The present application is a U.S. National Stage of PCT international Patent Application No. PCT/JP2017/006292, filed Feb. 21, 2017, which claims priority to JP Application No, 2016-032443, filed Feb. 23, 2016, both of which are hereby incorporated herein by reference.
This invention relates to a method for producing a molded material including a tubular body and a flange formed at an end portion of the body, and also relates to a molded material.
As disclosed, for example, in non-patent document 1, a molded material including a tubular body and a flange formed at an end portion of the body is produced by performing a drawing process. The drawing process forms the body by drawing a base metal sheet, so that the thickness of the body is lower than that of the base sheet. On the other hand, a region of the metal sheet corresponding to the flange shrinks as a whole in response to the formation of the body, so that the thickness of the flange is higher than that of the base sheet. Hereinafter, the base material may be referred to as a “blank”.
The molded material as described above may be used as a motor case disclosed, for example, in patent document 1 as described below. In this case, the body is expected to function as a shielding material for preventing magnetic leakage to the outside of the motor case. Depending on motor structures, the body is also expected to function as a back yoke of a stator. The performance of the body as the shield material or back yoke is improved as the thickness of the body increases. Therefore, when a molded material is produced by drawing, as described above, a base metal sheet with a thickness larger than the required thickness of the body is selected taking into account the reduction in thickness of the body caused by the drawing process. Meanwhile, the flange is often used for mounting the motor case on a mounting object. Therefore, the flange is expected to have a certain strength.
However, the conventional method for producing the molded material as described above produces the molded material including the tubular body and the flange formed at the end portion of the body by the drawing process, so that the thickness of the flange is larger than that of the base sheet. For this reason, the flange may become unnecessarily thicker over a thickness required for obtaining the expected performance of the flange. This means that the molded material becomes unnecessarily heavy, which cannot be ignored in applications in which weight reduction is required, such as motor cases.
On the other hand, in a multi-stage drawing process, when a change in diameter reduction of the flange before and after the drawing process is large, in other words, when a diameter of the flange after the drawing process becomes significantly smaller than the diameter of the flange before the drawing process, the lower thickness of the flange after the drawing process may generate wrinkles and/or buckling in the flange. The wrinkles and/or buckling may cause cracks during the subsequent drawing process.
In such a case, a drawing process using a drawing sleeve may be carried out in order to prevent the wrinkles and/or buckling. However, the drawing process is carried out by sandwiching the flange between a die and the drawing sleeve, so that a tensile stress will act on the body, causing a decrease in thickness of a circumferential wall of the body.
The present invention has been made to solve the above problems. An object of the present invention is to provide a method for producing a molded material and the molded material, which can avoid unnecessary thickening of the flange, reduce a weight of the molded material and achieve size reduction of the base metal sheet.
The present invention relates to a method for producing a molded material, the molded material comprising a tubular body and a flange formed at an end portion of the body, the molded material being produced by performing at least two molding processes on a base metal sheet, wherein the at least two molding processes comprise at least one drawing-out process and at least one drawing process performed after the drawing-out process; wherein the drawing-out process is carried out using a mold that comprises a punch and a die having a pushing hole; wherein a width of the punch on a rear end side is wider than a width of the punch on a distal end side so that when the punch is pushed into the pushing hole of the die, a clearance between the die and the punch is narrower on the rear end side than on the distal end side; and wherein an ironing process is performed on a region corresponding to the flange of the base metal sheet by pushing the base metal sheet together with the punch into the pushing hole in the drawing-out process.
In the method for producing the molded material, the drawing process is carried out using a mold comprising a die and a drawing sleeve, and in the drawing process, an ironing process is performed on a region corresponding to the flange of the base material sheet subjected to the ironing process in the drawing-out process, while maintaining a constant mold gap between the die and the drawing sleeve.
Further, the drawing process performed at the constant mold gap between the die and the drawing sleeve is preferably carried out such that the mold gap is 1.0 times or more and 1.35 times or less an average thickness of the flange before the drawing process. Alternatively, the drawing process is carried out using a mold comprising a die, a drawing sleeve and a punch, and the drawing process that does not reduce a diameter of the flange is preferably carried out while opening the mold gap between the die and the drawing sleeve, and the drawing process that reduces a diameter of the flange is preferably carried out such that the mold gap between the die and the drawing sleeve is 1.0 times or more and 1.35 times or less an average thickness of the flange before the drawing process.
Further, the present invention relates to a molded material which comprises a tubular body and a flange formed at an end portion of the body, and is produced by carrying out at least two molding processes on a base metal sheet, wherein the at least two molding processes comprise at least one drawing-out process and at least one drawing process performed after the drawing-out process; wherein in the drawing-out process, an ironing process is performed on a region corresponding to the flange of the base metal sheet; and wherein in the drawing process, an ironing process is also performed on only a region corresponding to the flange, whereby the thickness of the flange is lower than that of a circumferential wall of the body.
Furthermore, the present invention relates to a molded material which comprises a tubular body and a flange formed at an end portion of the body and is produced by carrying out at least two molding processes on a base metal sheet, wherein the at least two molding processes comprise at least one drawing-out process and at least one drawing process performed after the drawing-out process; wherein in the drawing-out process, an ironing process is performed on a region corresponding to the flange of the base metal sheet; and wherein in the drawing process, an ironing process is also performed on only a region corresponding to the flange, whereby the thickness of the flange is lower than that of the base metal sheet.
According to the method for producing the molded material and the molded material according to the present invention, the drawing-out process involves the ironing process performed on the region corresponding to the flange of the base metal sheet by pushing the base metal sheet together with the punch into the pushing hole, and during the drawing process, only the region corresponding to the flange of the base metal sheet subjected to the ironing process in the drawing-out process is subjected to the ironing process and molded while sandwiching the region between the die and the drawing sleeve. Therefore, generation of wrinkles and buckling in the flange can be prevented, and breakage can be avoided. Further, an unnecessary increase in the thickness of the flange can be avoided so that the weight of the molded material can be reduced. This configuration is particularly useful for various applications in which weight reduction is required, such as motor cases.
Embodiments of the present invention will be described below with reference to the drawings.
Thus, as shown in
It should be noted that between the distal end side 310 and the rear end side 311 of the punch 31 is provided a width variation portion 31a comprised of an inclined surface that continuously changes a width of the punch 31. The width variation portion 31a is disposed so as to be in contact with a region of the base metal sheet 2 corresponding to the lower side shoulder portion Rd (see
Next,
As shown in
The left half of
The right half of
Next, the left half of
Further, a space between the die 40 and the drawing sleeve 42 is open, and the lower portion of the body of the first intermediate body 20 (a region corresponding to the flange 11 in
In the state shown in the left half of
The right half of
In the state shown in the right half of
The second and third drawing processes shown in
In the first to third drawing processes, shrinkage occurs in the region corresponding to the flange 11 in
Next, Examples will be described. The present inventors prepared a round sheet having a thickness of 1.8 mm and a diameter of 116 mm and formed by conducting Zn—Al—Mg alloy plating on a common cold-rolled steel sheet, as the base metal sheet 2. The drawing-out process was then carried out under the following processing conditions. Here, the Zn—Al—Mg alloy plating was applied onto both surface of the cold-rolled steel sheet, and a plating coverage was 90 g/m2 for each surface.
<Evaluation of Ironing Ratio>
When the ironing ratio was 30% or less (when the diameter of the rear end side 311 of the punch 31 was 67.5 mm or less), the processing could be performed without any problem. However, when the ironing ratio was greater than 30% and equal to or less than 50% (when the diameter of the rear end side 311 of the punch 31 was greater than 67.5 mm and equal to or less than 68.2 mm), a slight scratching mark was found at a portion sliding against the die 30. Further, when the ironing ratio exceeded 50% (when the diameter of the rear end side 311 of the punch 31 was greater than 68.2 mm), seizure and cracking occurred against the inner wall of the die 30. Therefore, these results demonstrate that the ironing ratio of the region corresponding to the flange 11 in the drawing-out process is preferably equal to or less than 50%, and more preferably equal to or less than 30%. However, the scratching is not a significant problem because it can be improved by subjecting the die or punch to a ceramic coating treatment or the like.
<Ironing Ratio>
The ironing ratio is as represented by the following equation:
Here, a value of the sheet thickness of the base metal sheet can be used as the sheet thickness before ironing.
<Evaluation of Shape of Width Variation Portion 31a>
As shown in
<Evaluation of Position of Width Variation Portion 31a>
When the width variation portion 31a was provided so as to be in contact with the region corresponding to the lower side shoulder portion Rd, the ironing process of the region corresponding to the flange 11 could be satisfactorily performed. However, when the width variation portion 31a was provided so as to be in contact with the region corresponding to the flange 11, the thickness of a part of the flange portion 11 could not be sufficiently decreased. Further, when the width variation portion 31a was provided so as to be in contact with the region corresponding to the body 10, a part of the body 10 became thinner than the target sheet thickness. These results demonstrate that it is preferable to provide the width variation portion 31a so as to be in contact with the region corresponding to the lower side shoulder portion Rd.
It should be noted that the position of the width variation portion 31a is determined by performing the molding to the molded material which has completed the redrawing process in advance after determining mold conditions for mass production, and then counting backward from the position corresponding to the lower side shoulder portion Rd.
In Examples, hereinafter, the lower end of the body of the first intermediate body is referred to as a flange.
<Effect of Presence and Absence of Drawing Sleeve>
Table 1 shows a relationship between an average sheet thickness of the flange before the drawing process and a diameter of the flange before and after the drawing process, on the generation of wrinkles and/or buckling when the drawing sleeve is not used. The symbol t0 is a sheet thickness of the base metal plate, and the symbol t1 is an average sheet thickness of the flange before the drawing process, that is, an average sheet thickness of the region corresponding to the flange after the drawing-out process. The symbol D(n−1) is a diameter of the flange after the n−1th drawing process, and the symbol Dn is a diameter of the flange after the nth drawing process. The wrinkles and/or buckling were generated under conditions of t1<t0 and Dn<0.93×D(n−1), that is, conditions where the average sheet thickness t1 of the flange before the drawing process is thinner than the sheet thickness to of the base metal sheet (t1<t0) and the diameter of the flange Dn after the nth drawing process is significantly smaller than the diameter of the flange D(n−1) after the n−1th drawing process (Dn<0.93×D(n−1)).
The results in the case of using the drawing sleeve are shown in Table 2. In this case, the diameter of the flange is not changed when performing the drawing process on the body. Therefore, in this case, a space between the die 40 and the drawing sleeve 42 was opened such that the outer edge portion was not sandwiched, thereby suppressing a decrease in the sheet thickness of the circumferential wall of the body. Further, when the ironing process is performed on the region where the sheet thickness has been decreased by carrying out the ironing process in the step of the drawing-out process, the diameter of the flange is reduced. In this case, the mold gap (clearance) between the die 40 and the drawing sleeve 42 was set to be constant at various values.
Here, for the region where the ironing process was performed to decrease the sheet thickness, the mold gap was made constant at the timing when contraction processing began.
Further, it was carried out under the condition where the diameter of the flange after the nth drawing process was significantly smaller than the diameter of the flange after the (n−1)th drawing process (Dn<0.93×D(n−1)).
The mold gap (clearance) was set to various values under the above condition that the flange diameter Dn after the nth drawing process was significantly smaller than the flange diameter D(n−1) after the n−1th drawing process, and the drawing process was carried out. As shown in Table 2, no winkle or buckling was generated when the mold gap (clearance) was 1.0 times or more and 1.35 times or less the average sheet thickness of the flange before the drawing process.
<Sheet Thickness of Flange>
Next,
The implementation of the drawing-out process involving the ironing process prior to the drawing process could allow the thinner sheet thickness of the flange 11 in the final molded material than the sheet thickness of the base metal sheet (1.8 mm) and the sheet thickness of the circumferential wall of the body (about 1.6 mm). Further, assuming that outer dimensions of both molded materials are the same, the molded material subjected to the drawing-out process involving the ironing process prior to the drawing process (the present invention) had a weight lighter than the molded material subjected to the conventional common drawing method by 10%.
When the drawing-out process involving the ironing is carried out, the region corresponding to the flange 11 of the base metal sheet 2 is stretched. In order to form the molded material subjected to the drawing-out process involving the ironing (the present invention) and the molded material subjected to the conventional common drawing method, both of which have the same dimensions, either a smaller base metal sheet may be used taking into consideration, in advance, an amount of stretching the region corresponding to the flange 11, or an unnecessary portion of the flange 11 may be trimmed.
In such a method for producing the molded material and the molded material produced thereby, the drawing-out process involves an ironing process performed on the region corresponding to the flange 11 of the base metal sheet 2 by pushing the base metal sheet 2 together with the punch 31 into the pushing hole 30a, and the subsequent drawing process molds the portion where the sheet thickness has been decreased by the ironing process, while being sandwiched by the die 40 and the drawing sleeve. Therefore, the wrinkles and buckling can be prevented, the sheet thickness of the flange can be prevented from becoming unnecessarily thicker, and the weight of the molded material can be reduced. This configuration is particularly useful for applications in which weight reduction of the molded material and size reduction of the base metal sheet are required, such as motor cases.
Further, the ironing ratio of the ironing process performed during the drawing-out process is equal to or less than 50%, and therefore the generation of seizure and cracking can be avoided.
Furthermore, the width variation portion 31a comprised of the inclined surface that continuously changes the width of the punch 31 is provided between the distal end side 310 and the rear end side 311, so that it is possible to avoid the generation of plating residue due to the contact with the width variation portion 31a in the ironing process.
Moreover, the width variation portion 31a is disposed so as to be in contact with the region corresponding to the lower side shoulder portion Rd formed between the circumferential wall 101 of the body 10 and the flange 11, so that the thickness of the flange 11 can be sufficiently decreased and the target sheet thickness of the body 10 can be more reliably achieved.
Further, when the drawing process is performed on the body, that is, when the flange diameter does not change, a decrease in the sheet thickness of the circumferential wall of the body is suppressed by opening the space between the die 40 and the drawing sleeve 42 so as not to sandwich the material. On the other hand, when the drawing process is performed on the region where the sheet thickness has been decreased by the ironing process in the drawing-out process, the molding is carried out while maintaining the constant mold gap between the die 40 and the drawing sleeve 42, whereby the generation of wrinkles and buckling in the region corresponding to the flange can be avoided.
Further, although the present embodiment illustrates that the three drawing processes are performed, the number of the drawing processes may be changed, as needed, according to the size and required dimensional accuracy of the molded material.
Number | Date | Country | Kind |
---|---|---|---|
2016-032443 | Feb 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/006292 | 2/21/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/146019 | 8/31/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20080299352 | Matsuda | Dec 2008 | A1 |
20150336152 | Yamagata et al. | Nov 2015 | A1 |
20170128998 | Nakamura et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2951785 | Dec 2015 | CA |
2013-051765 | Mar 2013 | JP |
2016-002552 | Jan 2016 | JP |
6305648 | Apr 2018 | JP |
WO 2014109263 | Jul 2014 | WO |
Entry |
---|
English translation of the International Preliminary Report on Patentability, counterpart International Appl. No. PCT/JP2017/006292, dated Sep. 7, 2018 (6 pages). |
Murakawa et al., Basics of Plastic Processing, First Edition, Sangyo-Tosho Publishing Co. Ltd., pp. 104-107, with English translation (Jan. 16, 1990) (12 pages). |
International Search Report and Written Opinion, counterpart International App. No. PCT/JP2017/006292, with partial English translation (Apr. 11, 2017) (8 pages). |
Notification of Reasons for Refusal, counterpart Japanese App. No. 2017-524059, with English translation (Dec. 28, 2017) (4 pages). |
Decision to Grant a Patent, counterpart Japanese App. No. 2017-524059, with English translation (Feb. 14, 2018) (6 pages). |
Number | Date | Country | |
---|---|---|---|
20190047034 A1 | Feb 2019 | US |