The invention is in the field of molded polymeric structures, such as but not limited to structural panels having a novel two-sided geometry that results in high structural strength and readily controllable physical characteristics. The structure exhibits two similar, but not necessarily identical side geometries, one side herein called an “obverse” while the opposite side is a “reverse”. Both sides are characterized by regularly arranged polygonal receptacles wherein the obverse receptacles are joined in part to the reverse receptacles by common walls. The receptacles can have four-sided floors and are bounded by intersecting flat top surfaces. The structures can be “skinned”; i.e., panels can be fused to the top surfaces to close the receptacles on one or both sides. Alternatively or additionally, the structures can be fused to one another in stacks with or without intervening skins. The structures can be essentially flat or contoured. The structure is preferably manufactured using a compression molding technique which enhances material distribution but can also be injection molded. Structures, molds and process steps are described.
Cellular and semi-cellular structures made wholly or partially of polymeric material are well-known. For example, a corrugated sheet may be laminated between two flat sheets to produce a panel having relatively high compression and bending strengths. Honeycomb structures are also known to have high structural strength-to-weight ratios.
Thermoforming is a well-known technique for creating three-dimensional articles from extruded flat plastic sheets. A problem associated with thermoforming is the fact that it is difficult to control the distribution of material from the original flat sheet as it is drawn into the thermoforming mold by vacuum or other means in a heated flowable condition; i.e., the deeper the cavity into which the heat-softened sheet material must be drawn, the thinner the material becomes relative to the original gauge or thickness of the starting sheet. In addition, it can be difficult to control the distribution of material in a thermoforming process. Thickness can be well controlled by injection molding but large parts with complex geometries may require gas assist or other special techniques.
A first aspect of the invention is a molded polymeric article of two-sided cellular geometry wherein the cells or receptacles are regularly distributed in side-by-side fashion in such a way as to provide high strength and a high strength-to-weight ratio.
In one specific embodiment hereinafter described in detail, the cells or receptacles are three-dimensional and symmetrical in the sense that they look the same although offset when viewed from obverse and reverse sides; i.e., the walls and receptacles viewed from the obverse side include walls of adjacent cells when viewed from the reverse side. Receptacle floors on the obverse side are coplanar corner surfaces on the reverse side and vice versa. In one described embodiment, each cellular shape is characterized by four downwardly and inwardly sloping full depth walls ending in a four-sided floor, and four partial depth triangular walls forming vertically oriented ribs. These vertical ribs lie between the upper portions of the adjacent inwardly sloping walls to form receptacles that are effectively eight-sided in plan view. As hereinafter described in detail, articles made in accordance with this disclosure may vary in size and proportion. While essentially flat structures are described, they may also be curved or contoured.
In another embodiment, also hereinafter described, the obverse and reverse sides are dissimilar, the ribs are thicker, and the intersections of the ribs are purely cruciform in shape; i.e., they do not form four-sided figures as in the previous embodiment.
In still other embodiments, the ribs may be attenuated in size or may be eliminated altogether. In short, there are many possible variations in the design and configuration of the subject panel for the manufacturer or end user to choose from; likewise, there are many applications for the structure from building construction to temporary road surfaces to pallet decks.
In accordance with another aspect of the invention, the articles described above are preferably manufactured by way of a compression molding process involving two similar, conjugal male-type molds with projecting mold elements that are installed in a press so they may be brought into location between one another as the press closes; i.e., the projecting elements of one mold interfit with and between projecting elements of the opposite mold and define a continuous clearance that is ultimately filled with plastic to form the invention article. Skinning or stacking is carried out in a secondary operation.
In the preferred embodiment hereinafter described, the vertical walls or “ribs” are triangular and the apex of an upper triangular rib on the obverse side meets the apex of an inverted and lower triangular wall on the reverse side turned at 90° from the upper wall. This produces beam strength.
In accordance with a third aspect of the invention, the article as described above is made by way of a compression molding process in which a flat sheet of heat-softened material such as high-density polyethylene (HDPE) is placed between parallel conjugal molds having the character as essentially described above. The molds are brought together under pressure, usually hydraulic, to deform the sheet material in opposite directions away from the base plane, thereby bi-directionally forming the cells or receptacles on both sides of the resulting structural component or article. The compression molding process is preferred because it can produce a desired material distribution that cannot normally be realized by other techniques.
In accordance with a fourth aspect of the invention, structural panels, building walls and floors, temporary roadways, pallet decks and legs, and a wide variety of other articles can be fabricated by laminating additional plastic structural components such as flat panels to the article made as described as above. In one example, flat sheets or “skins” can be placed over the flat surfaces on either side of the article to close the receptacles. Skinning can be done on one or both sides. In another example, flat or curved sheets can be laminated to both sides of the symmetrically molded cellular article to close the cells on both sides and additional layers of cellular material may be built up in a parallel fashion to create an overall structure of the desired thickness and strength. In still another iteration on the basic theme, two symmetrically cellular panels can be fused together face-to-face with the symmetric and regularly arranged open cells of one panel in registry with the open cells of another panel so that the two panels together form a regular distribution of closed cells.
The following specification illustrates the invention and describes the various aspects and embodiments thereof with reference to drawings of molded and/or moldable articles as well as drawings of a mold which is used in a complemental, conjugal or mating fashion to form the illustrated articles out of flat sheets of heat-softened HDPE or other polymeric material. These sheets may come directly from an extruder in which case, they are preheated to the desired temperature or they may be premanufactured and stored, in which case, they are reheated and softened before entering into the press for the formation of the final article.
Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter being briefly described hereinafter.
The description herein makes reference to the accompanying computer drawings and photographs showing different embodiments and molds.
The tapered walls 12, each with six sides, and full depth, have sides intersecting with the rib walls 16 and other lower sides that intersect with the sloping walls of adjoining walls in the same receptacle. The top and bottom edges of walls 12 form the co-planar square areas 14 and 14′. These co-planar surfaces can receive and be fused or otherwise adhered to a flat panel 74 as shown in
The triangular rib-forming vertical walls 16 in a given cell on the obverse are common walls with adjoining receptacles. In addition, the apex of a rib wall 16 meets the apex of an inverted rib wall 16′ on the reverse side, the plane of the latter 16′ being rotated 90° relative to the plane of the wall as shown in
In the embodiment or
It will be appreciated that the apparatus shown in
While the article 50 shown in
Cells 84 are essentially four-sided in top plan view, are separated by ribs 86 that form purely cruciform intersections; i.e., there are no square lands at the intersections of the ribs 86. This is the result of making the vertical rib-forming walls 88 thicker than the corresponding rib walls in the embodiment of
The process by which the articles described herein are made may involve (1) the manufacture of a set of molds having the geometries disclosed herein and proportions according to the desired proportions and dimensions of the final article. This is preferably done by model-making and CNC Machining. The two molds are made in such a way as to provide the necessary clearances between elements such as 24 to perform the vertical ribs as described above and to exhibit the necessary structural strength and heat resistance to allow them to carry out the compression molding process.
The molds are then arranged facing one another in a hydraulic press of sufficient size and strength as to allow the molds to travel toward one another and apart from one another to cycle through the molding process. Sheets of material, such as HDPE of the desired thickness or gage are brought into position between the two opposing complemental molds. The sheets are either preheated or brought directly from an extrusion press in heat-softened condition so as to be ready for the compression molding process. The mold plates are then brought together to the desired degree under the desired pressure to squeeze, compress and cause material from the sheet to flow into the geometry between the mold elements until all of the clearance between the two mold plates has been completely filled. The mold plates are held in this condition until the article has been fully formed and are then withdrawn from one another and the resulting article is removed from the press. A cooling step may be performed at the appropriate time in this sequence. This is conventional and need not be described in detail.
Thus, the disclosure has a number of different aspects: the first aspect is the molded article and its specific and advantageous cellular geometry. The second aspect is the structural article which can be constructed using lamination techniques wherein two or more molded articles are brought together or individual molded articles as described above are laminated to flat sheets on one or both sides of the structural panel or other article of manufacture. The third aspect is the compression molding technique which involves the creation or construction of molds having the desired complemental geometries and the use of those molds in combination with sheets of heated plastic material to form articles of the desired shape, size and proportions as described herein.
The principal characteristic of the molded article, whether created in accordance with or by use of the compression molding process described above or by injection molding, is a geometry characterized by a two-dimensional, two-sided array of receptacles or “cells” having sloping side walls and precise wall thicknesses and material distribution so as to maximize strength while at the same time eliminating wasteful allocation of material into thick vertical sections where thin structures work equally well or better. The receptacles on the obverse and reverse sides may be identical or different in geometry. The cells may have ribs or no ribs and floors or open holes. Where ribs are present, they may be thick or thin or of intermediate thickness; they may intersect in a pure cruciform area or in a four-sided land. Finally, both open cell articles and skinned, closed cell articles are possible in accordance with the teachings herein.
This application claims the benefit of U.S. provisional patent application Ser. No. 61/916,474 filed Dec. 16, 2013.
Number | Date | Country | |
---|---|---|---|
61916474 | Dec 2013 | US |