1. Technical Field
The present disclosure relates to joints and hinges which connect movable components of an electrosurgical instrument and methods for fabricating hinges for movable components of an electrosurgical instrument. More particularly, the present disclosure relates to an easily customizable hinge made from a plastic overmold composition which connects two end effectors for relative movement therebetween. The present disclosure also relates to a method for fabricating the overmolded hinge.
2. Background of Related Art
Typically, joints and hinges for electrosurgical instruments which connect movable components are formed from an insulating material to prevent shorting between component parts and/or prevent the formation of alternate current paths through the instrument. As such, instrument designers have manufactured electrosurgical instruments which involve complex rotating hinge configurations to isolate, insulate and/or control the electrosurgically active areas of the instrument. For example, traditional metal hinge configurations typically include multiple independent subassemblies which are overmolded with plastic material having high bond strengths. These separately overmolded subassemblies are mechanically integrated and arranged in a series of manufacturing steps that often require tightly controlled and time consuming processes to achieve proper jaw alignment and reliable and consistent gap separation between electrodes. Moreover, additional steps are often undertaken to control other parameters associated with the rotational movement about the hinge, e.g., friction, torque, etc.
Thus, a continuing need exists for a simple and effective insulating hinge that can be readily integrated into the manufacturing process to electrically isolate the movable components of an electrosurgical instrument. Further need exists for the development of a simplified manufacturing process which effectively fabricates an electrosurgical instrument which includes an insulated hinge that isolates and integrates the electrically active components of the instrument and results in the repeated formation of a reliable and easily customizable instrument which meets specific tolerance requirements for proper jaw alignment and gap distances.
An electrosurgical instrument includes a pair of first and second elongated shafts each having an end effector attached to a distal end thereof and a handle. The handle is movable from a first position wherein the end effectors are disposed in spaced relation relative to one another to a second position wherein the end effectors are closer relative to one another. Each of the elongated shafts includes a hinge plate which mounts atop a pivot assembly for effecting movement of the end effectors relative to one another. The instrument also includes a hinge assembly which is overmolded to encapsulate and secure the hinge plates and the pivot assembly. The hinge assembly is made from an electrically insulating material which insulates the end effectors from one another.
Preferably, the hinge assembly is made from a composition of materials selected from the group consisting of: polyamides, nylon, arcylanitride-butane nitro styrene acetyl, polyesters, syndiotactic-polystryrene (SPS), polybutylene terephthalate (PBT), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), polyphthalamide (PPA), polymide, polyethylene perephthalate (PET), polyamide-imide (PAI), acrylic (PMMA), polystyrene (PS and HIPS), polyether sulfone (PES), aliphatic polyketone, acetal (POM) copolymer, polyurethane (PU and TPU), nylon with polyphenylene-oxide dispersion and acrylonitrile styrene acrylate. In another embodiment, the hinge assembly is made from a composition of lubricating materials selected from the group consisting of: silicon, molybdenum disulfide and light olefins.
In one embodiment, the pivot assembly includes a pivot pin integrally associated with a first of the hinge plates and a pivot hole formed within a second of the hinge plates. Preferably, the pivot pin is made from an electrically insulating material. In another embodiment, the overmold composition of the hinge assembly is disposed between the pivot pin and the pivot hole to electrically insulate each of the hinge plates from one another.
In yet another embodiment, the hinge assembly includes a retention tab which secures the hinge assembly between the hinge plates. Preferably, the retention tab is formed during the overmold process as the overmold composition leaches through the pivot pin to form a tab on the outer-facing surface of the hinge plate. Once the retention tab cures, the hinge assembly is securely held between the hinge plates. In still yet another embodiment, the hinge assembly includes a stop member for limiting the movement of the end effectors relative to one another.
The present disclosure also relates to a method of forming a hinge assembly and includes the steps of: providing a pair of first and second elongated shafts each having an end effector attached to a distal end thereof, a handle and a hinge plate. The handle is dimensioned to effect movement of the end effectors relative to one another. The method further includes the step of mounting the elongated shafts to a die block, introducing an overmold composition into the die block to encapsulate at least a portion of the hinge plates and curing the overmold composition to form the hinge assembly.
In another embodiment, the method further includes the step of: selectively positioning at least one spacer between the end effectors to maintain a gap distance between the end effectors during the molding and curing step.
Preferred embodiments of the presently disclosed surgical instrument having a molded insulating hinge assembly are described herein with reference to the drawings, wherein:
Referring now in specific detail to the drawings in which like reference numerals identify similar or identical elements throughout the several views, and initially to
Each distal end, e.g., 32, has a jaw member 36 disposed at the distal end thereof which includes a tissue grasping surface 38 dimensioned to cooperate with the other jaw member, e.g., 66, and other tissue grasping surface, e.g., 68, to grasp tissue and other luminal structures upon actuation of the handles 34 and 64. The jaw members 36, 66 each also include a hinge plate 35, 65, respectively, which cooperate to support opposing sides of the hinge assembly 20 as explained in more detail below. Hinge plate 35 includes a pivot pin 74 which mechanically engages a corresponding pivot hole 61 disposed within hinge plate 65 to form pivot assembly 70.
Hinge assembly 20 as described herein relates to one particular embodiment for use with a bipolar electrosurgical forceps 10, however, it is contemplated that the presently disclosed hinge assembly 20 could be dimensioned for use with other electrosurgical instruments including vessel sealing instruments, grasping instruments, ablation instruments, electrosurgical scissors, etc. Moreover, it is also envisioned that the hinge assembly 20 may be configured for use with a broad range of other non-electrical surgical instruments such as pliers, scissors, shears, crimpers and wire cutters.
Preferably, hinge assembly 20 is made from a composition 25 of insulating material such as plastic which is overmolded to encapsulate the hinge plates 35, 65 during the manufacturing process. As best seen in
As can be appreciated, both the mold composition 25 and the retention tab 50 are formed during the same molding step resulting in the formation of the hinge assembly 20. It is envisioned that once cured, the retention mechanism 50 forms a structural limit that at least partially controls the alignment of the distal end effectors 32 and 62 as well as the amount of pivotal movement between the jaw members 36 and 66. Alternatively, the retention tab 50 may be made from the same or a different mold composition 25 and is designed to mechanically engage the pivot pin 74 or the hinge plate 65 to secure the hinge assembly between the hinge plates 35 and 65.
As best shown in the exploded view of
Because the presently disclosed hinge assembly 20 is preferably formed during a single manufacturing step, it can be easily customized and dimensioned to suit a particular purpose or to achieve a particular result. For example, the alignment of the jaw members 36 and 66, e.g., jaw angle or jaw offset, may be easily customized depending upon a particular purpose. Moreover, the formation of a gap distance between the jaw members 36, 66 may be easily customized. For example, the hinge assembly 20 may be molded or formed during the manufacturing process such that the jaw members 36 and 66 maintain a consistent and specific gap distance within the range of about 0.001 inches to about 0.005 inches at closure. The formation of the gap distance is discussed below with particular reference to
Generally, hinge 20 is formed from an overmold composition containing a joint-forming base resin material and a lubricating component. Hinge-forming materials for use herein can be any commercially available materials known to one skilled in the art for toughness and strength as well as being capable of injection molding. Suitable joint-forming base resin materials include, but are not limited to, polyamides such as nylon, arcylanitride-butane nitro styrene; acetyl, polyesters, etc. Preferably, the overmold composition is made from a plastic or plastic-based material having a Comparative Tracking Index of about 300 volts to about 600 volts for dielectric isolation. For example, the overmold composition 25 may be made from a group of materials selected from a group which includes Nylons, Syndiotactic-polystryrene (SPS), Polybutylene Terephthalate (PBT), Polycarbonate (PC), Acrylonitrile Butadiene Styrene (ABS), Polyphthalamide (PPA), Polymide, Polyethylene Terephthalate (PET), Polyamide-imide (PAI), Acrylic (PMMA), Polystyrene (PS and HIPS), Polyether Sulfone (PES), Aliphatic Polyketone, Acetal (POM) Copolymer, Polyurethane (PU and TPU), Nylon with Polyphenylene-oxide dispersion and Acrylonitrile Styrene Acrylate. Alternatively, it is envisioned that a non-plastic insulating material, e.g., ceramic, may be used in lieu of or in combination with one or more of the above-identified materials to facilitate the manufacturing process and possibly contribute to more uniform and consistent transfer of electrosurgical energy across the tissue.
Suitable lubricating components for use with the base resin material include a broad range of materials known to compliment the overmold composition to provide mold having a low bonding strength with good surface lubricating qualities. Such lubricating components include, but are not limited to, silicon-like materials, molybdenum disulfide, light olefins, etc. Depending upon the overall composition of the base resin material being used, a lubricating component may not be required.
It is also anticipated that additional materials may be employed in combination with the above materials to achieve suitable levels of toughness and strength in the molded hinge 20. These additional materials may include, for example, reinforcing agents such as glass fibers, ground glass, or elongated glass fibers. For example, in one particular embodiment, hinge assembly 20 is formed from a commercially available nylon material having about 2.5 wt. % glass fiber reinforcing material and a silicone lubricating component in the range of about 0.75 wt. % to about 10 wt. %. In another embodiment, hinge assembly 20 may be formed from a nylon having glass fiber reinforcing material in the range of about 5 wt. % to about 40 wt. % and silicone in the range of about 2 wt. % to about 8 wt. %.
While silicone or other lubricating agents are typically used in injection molding processes, it has been found that the amount of silicone should be tightly controlled to provide uniform and consistent curing and operating efficiencies. It is envisioned that the silicone component of the overmold composition creates a sustained lubricated surface at the interface between hinge plates 35 and 65. It has also been found that increasing the level of silicone, e.g., amounts greater than 2 wt. %., in the joint-forming material of hinge assembly 20, produces an overmold composition having a low bond strength. As can be appreciate, although the overmold composition 25 has a low bond strength to the surrounding metals, i.e., elongated shafts 30, 60 and hinge plates 35, 65, the low bonding strength is offset by a the mechanical advantages of the retention tab 50 and aperture 31.
As mentioned above, the presently disclosed hinge assembly 20 may be formed during a single manufacturing step and may be easily customized depending upon a particular purpose or to achieve a particular result. For example, parameters such as self lubrication of the hinge assembly 20, hinge assembly 20 strength, jaw member 36, 66 alignment, e.g., jaw angle or jaw offset, isolation of the jaw members 36 and 66 during electrosurgical application and the formation of a gap distance between the jaw members 36 ad 66 (or electrodes or probes attached to the jaw members 36 and 66) may be easily achieved.
The present application is not limited to the above identified materials, but contemplates a broad range of overmold composition 25 in varying combinations and amounts that provide an overmold composition suitable for the function of hinge assembly 20. It is envisioned that applications described herein relating to the injection overmolding of thermoplastic polyamides, for example, may be translated into other areas including, but not limited to, other engineering plastic materials, engineering metals and ceramics that may be selectively applied in varying insulative as well as mechanical applications.
The overmold composition 25 of the present disclosure is configured to create a tough and strong hinge assembly 20 by at least partially encapsulating the hinge plates 35 and 65 and the pivot assembly 70 (and the various components thereof). The overmold composition 25 provides suitable strength as a result of its continuity of encapsulation as well as the ability of the overmold composition 25 to form surface features which are specifically dimensioned to improve the strength of the hinge assembly 20 once cured. For example, features within the pivot pin 74 and features within the pivot hole 61 may be provided to increase the overall strength of the instrument and/or hinge assembly 20, e.g. notches, detents, cavities, overmolded posts, etc. Further, structural strength for the hinge assembly 20 may be gained by coating or filling features defined in the surface of the hinge plates 35, 65 to augment the mechanical bonding of the plastic mold with the hinge plates 35, 65, pivot pins 74 and pivot holes 61. For example, surface undulations such as lip structures, overhanging shapes, concave shapes, or cantilevered structures having different geometric shapes may be employed to mechanically engages the hinge assembly 20 to the hinge plates 35.
Preferably, the elongated shafts 30, 60 are made from a stainless steel material. However, other metal alloys, plastics, ceramics, or composites are also contemplated including combinations of one or more plastics, composites, metals, graphite, carbon-coated plastics and/or any other conductive materials which are well suited for overmolding purposes. Preferably, the elongated shafts 30 and 60 are die-cut, stamped, or micro-machined such that the end effectors 32 and 62 and the hinge plates 35 and 65 from integral parts thereof. As can be appreciated, making these elements integral and utilizing the overmold hinge assembly 20 as presently disclosed herein greatly simplifies the overall manufacturing and assembly processes.
Instrument 10 may also include surface treatments (e.g., nylon powder coatings, chemical treatments, nickel alloy coatings, mechanical finish treatments, shrink tubing, etc.) which facilitate manipulation of the tissue structures, enhance conduction of electrosurgical energy across the jaw members 36, 66 and/or reduce the likelihood of inconsistencies across the treatment area which may lead to collateral tissue damage, flashover, thermal spread, arcing, etc.
Preferably, the thickness of the hinge assembly 20 can be selectively altered depending upon a particular purpose or for use with a certain instrument. The ultimate thickness and strength of the overmold composition 25 is also related to the viscosity of the overmold composition 25 and the duration and temperature of the curing process. For example, the hinge assembly 20 may include a range of thickness from about 0.020 to about 0.040 inches in thickness. The thickness of the overmold composition 25 also depends on mechanical load bearing and dimensional requirements of a particular application.
As best shown in
It is envisioned that the hinge assembly may be designed as a more complex mechanism and/or may be designed to encapsulate a more complex pivoting mechanism. For example, it is contemplated that the hinge assembly 20 may include various multiple-link systems such as a two-bar, three-bar or four-bar linkage or may include a two-step hinge. The pivot pin 74 and/or the pivot hole 61 may also be dimensioned in a variety of different shapes and sizes depending upon a particular purpose or to achieve a particular result, e.g., cam and cam-follower, arcuate, elliptical, etc. It is also envisioned that the hinge assembly 20 may include one or more stop members 19 which limit the overall distance that the jaw members 36, 66 may pivot in either the open or closed positions. The stops 19 may be configured in steps or as a cantilevered feature to define more than one gap distance between jaw members 36 and 66.
In one embodiment, retention tab 50 may be configured to mechanically engage a portion of the hinge plate 65 and/or pivot pin 74 which is contemplated to serve two purposes: 1) to mechanically retain the retention tab 50 against the hinge plate 65 and further secure the instrument 10 as assembled; and 2) to bias the pivot assembly 70 to a predetermined open, closed, or intermediary position. For example, the outer-facing surface 63 of hinge plate 65 may be provided with slots or grooves (not shown) which mechanically engage the retention tab 50.
With respect the to particular surgical instrument of
Preferably, hinge assembly 20 is manufactured in a single injection molding or manufacturing process step in which elongated shafts 30 and 60 are mounted atop a die block within an injection molding machine. The overmold composition 25 of the hinge assembly 20 is then injected between the jaw members 36 and 66 to encapsulate the hinge plates 35 and 65 and the pivot assembly 70. As mentioned above, the hinge assembly 20 is strengthened by the continuity of the plastic overmold composition 25 which extrudes through the pivot pin 74 and pivot hole 61 to form the retention tab 50. Thus, in one particular embodiment, the hinge assembly 20 is completely formed by overmold composition flowing around and through the various components parts of the hinge assembly 20 and the pivot assembly 70. As mentioned above, the retention tab may be a separate component made from the same or a similar composition which is dimensioned to mechanically engage the pivot pin 74 or the outer-facing surface 63 of the hinge plate 65.
As mentioned briefly above and as shown in
The presently disclosed overmolding process also enables the manufacturer to customize the precise alignment of the jaw members 36 and 66 relative to one another. Thus, in applications in which the alignment of jaw members 36 and 66 is critical, such as for shearing, cutting and sealing, the accuracy, alignment and configuration of the hinge assembly 20, pivot assembly 70 and jaw members 36 and 66 can be easily customized. Further, the presently disclosed process also provides a repeatable and reliable alignment tool for mass manufacturing of surgical instruments according to specific tolerances.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the present disclosure. For example, it is contemplated that hinge assembly 20 can be configured to join a plurality of different components or subassemblies in the assembly depending upon a particular purpose. Moreover, the outer periphery 75 of pivot pin 74 could also include features such as a series of undulations or knurling, or a series of radially aligned cavities having features within those cavities that strengthen the mechanical interface of the overmold composition to the pivoting assembly 70.
In one embodiment, the instrument includes a conductive strip (not shown) disposed through one shaft, e.g., shaft 30. Electrosurgical wires or cables (not shown) from an electrosurgical generator (not shown) connect the two electrical potentials to the conductive strip. The opposite end of the conductive strip includes one electrical connection to end effector 32 and a second electrical connection to pivot assembly 70 which provides electrical continuity to the opposite end effector 62. More particularly, the second electrical connection of the conductive strip makes contact across the moving junction of the pivot assembly. It is not necessary that the conductive strip wrap around the pivot pin 74 between the instrument halves because during the molding process the conductive strip is forced into intimate contact with the opposite end effector 62, i.e, the flow of the uncured hinge material positions the conductive strip into contact with end effector 62.
As a result thereof, secondary washers or force loading devices are not required to initiate contact between the conductive strip and the opposite end effector 62. The conductive strip my also include a series of wave-like folds, e.g., accordion folds, which give the conductive strip a spring-like quality and which fosters contact with the opposite end effector 62 during and after curing. As can be appreciated, this arrangement assures that a moving or sliding contact is maintained between the conductive strip and the end effector 62 during movement, i.e., pivoting, of the end effectors relative to one another.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application claims the benefits of and priority to U.S. Provisional Patent Application Ser. No. 60/281,924 entitled: “MOLDED INSULATING HINGE FOR BIPOLAR INSTRUMENT” which was filed on Apr. 6, 2001 by Sartor et al., the entire contents of this application are hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US02/11100 | 4/5/2002 | WO | 00 | 9/29/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/080798 | 10/17/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2031682 | Wapper et al. | Feb 1936 | A |
3913586 | Baumgarten | Oct 1975 | A |
4165746 | Burgin | Aug 1979 | A |
4300564 | Furihata | Nov 1981 | A |
4370980 | Lottick | Feb 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4452246 | Bader et al. | Jun 1984 | A |
4492231 | Auth | Jan 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Xoch et al. | Aug 1987 | A |
4715122 | Linden | Dec 1987 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
4827929 | Hodge | May 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5099840 | Goble et al. | Mar 1992 | A |
5116332 | Lottick | May 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Xamiyama et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308357 | Lichtman | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5456140 | Linden et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5461765 | Linden et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5591202 | Slater et al. | Jan 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5626578 | Tihon | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5792137 | Carr et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5820630 | Lind | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5976132 | Morris | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka | Jan 2000 | A |
6024741 | Willaimson et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6060695 | Harle et al. | May 2000 | A |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6096031 | Mitchell et al. | Aug 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6312430 | Wilson et al. | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6464704 | Schmaltz et al. | Oct 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514251 | Ni et al. | Feb 2003 | B1 |
6544264 | Levine et al. | Apr 2003 | B1 |
6569162 | He | May 2003 | B1 |
6585735 | Lands et al. | Jul 2003 | B1 |
6620161 | Schulze et al. | Sep 2003 | B1 |
6682528 | Frazier et al. | Jan 2004 | B1 |
6685724 | Haluck | Feb 2004 | B1 |
6733498 | Paton et al. | May 2004 | B1 |
6743229 | Buysse et al. | Jun 2004 | B1 |
6743230 | Lutze et al. | Jun 2004 | B1 |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
6926716 | Baker et al. | Aug 2005 | B1 |
6929644 | Truckai et al. | Aug 2005 | B1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
20030069571 | Treat et al. | Apr 2003 | A1 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030158549 | Swanson | Aug 2003 | A1 |
20030199869 | Johnson et al. | Oct 2003 | A1 |
20040147925 | Buysse et al. | Jul 2004 | A1 |
20040225288 | Buysse et al. | Nov 2004 | A1 |
20040236325 | Tetzlaff et al. | Nov 2004 | A1 |
20040243125 | Dycus et al. | Dec 2004 | A1 |
20040249371 | Dycus et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040250419 | Sremcich et al. | Dec 2004 | A1 |
20040254573 | Dycus et al. | Dec 2004 | A1 |
20050004568 | Lawes et al. | Jan 2005 | A1 |
20050004570 | Chapman et al. | Jan 2005 | A1 |
20050021025 | Buysse et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050101951 | Wham et al. | May 2005 | A1 |
20050113818 | Sartor et al. | May 2005 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
2415263 | Oct 1975 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751108 | May 1999 | DE |
19828976 | Feb 2000 | DE |
20001204 | Mar 2000 | DE |
0364216 | Apr 1990 | EP |
0518230 | Dec 1992 | EP |
0 541 930 | May 1993 | EP |
0572131 | Dec 1993 | EP |
0572131 | Dec 1993 | EP |
O584787 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0624348 | Nov 1994 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0717966 | Jun 1996 | EP |
0754437 | Mar 1997 | EP |
O853922 | Jul 1998 | EP |
0887046 | Jan 1999 | EP |
0923907 | Jun 1999 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Dec 2001 | EP |
2214430 | Jun 1989 | GB |
501068 | Sep 1984 | JP |
502328 | Mar 1992 | JP |
5-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265326 | Oct 1995 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
20000342599 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
401367 | Nov 1974 | RU |
401367 | Nov 1974 | SU |
WO 9206642 | Apr 1992 | WO |
WO 9408524 | Apr 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9507662 | Mar 1995 | WO |
WO 9613218 | Sep 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO 0024330 | May 2000 | WO |
WO 0024331 | May 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 0207627 | Jan 2002 | WO |
WO 02080783 | Oct 2002 | WO |
WO 02080784 | Oct 2002 | WO |
WO 02080785 | Oct 2002 | WO |
WO 02080786 | Oct 2002 | WO |
WO 02080793 | Oct 2002 | WO |
WO 02080794 | Oct 2002 | WO |
WO 02080795 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 02080798 | Oct 2002 | WO |
WO 02080799 | Oct 2002 | WO |
WO 02081170 | Oct 2002 | WO |
02098313 | Dec 2002 | WO |
WO 040432777 | Apr 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 04073490 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2004098383 | Nov 2004 | WO |
WO 04103156 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040193153 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60281924 | Apr 2001 | US |