns to an initial, resiliently biased configuration increasing the internal volume of the spout pump chamber 42. This reduces the internal pressure of the chamber and new material for dispensing is drawn up from the container 12 via dip tube 30 and an extension tube (not shown) that descends to the internal base of the container 12.
The fluid flow direction is controlled by uni-directional inlet and outlet check valves 34 and 36 respectively of the chamber 42. Enlarged cross-sectional views are provided by
In one preferred embodiment, both reeds 60 and 61 are molded vertically and pivoted upwardly into position. In the case of the inlet reed 60, it is positioned by the chamber floor 20 as it is rotated into position in the direction of arrows “A” and “B” in
The living hinge 76 of the inlet reed and the immediate surrounding thin wall region 80 are slightly thicker than the remaining thin wall region to ensure a sealing engagement with the valve seat 68 is maintained with the thin wall 28 movement. In addition to this tensioning, both reeds 60 and 62 must flex another structural component from rest when opening. The inlet reed 60 must flex the thin wall section 28 of the chamber and the tensioning foot 82 of the outlet reed 62 must flex the hinged lower wall 84 of the spout outlet 32 about living hinge 78. This enables the dispenser 10 to overcome plasticity concerning its valve reeds 60 and 62 tensioning components. When the dispenser 10 is closed there is a bridge 88 beneath the inlet reed 60 to prevent distortion resulting from vertical pressure from the folded thin wall member 28 (note
Variations in material thickness of different components, depending on functionality, allow the use of a single material throughout the dispenser 10. The thin material thickness in the thin wall region 28 allows elastic flexibility for folding, whereas the comparatively thick spout spine 50 ensures rigidity. Selective variations in the material thickness of this thin region 28 are to provide adequate resiliency for the thin wall 28 to return to an initial biased resilient configuration once the pressure on the spout 22 is released. The operable posture angle “C” of the pivotal spout 22 is necessary to initiate downward movement when depressed.
In instances when dispensing high viscous materials and/or following a prolonged closed period the resiliently deformable portion of the thin chamber wall 28 may not be sufficiently resilient to reestablish the initial operable posture of the spout 22 following folding. In such case, extra resilience can be provided by an integral leaf spring stanchion component 90—see particularly
A posture lever 96 at the base of the rigid spout spine 50 is entrapped between the leaf spring 90 and the stop stanchion 92 to maintain the angular “C” ready posture of the spout 22. The posture lever 96 is semi-rigid only allowing lateral movement to clear a latch 98 as the spout 22 is fully depressed. The two stanchions 90 and 92 cooperate with the posture lever 96 and all three exhibit a degree of operative flexibility to achieve the desired result. At full depression, this posture lever 96 rests in a like-formed recess 100 within the a support wall 102 as shown in
The dispenser 10 is held in a closed position by the internal latch 98 as shown in
In a closed posture the inlet check valve 34 of the pumping chamber is held closed by the folded thin chamber wall 28 preventing release of any contents from the container 12, while the outlet check valve 36 is held closed by the resiliently deformable bottom spout wall 84 entrapping any remaining chamber contents. Both valve reeds 60 and 62 are in neutral positions with minimal closure pressures provided by their resiliently biased living hinges 76 and 78.
As shown in
The dip tube 30 is integrally formed with the chamber floor 20 as noted above. A free end of the dip tube 30 is positioned anywhere within the container 12 depending on the manner in which the dispenser 10 is used. The dip tube 30 typically is fitted with an extension having a length sufficient to extend to a bottom corner of a tilted container 12 to retrieve all of the fluid contents. Alternately, the pick-up tube may be affixed over the inlet nipple or inserted into a recess and held with friction. Ultrasonic or thermal welding or applying an adhesive may be additional securing options for a dip tube extension.
A tapered, snap retainer wall 130, note
The dispenser 10 may be formed from a number of suitable materials such as for example polypropylene or polyethylene. The material needs to be resilient and flexible to enable the resilient folding of at least a portion of the body to facilitate compression of the chamber 42. The extent of the elastic flexibility of the plastic in any given area dependents on the thickness of the area. Thick sections provide structural rigidity to support resiliently thinner sections and functional movement.
The chamber floor 148 of this embodiment pivots with extension arm 150 about living hinges 152 and 154 to abut with dispenser body 144 at surfaces 156 and 158 respectively. This rotation completes the pump chamber 160 and positions an inlet valve reed 162 about a living hinge 164 atop the elevated valve seat 166. This pivoting also positions a vent valve reed 168 about living hinge 170 on the elevated vent valve seat 172 when positioning foot 174 of the reed 168 contacts an inner surface 176 of a vent channel 178 within the threads 142 of the integrally molded cap 180. The reed 168 positioning is finished upon contacting the container lip as the dispenser 140 is affixed atop the container 184.
The threads 188 of the integral cap 180 in cooperation with the complementing threads 190 of the container 184 sealingly secure the chamber floor 148 to the dispenser body 144.
In describing preferred embodiments of the invention it will be appreciated that the spout body 22 itself in cooperation with inlet 34 and outlet 36 check valves comprises a functioning fluid pump
In the subject application reference has been made to the term “living hinge.” In this application applicant is using the term in a conventional sense of a relatively thin flexible web of plastic material that joins two relatively ridged bodies together. A living hinge made with polyethylene or polypropylene usually never fail. In the subject application a plastic elastic hinge that is capable of flexing hundreds of times should be sufficient although it is envisioned that in certain circumstances that a fully elastic hinge capable of flexing thousands of times will be used or where a shorter life span is satisfactory a living hinge can be composed a fully plastic hinge which is capable of flexing only a few cycles may be sufficient.
In the specification the expression “approximately” is intended to mean at or near and not exactly such that the exact location is not considered critical.
In the claims reference has been made to use of the term “means” followed by a statement of function. When that convention is used applicant intends the means to include the specific structural components recited in the specification and the drawings and in addition other structures and apparatus the will be recognized by those of skill in the art as equivalent structures for performing the recited function and not merely structural equivalents of the structures as specifically shown and described in the drawings and written specification.
In describing the invention, reference has been made to preferred embodiments. Those skilled in the art, however, and familiar with the disclosure of the subject invention may recognize additions, deletions, substitutions, modifications and/or other changes which will fall within the purview of the invention as defined in the following claims.
This application claims the priority of applicant's U.S. Provisional Application Ser. No. 61/416,646, filed on Nov. 23, 2010. The content of applicant's Provisional Application is hereby incorporated by reference as thought set forth at length.
Number | Name | Date | Kind |
---|---|---|---|
3104786 | Sanchis | Sep 1963 | A |
3162333 | Davidson | Dec 1964 | A |
3181743 | Libit et al. | May 1965 | A |
3285477 | Marona et al. | Nov 1966 | A |
3300099 | Marona | Jan 1967 | A |
3820689 | Cocita | Jun 1974 | A |
4216880 | Drelichowski | Aug 1980 | A |
4732303 | Wang | Mar 1988 | A |
5332131 | Pehr | Jul 1994 | A |
5392968 | Dark | Feb 1995 | A |
5505341 | Gueret | Apr 1996 | A |
5875936 | Turbett et al. | Mar 1999 | A |
5884793 | Wang | Mar 1999 | A |
5894960 | Rodden et al. | Apr 1999 | A |
6079589 | Matsuyama et al. | Jun 2000 | A |
6161728 | Dark | Dec 2000 | A |
6390341 | Ohmi et al. | May 2002 | B1 |
6923337 | Hession et al. | Aug 2005 | B2 |
6991126 | Jackel | Jan 2006 | B2 |
7357335 | Laidler et al. | Apr 2008 | B2 |
20070051727 | Holley | Mar 2007 | A1 |
20080156829 | Chen | Jul 2008 | A1 |
20090071982 | Lasfargues | Mar 2009 | A1 |
20100327019 | Nilsson | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120125953 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61416646 | Nov 2010 | US |