Molded product of amorphous metal and manufacturing method for the same

Information

  • Patent Grant
  • 6371195
  • Patent Number
    6,371,195
  • Date Filed
    Tuesday, February 29, 2000
    24 years ago
  • Date Issued
    Tuesday, April 16, 2002
    22 years ago
Abstract
A metal material is placed on a lower mold of a press metal mold which has an upper mold and the lower mold not having engagement portions. The metal material is fused by a high energy heat source, and obtained molten metal over a melting point is pressed with the press metal mold and transformed into a predetermined configuration. The molten metal is cooled at a rate over a critical cooling rate simultaneously with or after the transformation, and the molded product of amorphous metal in predetermined configuration is obtained.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to molded products of amorphous metal and manufacturing method for the same.




2. Description of the Related Art




Conventionally, as methods for manufacturing a molded product of amorphous metal (amorphous alloy), various methods are being proposed. In one of the methods, metal material is melted, rapid-cooled metal (alloy) powder is obtained by rapid cooling solidification of the metal material from the molten state, and the obtained rapid-cooled metal powder is solidified into a predetermined configuration at under a crystallizing temperature and true densified. In another method, molten metal and alloy are solidified with rapid cooling, and a molded product of amorphous metal in a predetermined configuration is directly obtained.




Most the molded products of amorphous metal obtained by these methods, however, have small mass, and it is difficult to obtain bulk material applicable to a product, such as a face of a golf club head. For this reason, although a method for obtaining a molded product of amorphous metal as bulk material by solidification of the rapid-cooled metal powder is also attempted, bulk material having sufficient strength characteristics, such as high strength and high toughness required as a face of a golf club head, etc., cannot be obtained.




And, as shown in

FIG. 46A

, on a method for making a molded product of amorphous metal in a predetermined configuration by press and rapid cooling of molten metal c (in further detail, a metal material placed on a lower mold b is melted by a high energy heat source, and the obtained molten metal c is pressed and formed into the predetermined configuration) with a press metal mold which consists of an upper mold a and a lower mold b having engagement portion, or with a press mold of which upper mold a and lower mold b each has a vertical face g extending to a parting line, respectively, inventors of the present invention have conducted experiments with repeating much trial and error. However, if the molten metal c is pressed by the upper mold a and the lower mold b, as shown in FIG.


46


B and

FIG. 47

, excessive molten metal c flows in between the vertical face g of the upper mold a and the vertical face g of the lower mold b (a slight aperture d of the engagement portion), the molten metal c in the aperture d is rapidly cooled and becomes solidified flash f, and the flash f is a cause of various bad influences. That is to say, it is revealed that the vertical faces g of the upper mold a and the lower mold b are damaged by the flash f, or “galling” is generated by the flash f, and a product e (the molded product of amorphous metal) of a predetermined configuration and a predetermined thickness dimension h cannot be obtained because the metal mold cannot be closed for the molten metal c flowing into the engagement portion (the aperture d). Further, it is also revealed that the metal mold itself is worn down by the bad closing, and the life span of the metal mold is shortened thereby.




It is therefore an object of the present invention to provide a molded product of amorphous metal having excellent strength characteristics, and manufacturing methods with which the molded product of amorphous metal can be easily made.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be described with reference to the accompanying drawings in which:





FIG. 1

is an explanatory view of a construction of a manufacturing apparatus which produces a molded product of amorphous metal of the present invention;





FIG. 2

is a cross-sectional front view showing a press metal mold;





FIG. 3

is a cross-sectional view showing an enlarged principal portion of a press metal mold;





FIG. 4A

is a first explanatory view showing a production process of the molded product of amorphous metal with the manufacturing apparatus;





FIG. 4B

is a second explanatory view showing the production process of the molded product of amorphous metal with the manufacturing apparatus;





FIG. 4C

is a third explanatory view showing the production process of the molded product of amorphous metal with the manufacturing apparatus;





FIG. 5

is a cross-sectional view showing an enlarged principal portion of a closed state of the press metal mold;





FIG. 6A

is a cross-sectional view showing a state before finishing of the molded product of amorphous metal of the present invention;





FIG. 6B

is a cross-sectional view showing a production state of the molded product of amorphous metal of the present invention;





FIG. 7

is a front view showing a wood type golf club head;





FIG. 8

is a cross-sectional side view showing a wood type golf club head;





FIG. 9

is a front view showing an iron type golf club head;





FIG. 10

is a cross-sectional side view showing an iron type golf club head;





FIG. 11

is a cross-sectional front view showing another configuration of the press metal mold;





FIG. 12

is a cross-sectional front view showing still another configuration of the press metal mold;





FIG. 13

is a cross-sectional front view showing a further configuration of the press metal mold;





FIG. 14A

is a cross-sectional view of an enlarged principal portion of the metal mold showing a configuration of a gap;





FIG. 14B

is a cross-sectional view of an enlarged principal portion of the metal mold showing another configuration of a gap;





FIG. 15

is a cross-sectional front view showing a press metal mold having a gap on an upper mold;





FIG. 16

is a cross-sectional front view showing another configuration of the press metal mold having a gap on an upper mold;





FIG. 17

is an explanatory view of a construction of another manufacturing apparatus which produces the molded product of amorphous metal of the present invention;





FIG. 18

is a cross-sectional front view showing a press metal mold;





FIG. 19

is a cross-sectional view showing an enlarged principal portion of a press metal mold;





FIG. 20A

is a first explanatory view showing a production process of the molded product of amorphous metal with the manufacturing apparatus;





FIG. 20B

is a second explanatory view showing the production process of the molded product of amorphous metal with the manufacturing apparatus;





FIG. 20C

is a third explanatory view showing the production process of the molded product of amorphous metal with the manufacturing apparatus;





FIG. 21

is a cross-sectional view showing an enlarged principal portion of a closed state of the press metal mold;





FIG. 22A

is a cross-sectional view showing a state before finishing of the molded product of amorphous metal of the present invention;





FIG. 22B

is a cross-sectional view showing a production state of the molded product of amorphous metal of the present invention;





FIG. 23

is a cross-sectional front view showing another configuration of the press metal mold;





FIG. 24

is a cross-sectional front view showing still another configuration of the press metal mold;





FIG. 25A

is a cross-sectional view of an enlarged principal portion of the metal mold showing a configuration of a gap;





FIG. 25B

is a cross-sectional view of an enlarged principal portion of the metal mold showing another configuration of a gap;





FIG. 26

is a cross-sectional front view showing a press metal mold having a gap on an upper mold;





FIG. 27

is an explanatory view of a construction of still another manufacturing apparatus which produces the molded product of amorphous metal of the present invention;





FIG. 28

is a front view showing an upper mold of the press metal mold;





FIG. 29

is a bottom view showing an upper mold of the press metal mold;





FIG. 30

is a front view showing a lower mold of the press metal mold;





FIG. 31

is a top view showing a lower mold of the press metal mold;





FIG. 32

is a cross-sectional front view showing a first oscillation press mechanism which holds the upper mold with an inclination;





FIG. 33

is an explanatory view showing a formed state of a molten metal;





FIG. 34

is an explanatory view showing a pressed state of the molten metal with the press metal mold;





FIG. 35

is an explanatory view showing a closed state of the press metal mold;





FIG. 36A

is a first work-explanatory view of the press molding;





FIG. 36B

is a second work-explanatory view of the press molding;





FIG. 36C

is a third work-explanatory view of the press molding;





FIG. 37

is a cross-sectional view showing an enlarged principal portion of a closed state of the press metal mold;





FIG. 38

is a top view of a molded product of amorphous metal after the press molding;





FIG. 39A

is a cross-sectional view showing a state before finishing of a molded product of amorphous metal of the present invention;





FIG. 39B

is a cross-sectional view showing a product state of a molded product of amorphous metal of the present invention;





FIG. 40

is a cross-sectional front view showing another configuration of the press metal mold;





FIG. 41

is a cross-sectional front view showing a second oscillation press mechanism which holds the upper mold with an inclination;





FIG. 42

is a cross-sectional front view showing a third oscillation press mechanism;





FIG. 43A

is a first work-explanatory view showing a fourth oscillation press mechanism;





FIG. 43B

is a second work-explanatory view showing the fourth oscillation press mechanism;





FIG. 44A

is a first work-explanatory view showing a fifth oscillation press mechanism;





FIG. 44B

is a second work-explanatory view showing the fifth oscillation press mechanism;





FIG. 45

is a cross-sectional front view showing a sixth oscillation press mechanism;





FIG. 46A

is a first work-explanatory view showing a conventional example;





FIG. 46B

is a second work-explanatory view showing the conventional example; and





FIG. 47

is a cross-sectional view of an enlarged principal portion showing an imperfect closed state of a press metal mold.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the present invention will now be described with reference to the accompanying drawings.





FIG. 1

shows a manufacturing apparatus F


1


which produces a molded product of amorphous metal of the present invention. The molded product of amorphous metal produced by this manufacturing apparatus F


1


is, for example, used as a face body


1


of a wood type golf club head


2


and an iron type golf club head


2


as shown in FIG.


7


through FIG.


10


. As the face body


1


, a face plate is preferable. FIG.


8


and

FIG. 10

show cases that the face body


1


is such a face plate. And, the molded product of amorphous metal of the present invention is characterized by being made with manufacturing methods described below.




First, the manufacturing apparatus F


1


will be described. As shown in FIG.


1


and

FIG. 2

, the manufacturing apparatus F


1


is provided with a press metal mold


6


which consists of an upper mold


4


and a lower mold


5


, an arc electrode


8


(a tungsten electrode) for melting a metal material placed on a cavity portion


7


of the lower mold


5


, a cooling water supplier


9


which circulates and supplies cool water to the upper mold


4


and the lower mold of the press metal mold


6


and the arc electrode


8


, a vacuum chamber


10


which contains the press metal mold


6


and the arc electrode


8


, a lower mold moving mechanism


11


which is driven by a motor


13


and moves the lower mold


5


in horizontal direction, and an upper mold moving mechanism


12


which is driven by a motor


14


and moves the upper mold


4


in vertical direction.




As the lower mold moving mechanism


11


, which is not restricted, conventional and known translation mechanism and reciprocating mechanism can be used. For example, pneumatic mechanisms, such as a drive screw and traveling nut with ball screw, air cylinder, etc., and oil pressure mechanisms, such as an oil hydraulic cylinder, etc., can be appropriately used. And, as the upper mold moving mechanism


12


, which is also not restricted, conventional and known press metal mold mechanism, such as an oil pressure mechanism and a pneumatic mechanism, can be used. Further, other cooling media (refrigerant gas, for example) may be used instead of the cooling water.




The arc electrode


8


is connected with an arc power unit


15


, and positioned as to be slightly inclined to a depth of the cavity portion


7


of the lower mold


5


, and arranged as to be adjusted in direction of X-axis, Y-axis, and Z-axis by a stepping motor


16


. And, to keep a space between the metal material on the lower mold


5


and the arc electrode (in Z-axis direction), movement of the arc electrode


8


may be automatically controlled by the stepping motor


16


in response to measurement of the position of the metal material by a semiconductor laser sensor


17


. Because, if the space between the arc electrode


8


and the metal material changes the arc becomes unstable, and instability is generated in fusing temperature. And, an exhaust nozzle of coolant gas (Ar gas, for example) may be arranged near an arc generating portion of the arc electrode


8


, the coolant gas is blown out of a gas supplier (a gas cylinder)


18


, rapid cooling after heating is promoted.




The vacuum chamber


10


having a water cooling jacket made of SUS is connected with an oil diffusion vacuum pump (a diffusion pump)


19


and an oil rotation vacuum pump (a rotary pump)


20


through a vacuum exhaust port for vacuumization, and connected with a gas supplier (a gas cylinder)


21


through an argon gas leading port for replacement with an inert gas after the vacuumization. And, the cooling water supplier


9


cools down the circulating cooling water with coolant, and supplies the cooling water to the upper mold


4


, lower mold


5


, and the arc electrode


8


.




And, as shown in FIG.


2


and

FIG. 3

, the press metal mold


6


has a configuration without engagement portions. Specifically, the lower face of the upper mold


4


is a smooth face having a plane parting face


22


and a convex curved face


23


, and the radius of curvature of the convex curved face


23


is arranged to be over 5 inches. And, a part of the convex curved face


23


also comprises the parting face.




The lower mold


5


has the concave-curved cavity portion


7


of which radius of curvature is 5 to 100 inches, and a parting face


24


(consists of a plane portion


24




a


and a concave curved face


24




b


) which contacts the parting face


22


and a part of the convex curved face


23


. And, a gap


25


having a thickness dimension T of 0.1 mm to 3.0 mm and a width dimension W of 4.0 mm to 20.0 mm is formed on a part of the lower mold


5


along the parting face


24


(the concave curved face


24




b


) in a closed state of the press metal mold


6


, and excessive molten metal flows into the gap


25


in the molding process. The configuration of the press metal mold


6


, which is not restricted to this configuration described above, may be configurations shown in FIG.


11


through

FIG. 14

which will be described later in detail.




Next, a manufacturing method for the molded product of amorphous metal will be described.




First, as shown in FIG.


1


and

FIG. 4A

, a metal material


26


is placed on the cavity portion


7


of the lower mold


5


set below the upper mold


4


. As this metal material


26


, ternary system alloys, such as Ln (lanthanoids)-Al—TM (transition metals), Mg—Ln—TM, Zr—Al—TM, etc., Zr series alloys such as Zr—Al—Ni—Cu, Zr—Ti—Al—Ni—Cu, Zr—Nb—Al—Ni—Cu, etc., and alloys in which almost all elements may be combined including multinary (over quaternary) system system alloys, are used. To facilitate the rapid fusing by a high energy heat source (the arc electrode


8


and the arc power unit


15


in the drawing figures), although it is preferable to use powder or pellet of the alloys, metal material of wire, belt, bar, and lump may be used as far as rapid fusing is possible.




Second, the arc electrode


8


is positioned in X-axis, Y-axis, and Z- axis direction by the laser sensor


17


and the stepping motor


16


through an adapter


8




a


, and the space (distance in Z-axis direction) between the arc electrode


8


and the metal material


26


is set to be a predetermined value.




And, inside of the chamber


10


is a made high vacuum, for example, of 5×10


−4


Pa (using a liquid nitrogen trap), with the oil diffusion vacuum pump


19


and the oil rotation vacuum pump


20


, then the contents inside of the chamber


10


are replaced with argon gas by supply of argon gas from the Ar gas supplier


21


. And, the upper mold


4


, lower mold


5


, and the arc electrode


8


are cooled by the cooling water from the cooling water supplier


9


.




After the preparation described above, as shown in FIG.


1


and

FIGS. 4A and 4B

, the lower mold


5


is moved in a horizontal direction (a direction shown by arrow A) by the lower mold moving mechanism


11


driven by the motor


13


, and stopped below the arc electrode


8


. And, the arc power unit


15


is switched on, plasma arc


27


is generated from a tip end of the arc electrode


8


to the metal material


26


, and molten metal


28


is formed by fusing the metal material


26


completely.




Then, as shown in FIG.


1


and

FIGS. 4B and 4C

, the arc power unit


15


is switched off, and the plasma arc


27


is put off. And, the lower mold


5


is quickly moved (in a direction shown by arrow B) to a position below the upper mold


4


, the upper mold


4


is moved down (in a direction shown with an arrow C) by the upper mold moving mechanism


12


driven by the motor


14


, and the obtained molten metal


28


of over the melting point is pressed by the upper mold


4


and the lower mold


5


and transformed into a predetermined configuration. The molten metal


28


is cooled at over a critical cooling rate by the cooled press metal mold


6


simultaneously with, or after, the transformation, and the molten metal is rapidly solidified and a molded product


3


of the predetermined configuration is made thereby.




As shown in

FIG. 5

, in molding of the molded product


3


, excessive molten metal flows into the former-described gap


25


formed on the lower mold


5


, and becomes flash


29


of the molded product


3


with cooling solidification. That is to say, the press metal mold


6


does not have engagement portions, the gap


25


that absorbs the excessive molten metal is provided, the flow of the molten metal is not stopped during the pressurization by the press metal mold


6


, and a synergistic effect that the molded product


3


of the predetermined thickness is certainly obtained without interruption of closing the press metal mold


6


is generated. And, the press metal mold is not damaged by the flash


29


, and the press metal mold


6


has high durability.




The molded product


3


of thin plate shape made with the method described above is a molded product of amorphous metal (amorphous alloy) that is cooled and solidified uniformly, not mixed with crystal phase caused by non-uniform solidification and non-uniform nucleation, and excellent in strength characteristics, such as high strength and high toughness, without defects such as cold shut, because the molten metal of over the melting point is transformed into a predetermined configuration and cooled simultaneously. That is to say, after the fusing of the metal material, the obtained molten metal is pressed and transformed without contacts of cooling surfaces of the molten metal under the melting point.





FIG. 6A

shows the above-described molded product


3


taken out of the press metal mold


6


. The molded product


3


is, in this preferred embodiment, a face body (face plate)


1


of a golf club head. The face body


1


has the flash


29


on a peripheral edge


43


, the flash


29


is cut, and the face body


1


is finished as a product. Numeral


1




a


represents a face of convex curve.




As described with reference to FIG.


3


and

FIG. 5

, a space in which the molten metal is sufficiently absorbed is prepared and cutting work of the flash


29


becomes easy for the arrangement that the gap dimension T of the gap is 0.1 mm to 3.0 mm and the width dimension W is 4.0 mm to 20.0 mm. If the gap dimension T is less than 0.1 mm, the molten metal hardly flows into the gap


25


, and if the gap dimension T is over 3.0 mm, the flash


29


becomes thick and difficult to cut. And, if the width dimension W is less than 4.0 mm, the molten metal is not absorbed sufficiently, and if the width dimension is over 20.0 mm, the metal mold becomes large.




And, the face body


1


, after the molding used for a wood type golf club head, does not need working for bulge adjustment, since the radius of curvature of the lower mold


5


forming the face la is arranged to be 5 inches to 100 inches, and the radius of curvature of the upper mold


4


is arranged to be more than 5 inches. If the radius of curvature of the lower mold


5


is less than 5 inches, after-working, such as cutting and polishing for diminishing the bulge of the face body


1


becomes necessary, and if the radius of curvature of the lower mold


5


is more than 100 inches, after-working for adding the bulge becomes necessary.




FIG.


7


and

FIG. 8

show a hollow golf club head


2


of wood type (a metal head) with the above-described face body


1


made of amorphous metal. Specifically, the head


2


is composed of a head main body


30


made of titanium, titanium alloy, stainless steel, etc., and the face body


1


of amorphous metal fitted to a recess portion


31


for fitting formed on the face


1




a


side of the head main body


30


. In this case,


32


is a sole,


33


is a side portion,


34


is a crown portion, and


35


is a neck portion. The face body


1


is fitted to the recess portion


31


for fitting of the head main body


30


, and fixed with adhesive, welding, caulking, press-fitting, etc. Although the bottom face of the concave portion


31


for fitting is entirely continuous in

FIG. 8

, the bottom face may have an opening (a through hole) in its center portion.




And, FIG.


9


and

FIG. 10

show a golf club head


2


of iron type with the above-described face body


1


made of amorphous metal. The head


2


is composed of a head main body


36


made of titanium, titanium alloy, stainless steel, etc. , and the face body


1


of amorphous metal fitted to a recess portion


37


for fitting formed on the face la side of the head main body


36


. In this case,


38


is a sole,


39


is a back face, and


40


is a neck portion. The face body


1


is (same as described above) fitted to the recess portion


37


for fitting of the head main body


36


, and fixed with adhesive welding, caulking, press-fitting, etc. Although bottom face of the recess portion


37


for fitting is entirely continuous in

FIG. 10

, the bottom face may have an opening (a through hole) in its center portion.




A golf club provided with the club head


2


having the face body


1


of amorphous metal obtained as described above can keep stable repeatability in ball hittings, and consequently, show excellent flying distance, directionality, impact characteristics, strength, toughness, etc. because the face body of amorphous metal is has unvarying characteristics, excellent strength characteristics, such as high strength and high toughness, having good yield and reduced production cost, and stably manufactured.




Next, another configuration of the above-mentioned press metal mold


6


will be described. The press metal mold


6


shown in

FIG. 11

has the parting face


22


and the convex curved face


23


of the upper mold


4


formed as a continuous smooth face, and the parting face


24


of the lower mold


5


formed as a concave curved face. The press metal mold


6


shown in

FIG. 12

has the upper mold


4


, of which the entire lower face is formed into a continuous plane


41


, and the parting face


24


of the lower mold


5


is formed into a plane.




In the press metal mold


6


shown in

FIG. 13

, the entire lower face of the upper mold


4


is formed into a continuous plane


41


, and the parting face


24


of the lower mold


5


has a cavity portion


7


comprised of plane shapes (including having a bottom planar face). In this case, it is preferable to provide a concave portion


73


on a part of the cavity portion


7


of the lower mold


5


to prevent the molten metal from flowing (extending) before being pressed by the upper mold


4


and the lower mold


5


.




And, the configuration of the gap


25


formed on the press metal mold


6


may have a groove-shape as shown in

FIG. 14B

, instead of the above- described configuration shown in FIG.


14


A. An aperture


25




a


may be provided so as to connect the gap


25


with the cavity portion


7


in a closed state of the press metal mold


6


.




As shown in

FIG. 15

, the gap


25


may be arranged on the upper mold


4


. In practice, the cavity portion


7


and the parting face


24


of the lower mold


5


are formed into a continuous concave curved face (a smooth face). A concave portion


42


opening below is formed on the lower face of the upper mold


4


, and the gap


25


is arranged along the parting face


22


of the upper mold


4


formed into a convex curved face.




The press metal mold


6


may be formed into a configuration as shown in FIG.


16


. That is to say, in the press metal mold


6


, the lower mold


5


has the cavity portion


7


including a concave curved face, of which the radius of curvature is more than 5 inches. The upper mold


4


has a convex curved face


23


, of which the radius of curvature is more than 5 inches. A concave portion


42


opening below, of which the width dimension is larger than that of the cavity portion


7


, is formed on the convex curved face


23


of the upper mold


4


. The concave portion


42


has a radius of curvature of more than 5 inches. And, the gap


25


is formed between the parting face


24


of the lower mold


5


and the peripheral rim of the concave portion


42


of the upper mold


4


.




Next,

FIG. 17

shows another manufacturing apparatus F


2


which produces a molded product of amorphous metal. That is to say, this manufacturing apparatus F


2


, as shown in FIG.


17


through

FIG. 19

, has a press metal mold


6


of a configuration without engagement portions. An upper mold


4


has a smooth concave curved face


68


of which the radius of curvature is 5 inches to 100 inches, and a part of the concave curved face


68


is a parting face


22


. A lower mold


5


has a convex-curved cavity portion


7


having a radius of curvature of over 5 inches, and a convex-curved parting face


24


which contacts the parting face


22


of the upper mold


4


. A shallow concave portion


69


is formed at the center of a bottom face of the cavity portion


7


to prevent molten metal from flowing.




As shown in

FIG. 19

, a gap


25


, of which gap dimension T is 0.1 mm to 3.0 mm and width dimension W is 4.0 mm to 20.0 mm (in a closed state of the metal mold


6


), is formed along the parting face


24


of the lower mold


5


, and excessive molten metal flows into the gap


25


during molding. The configuration of the press metal mold


6


, which is not restricted to the configuration described above, may have configurations as shown in FIG.


23


through

FIG. 26

which will be described later in detail. In the manufacturing apparatus F


2


, construction of the apparatus is similar to the construction formerly described with reference to

FIG. 1

except for the press metal mold


6


.




Next, a manufacturing method for the molded product of amorphous metal of the present invention practiced by the manufacturing apparatus F


2


will be described.




First, as shown in FIG.


17


and

FIG. 20A

, a metal material


26


is placed on the concave portion


69


of the cavity portion


7


of the lower mold


5


. After the preparation, as shown in FIG.


17


and

FIGS. 20A and 20B

, the lower mold


5


is moved in a horizontal direction (a direction as shown by arrow A) by a lower mold moving mechanism


11


driven by a motor


13


, and stopped below an arc electrode


8


. An arc power unit


15


is switched on. Plasma arc


27


is generated from a tip end of the arc electrode


8


to the metal material


26


, and molten metal


28


is formed by fusing the metal material


26


completely. The molten metal


28


is prevented from flowing by the concave portion


69


of the cavity portion


7


, and receives the plasma arc


27


effectively.




Then, as shown in FIG.


17


and

FIGS. 20B and 20C

, the arc power unit is switched off, and the plasma arc


27


is terminated. The lower mold


5


is then quickly moved in a direction shown by arrow B to a position below the upper mold


4


. The upper mold


4


is moved down in a direction shown by arrow C by a motor


14


and an upper mold moving mechanism, and the obtained molten metal


28


is pressed between the upper mold


4


and the lower mold


5


and transformed into a predetermined configuration. The molten metal


28


has good molding stability since the molten metal


28


is concentrated at the central part of the cavity portion


7


. The molten metal


28


is cooled at over a critical cooling rate by the cooled press metal mold


6


at the same time or after the transformation, and the molten metal


28


is rapidly solidified and a molded product


3


of the predetermined configuration is made thereby.




As shown in

FIG. 21

, in molding the molded product


3


, excessive molten metal flows into the previously described gap


25


formed in the lower mold


5


and becomes flash


29


of the molded product


3


upon cooling solidification. That is to say, the molded product


3


of the predetermined thickness is certainly obtained without interruption of the closing of the press metal mold


6


. And, the press metal mold is not damaged by the flash


29


, and the press metal mold


6


has high durability.




The molded product


3


of thin plate shape made by the method described above is a molded product of amorphous metal (amorphous alloy) that is cooled and solidified uniformly, not mixed with crystal phase caused by non-uniform solidification and non-uniform nucleation, and is excellent in strength characteristics, such as high strength and high toughness without defects, such as cold shut, because the molten metal is transformed into a predetermined configuration and cooled simultaneously. That is to say, after the fusing of the metal material, the obtained molten metal can be pressed and transformed without having contacts with cooling surfaces of the molten metal under the melting point.





FIG. 22A

shows the above-described molded product


3


taken out of the press metal mold


6


. The molded product


3


is, in this preferred embodiment, a face body (face plate)


1


of a golf club head. The face body


1


initially has the flash


29


on a peripheral edge


43


; however, the flash


29


is cut, and the face body


1


is finished as a product as shown in

FIG. 22B

wherein


1




a


represents a face of convex curve.




Therefore, as shown in FIG.


21


and

FIGS. 22A and 22B

, the face body


1


can demonstrate sufficient functions as a face of a golf club head in which high strength is required for ball hitting, because the face


1




a


of the face body


1


, which directly hits a golf ball, is transformed by the upper mold


4


having the concave curved face


68


in the molding. That is to say, the molten metal


28


fused in the cavity portion


7


of the lower mold


5


can retain higher temperature at an upper portion than at a lower portion touching the cooled lower mold


5


until the upper mold


4


comes down and presses the molten metal. And, the upper portion of the molten metal


28


touching the upper mold


4


is more rapidly cooled than the lower portion of the molten metal when pressed by the upper mold


4


, and a face body of amorphous metal, of which the face side


1




a


is further-strengthened, can be obtained thereby.




A case in which a part of the molten metal


28


remains in the crystal phase without forming the amorphous phase after press molding is contemplated. Because the lower mold


5


is fairly heated during the fusing of the metal material


26


, and the part of the molten metal


28


touching the lower mold


5


has a lower cooling rate in comparison with a part cooled by the upper mold


4


. And the crystal phase may retain a border line with surrounding amorphous phase in external appearance, and may be non-uniform in strength with the amorphous phase. It is preferable that the crystal phase area not be on a side which directly hits a ball (e.g. the face side


1




a


) for external appearance and durability of the golf club head. In the manufacturing method for a molded product of amorphous metal of the present invention, this problem is solved by the arrangement that the crystal phase is disposed on the opposite side of the face


1




a


(i.e., the reverse side of the face body


1


of amorphous metal).




As described with reference to FIG.


18


and

FIG. 19

, a space in which the molten metal is sufficiently absorbed is prepared and cutting work of the flash


29


becomes easy for the arrangement that the gap dimension T of the gap


25


is 0.1 mm to 3.0 mm and the width dimension W is 4.0 mm to 20.0 mm. If the gap dimension T is less than 0.1 mm, the molten metal hardly flows into the gap


25


, and if the gap dimension T is over 3.0 mm, the flash


29


becomes thick and difficult to cut. On the other hand, if the width dimension W is less than 4.0 mm, the molten metal is not absorbed sufficiently, and if the width dimension is over 20.0 mm, the metal mold


6


becomes large. The face body


1


, after molding, does not need working for bulge adjustment, since the radius of curvature of the lower mold


5


forming the face


1




a


is arranged to be 5 inches to 100 inches, and the radius of curvature of the upper mold


4


is arranged to be more than 5 inches. If the radius of curvature of the lower mold


5


is less than 5 inches, after-working, such as cutting and polishing for diminishing the bulge of the face body


1


, becomes necessary, and if the radius of curvature of the lower mold


5


is more than 100 inches, after- working for adding the bulge becomes necessary.




The face body


1


of amorphous metal of the present invention made as described above, which has unvarying characteristics, excellent strength characteristics, such as high strength and high toughness, good yield and reduced production cost, and being stably manufactured, is used as a face for a hollow golf club head


2


of the wood-type and a golf club head


2


of iron-type, so that stable repeatability in ball hittings is kept thereby, and consequently, excellent characteristics, such as long flying distance, directionality, impact characteristics, strength, toughness, etc., are demonstrated.




Next, other configurations of the above-described press metal mold


6


will be described. The press metal mold


6


shown in

FIG. 23

has a parting face


22


composed of a plane


22




a


and a concave curved face


22




b


on the upper mold


4


, and a parting face


24


composed of a plane


24




a


and a convex curved face


24




b


on the lower mold


5


. The press metal mold


6


shown in

FIG. 24

has a plane-shaped cavity portion


7


on the lower mold


5


, and the shallow concave portion


69


(refer to

FIG. 21

) is omitted. The concave portion


69


may be formed on the plane of the cavity portion


7


.




The configuration of the gap


25


formed on the press metal mold


6


may be a groove-shape as shown in

FIG. 25B

, instead of the above-described configuration shown in FIG.


25


A. An aperture


25


a may be provided as to connect the gap


25


with the cavity portion


7


in a closed state of the press metal mold


6


.




As shown in

FIG. 26

, the gap


25


may be arranged on the upper mold


4


. As shown, a concave portion


42


curved and opening below having a width dimension larger than the width dimension of the cavity portion


7


is formed on a concave portion


68


of the upper face


4


, and a peripheral part of the concave portion


42


which outstretches the cavity portion


7


is the gap


25


.




Next,

FIG. 27

shows still another manufacturing apparatus F


3


which produces a molded product of amorphous metal of the present invention. That is to say, this manufacturing apparatus F


3


, as shown in FIG.


27


through

FIG. 31

, has a press metal mold


6


of a configuration without engagement portions. An upper mold


4


has a smooth curved face


72


of which the radius of curvature is over 5 inches. In this preferred embodiment, the curved face


72


is a convex curved face


23


, and a parting face


22


is composed of a convex curved face portion


22




c


which is a part of the convex curved face


23


and a plane portion


22




a


. And, a pair of tapered knock pins


44


are attached to the plane portion


22




a


of the parting face


22


on one side of the upper mold


4


(right end side in the figures) as to protrude below. Further, a part forming the curved face


72


may be a smooth concave curved face of which the radius of curvature is more than 5 inches, or a plane (not shown in the figures). And, a part forming the convex curved face portion


22




c


may be a concave curved face or a plane (not shown in the figures).




A lower mold


5


has a parting face


24


composed of a plane


24




a


and a concave curved face


24




b


which contacts the parting face


22


of the upper mold


4


, and a cavity portion


7


having a first concave portion


70


and a second concave portion


71


. Two bushings


45


for positioning the above-mentioned tapered knock pins


44


when the metal mold is closed are arranged on the plane


24




a


of the parting face


24


of the lower mold


5


(right end side in the figures). The shallow first concave portion


70


, on which metal material is placed and molten metal is prevented from flowing out, is for placing and fusing of materials, and is circular in top view, and disposed in the middle of the lower mold


5


. The second concave portion.


71


is for final molding where the molten metal raised from the first concave portion


70


flows into, and a molded product of amorphous metal is formed into a predetermined configuration. The second concave portion


71


is formed into a concave curved face of which the radius of curvature is 5 inches to 100 inches, and the configuration is, in this preferred embodiment, a face of a golf club head (final configuration) in a top view. A part forming the concave curved face


24




b


may be a smooth concave curved face of which the radius of curvature is over 5 inches, or a plane (not shown in the figures).




Further, the first concave portion


70


is disposed at a lower position in the center of the lower mold


5


, and the second concave portion


71


is disposed at a position next to the first concave portion


70


and opposite to the bushings


45


.




As shown in FIG.


27


and

FIG. 32

, numeral


46


represents an elevation rod of an upper mold moving mechanism


12


, and an attachment member


47


for holding the upper mold


4


of the press metal mold


6


is fixed to a lower end of the elevation rod


46


horizontally. And, the upper mold


4


is attached to a lower face side of the horizontal attachment member


47


with an inclination. As shown, the right side (i.e., the side having the tapered knock pin


44


) of the upper mold


4


is connected with the right side of the attachment portion


47


through an elastic member


48


(a coil spring, for example), the left side of the upper mold


4


is connected with the left side of the attachment member


47


through two reciprocating pieces


49


(only one of them is shown in the figures) and supporting shafts


50


, and the upper mold


4


is inclined by the tapered knock pin


44


side being elastically pushed below by the elastic member


48


. At the same time, the lower mold


5


is positioned horizontally parallel to the attachment member


47


, and the relative inclination angle θ between the upper mold


4


and the lower mold


5


, namely, inclination angle θ of the upper mold


4


to the lower mold


5


(the attachment member


47


) is arranged to be from 1° to 15°. In the manufacturing apparatus F


3


, construction of the apparatus is similar to the construction previously described with reference to

FIG. 1

(manufacturing apparatus F


1


) and

FIG. 17

(manufacturing apparatus F


2


) except for the press metal mold


6


and its attachment portion.




Next, a manufacturing method for the molded product of amorphous metal of the present invention with the manufacturing apparatus F


3


will be described.




First, as shown in FIG.


27


and

FIG. 32

, a metal material


26


is placed on the first concave portion


70


of the cavity portion


7


of the lower mold


5


set below the upper mold


4


. And, as shown in

FIG. 27

,

FIG. 32

, and

FIG. 33

, the lower mold


5


is moved in a horizontal direction (a direction shown by arrow A) by a lower mold moving mechanism


11


driven by a motor


13


, and stopped below an arc electrode


8


. An arc power unit


15


is switched on, plasma arc


27


is generated from a tip end of the arc electrode


8


to the metal material


26


, and molten metal


28


is formed by fusing the metal material


26


completely. The molten metal


28


is prevented from flowing by the first concave portion


70


of the cavity portion


7


, and receives the plasma arc


27


effectively.




Then, as shown in FIG.


27


and

FIGS. 32 through 3



5


, the arc power unit is switched off, and the plasma arc


27


is terminated. The lower mold


5


is quickly moved (in a direction shown by arrow B) to a position below the upper mold


4


. The upper mold


4


is then moved down (in a direction shown by arrow C) by a motor


14


and an upper mold moving mechanism


12


, and the obtained molten metal


28


having a temperature above the melting point is pressed and transformed into a predetermined configuration. The molten metal


28


is cooled at over a critical cooling rate by the cooled press metal mold


6


simultaneously with, or after, the transformation, and the molten metal


28


is rapidly solidified whereby a molded product


3


of the predetermined configuration is made thereby. The molded product


3


of the predetermined configuration is a partially fabricated product having flash.




Closing of the upper mold


4


and the lower mold


5


will be described here in detail. As shown in

FIG. 36A

, the inclined upper mold


4


descends to the lower mold


5


. As shown in FIG.


34


and

FIG. 36B

, the descending upper mold


4


is positioned by the tapered knock pins


44


fitting into the bushings


45


of the lower mold


5


. Then, the upper mold


4


, pushed by the attachment member


47


, oscillates from an inclined state to a parallel state to the lower mold


5


and presses the molten metal


28


all at once (as in rolling) to the lower mold


5


. Then, the molten metal


28


raised in the first concave portion


70


flows into the second concave portion


71


, and the upper mold


4


and the lower mold


5


are entirely fit and closed, as shown in FIG.


35


and

FIG. 36C

, whereby the molten metal


28


is rapidly cooled by the second concave portion


71


and becomes the molded product


3


of amorphous metal in the final configuration.




FIG.


37


and

FIG. 38

show a state wherein the molten metal extending from the first concave portion


70


of the cavity portion


7


, becomes a molded product


3


of amorphous metal in the predetermined configuration upon cooling solidification. The molten metal over the melting point raised on the first concave portion


70


is poured into the second concave portion


71


immediately, whereby the amount of the molten metal which flows back to the opposite side into the second concave portion


71


(i.e., the bushings


45


side) can be minimized because, as described above, the upper mold


4


is inclined and oscillated so as to bring the convex curved face


23


near to the first concave portion


70


side and then sequentially to the second concave portion


71


side. This effect is demonstrated by an inclination angle θ of from 1° to 15° of the upper mold


4


to the lower mold


5


. In case the inclination angle θ is less than 1°, the amount of the molten metal flowing back to the opposite side into the second concave portion


71


becomes excessive, and the molded product may be defective for a reduced amount of the molten metal flowing into the second concave portion


71


. Even if the inclination angle θ is more than 15°, the above-described effect is not further improved. Further, for pouring the molten metal


28


having a temperature over the melting point which raised in the first concave portion


70


to flow into the second concave portion


71


smoothly, it is preferable that the upper mold


4


has a smooth convex curved face


23


or a plane


41


(refer to FIG.


42


), and especially, the smooth convex curved face


23


is desirable.




And, the molded product


3


of a predetermined thickness is certainly obtained because the press metal mold


6


has no engagement portion, so that the molten metal is not prevented from flowing during the press by the press metal mold


6


, and the closing is not interrupted. Thus, the press metal mold is not damaged by the flash


29


, and the press metal mold


6


has high durability. In the molded product of amorphous metal, the flash


29


is a part which is not a product portion (a final configuration portion


51


) formed by the second concave portion


71


for final molding.




The molded product


3


of thin plate shape (the final configuration portion


51


) made by the method described above is a molded product of amorphous metal (amorphous alloy) that is cooled and solidified uniformly, not mixed with a crystal phase caused by non-uniform solidification and non-uniform nucleation, and excellent in strength characteristics, such as high strength, and high toughness without defects such as cold shut, because the molten metal having a temperature of over the melting point is transformed into a predetermined configuration and cooled instantaneously. That is to say, after the fusing of the metal material, the obtained molten metal is pressed and transformed without there being contacts of cooling surfaces of the molten metal under the melting point by molten metal over the melting point.




In other words, as described with reference to

FIG. 33

, the metal material


26


contacts the first concave portion


70


. Because the lower mold


5


is usually cooled so as not to generate melting and damage in the fusing process of the metal material


26


, a bottom face side of the metal material


26


touching the first concave portion


70


may not be sufficiently fused from heat loss, so that a part touching the first concave portion


70


(the above-mentioned bottom face side) may remain in crystal phase without forming an amorphous phase even after the press molding. In the method for manufacturing a molded product of amorphous metal of the present invention, however, the molded product of amorphous metal


3


(the final configuration portion


51


) without crystal phase can be made, because the raised part of the molten metal


28


is poured into the second concave portion


71


and is rapidly cooled simultaneously leaving a part of the molten metal


28


touching the first concave portion


70


.





FIG. 39A

shows the above-described molded product


3


(the partially fabricated product) taken out of the press metal mold


6


. The molded product


3


is, in this preferred embodiment, a face body


1


(the partially fabricated product) of a golf club head. The face body


1


has the flash


29


on the final configuration portion


51


, the flash


29


is cut, and the face body


1


is finished as a product, as shown in FIG.


39


B. Reference character


1




a


represents a face of the face body


1


.




And, as described with reference to FIG.


28


through

FIG. 31

, the face body


1


of amorphous metal as the final configuration shown in

FIG. 398

does not need working for bulge adjustment, since the radius of curvature of the second convex portion


71


of the lower mold


5


forming the face


1


a is arranged to be 5 inches to 100 inches, and the radius of curvature of the upper mold


4


is arranged to be more than 5 inches in case of a wood-type golf club head. If the radius of curvature of the lower mold


5


is less than 5 inches, in case of a wood-type golf club, after-working, such as cutting and polishing for diminishing the bulge of the face body


1


becomes necessary, and if the radius of curvature of the lower mold


5


is more than 100 inches, after-working for adding the bulge becomes necessary. Further, in case of an iron-type golf club head, the face body


1


may be planar. In this case, the configuration of the second concave portion


71


is a curved face of which the radius of curvature is more than 5 inches or a plane.




Therefore, the face body


1


of amorphous metal of the present invention formed in the final configuration as described above, is used for a hollow golf club head (a metal head)


2


of wood-type, as shown in FIG.


7


and

FIG. 8

, and for a golf club head


2


of iron-type as shown in FIG.


9


and FIG.


10


.




The golf club provided with the club head


2


having the face body


1


of amorphous metal made as described above can keep stable repeatability in ball hittings for the stably manufactured face body


1


which has unvarying characteristics, excellent strength characteristics, such as high strength and high toughness, and good yield and reduced production cost. Consequently, excellent characteristics, such as long flying distance, directionality, impact characteristics, strength, toughness, etc. are demonstrated.




Next, other configurations of the above-described press metal mold


6


will be described. In the press metal mold


6


shown in

FIG. 40

, the cavity portion


7


of the lower mold


5


has the first concave portion


70


of plane configuration and the second concave portion


71


of curved face configuration, and the upper mold


4


is a smooth face having the plane


41


. The second concave portion


71


of the lower mold


5


, namely, a contact lower mold portion that the molded product of amorphous metal to be formed contacts directly, may be a plane or a convex curved face. A lower face of the upper mold


4


facing the contact lower mold portion, namely, a contact upper mold portion that the molded product of amorphous metal to be formed contacts directly, may be composed of a concave curved face. And it is especially preferable that the contact upper mold portion is a concave curved face of which the radius of curvature is 5 inches to 100 inches. In this case, the above-mentioned contact lower mold portion of the lower mold


5


is preferably formed as a convex curved face of which the radius of curvature is more than 5 inches or a plane. And it is especially preferable that the contact upper mold portion is formed as a convex curved face of which the radius of curvature is 5 inches to 100 inches. As described above, the working effect described with reference to

FIG. 21

is achieved in that the contact upper mold portion is composed of a concave curved face. That is to say, the upper portion of the molten metal


28


can retain higher temperature in comparison with the lower portion of the molten metal


28


touching the cooled lower mold


5


before the press molding, the upper portion of the molten metal


28


pressed by the contact upper mold portion of the upper mold


4


is more rapidly cooled than the lower portion of the molten metal


28


in the press molding, and good amorphous phase is formed on a contact face (convex curved face) side of the molded product touching the contact upper mold portion of concave curved face. Therefore, a face body


1


of a golf club head (molded product of amorphous metal) in which well-formed amorphous phase is disposed on a face


1


a side which directly hits a golfball can be made in that the contact upper mold portion is composed of a concave curved face.




FIG.


41


through

FIG. 45

show another oscillation press mechanism that oscillates and presses the upper mold


4


held with an inclination to the lower mold


5


. First, in a mechanism shown in

FIG. 41

, a left side of the upper mold


4


is connected with a left side of the attachment portion


47


through oscillating pieces


49


and supporting shafts


50


, an expansion cylinder


52


is attached on a right side of the attachment member


47


, and a rod


52




a


of the expansion cylinder


52


is passed through the attachment portion


47


and connected to the upper mold


4


. The upper mold


4


is adjusted to be inclined with a predetermined inclination angle by expansion and contraction of the rod


52




a


. In closing of the metal mold, contracting speed of the rod


52




a


and descending speed of the upper mold


4


are arranged to be the same to oscillate the upper mold


4


from inclined to parallel to the lower mold


5


, and superpose the upper mold


4


on the lower mold


5


.




Second, in a mechanism shown in

FIG. 42

, an attachment piece


56


on the upper mold


4


is attached to a lower end of a rod


54




a


of the upper mold moving mechanism


12


(an expansion cylinder


54


, for example), a weight


55


is attached on the tapered knock pins


44


side to incline the upper mold


4


with the center of gravity of the upper mold


4


moved to the right side. In a suspended state of the upper mold


4


, it is preferable to attach a stopper piece to the attachment piece


56


of the upper mold


4


as to stop an end


67


of the rod


54




a


for maintenance of a predetermined inclination angle of the upper mold


4


.




Third, in a mechanism shown in

FIG. 43A

, a corner portion of the tapered knock pins


44


side of the upper mold


4


is connected to a comer portion of the bushings


45


side of the lower mold


5


through a hinged portion


57


as to be oscillatable, and the upper mold


4


is integrally oscillatable with an oscillation shaft


57




a


of the hinged portion


57


. And, the oscillation shaft


57




a


is connected to an oscillation driving mechanism


58


(shown by an imaginary line), and the upper mold


4


is oscillated (in a direction shown by arrow D and arrow F), for example, for 180° by rotating the oscillation shaft


57




a


in forward and reverse directions with the oscillation driving mechanism


58


. Further, as shown in

FIG. 43B

, an elevation press mechanism


59


, which presses the upper mold


4


with a pressure plate


59




a


in closing of the metal mold, is provided. As the oscillation driving mechanism


58


, for example, a rotary cylinder, an oscillating motor, etc. are used.




Fourth, in a mechanism shown in

FIG. 44A

, the upper mold


4


and the lower mold


5


are connected through a hinged portion


60


as to be oscillatable, and an end of a rod


62




a


of an expansion cylinder


62


is attached to an oscillation arm


61


protruding from a part of the upper mold


4


through a connecting shaft


63


. An end of the expansion cylinder


62


is attached to a fixation member (not shown in the figures) as to be oscillatable. In closing of the metal mold, as shown in

FIG. 44B

, the oscillation arm


61


is pulled toward the expansion cylinder


62


side by contraction of the expansion cylinder


62


, the inclined upper mold


4


is oscillated around the shaft


60




a


of the hinged portion


60


and becomes parallel to the lower mold


5


and placed on the lower mold


5


. The expansion cylinder


62


pushes the upper mold


4


at the same time. The upper mold


4


oscillates in an opening direction when the expansion cylinder


62


extends.




Fifth, in the press metal mold


6


shown in

FIG. 45

, an attachment piece


66


on the tapered knock pins


44


side (right side) of the upper mold


4


is connected with a lower end of a rod


64




a


of a fixed first expansion cylinder


64


, and another attachment piece


66


on the left side of the upper mold


4


is connected with a lower end of a rod


65




a


of an oscillatable second expansion cylinder


65


. In a suspended state of the upper mold


4


, the upper mold


4


is kept to be inclined with a predetermined inclination angle by adjustment of the first expansion cylinder


64


and the second expansion cylinder


65


. In closing of the metal mold, the upper mold


4


is descended keeping the inclination angle by expansion of the first expansion cylinder


64


and the second expansion cylinder


65


at the same speed, and then, the first and second expansion cylinders


64


and


65


are controlled as to oscillate the upper mold


4


from inclined to parallel to the lower mold


5


, and places the upper mold


4


on the lower mold


5


.




In these press metal molds


6


, which are not restricted to the above-described preferred embodiments the upper mold


4


and the lower mold


5


are relatively inclined with respect to each other. That is to say, in an elevated state of the upper mold


4


, the upper mold


4


is kept to be inclined, and the lower mold


5


is kept to be horizontal. And, the upper mold


4


is descended to press the lower mold


5


, oscillated from inclined to horizontal to the lower mold


5


, superposed on the lower mold


5


, and the metal mold is closed thereby.




The present invention is not restricted to the preferred embodiments described above. For example, in the method for manufacturing the molded product of amorphous metal, the number of the molded product


3


of amorphous metal (the face body


1


) made at a time may be not only one, but also plural. And, the predetermined configuration in the present invention may be a configuration of single or plural (undetached) molded products, and may be not only a configuration of the completely finished molded product


3


(the face body


1


), but also a configuration needs to be worked with simple workings, for example, finishing such as flash removal.




And, as the high energy heat source that fuses the metal material, not being restricted to a particular kind of equipment, for example, high frequency heat source, arc heat source, plasma heat source, electronic beam, laser beam, etc. are representative. And, single or plural units of these heat sources may be applied to the lower mold


5


of the press metal mold


6


.




According to the molded product of amorphous metal relating to the present invention, it is possible to obtain a molded product of amorphous metal excellent in strength, toughness, and impact resistance, widely applicable to structural materials, etc. in which mechanical strength is required, for the molded product is bulk of relatively large mass, and relatively long in horizontal direction.




And, the face body


1


excellent in strength, toughness, and impact resistance can be obtained as bulk. A golf club head provided with this face body


1


can keep stable repeatability in ball hittings for the face


1


a having especially high strength characteristics, demonstrate excellent characteristics such as long flying distance, directionality, impact characteristics, strength, toughness, etc. uniformly, without variation. Moreover, a face body


1


, in which well-formed amorphous phase is disposed on the face


1


a side that directly hits a golf ball, can be obtained.




Further, the molded product of amorphous metal (amorphous alloy) that is cooled and solidified uniformly, not mixed with crystal phase caused by non-uniform solidification and non-uniform nucleation, and excellent in strength characteristics, such as high strength and high toughness, without defects such as cold shut, can be obtained. Because the molten metal of a temperature over the melting point is transformed into a predetermined configuration, cooled instantaneously and rapidly solidified the molded product of amorphous metal can be produced by a simple production process with good repeatability instantaneously.




And, the press metal mold


6


does not have engagement portions, and closing of the metal mold is not prevented, unlike a conventional apparatus in which excessive molten metal flows into an aperture between an upper mold and a lower mold to be cooled and solidified, whereby the mold can be damaged by the solidified metal and, when molten metal flows into the damaged aperture, “galling” is generated. Therefore, a molded product of amorphous metal in a predetermined configuration and a predetermined thickness can be obtained, and the metal mold has high durability.




According to the molded product of amorphous metal relating to the present invention, the molten metal


28


hardly flows (extends) when the metal material


26


placed on the cavity portion


7


of the lower mold


5


is fused by the high energy heat source, and heat energy from the high energy heat source can be effectively thrown on the metal material


26


. Therefore, when a molded product of amorphous metal is made as the face body


1


of a golf club head, after working for adjusting the bulge of the face body


1


, such as cuffing and polishing, is unnecessary because the molded product of amorphous metal having a lightly curved surface or a plane surface can be formed. Further, closing of the metal mold becomes smooth (i.e. not prevented), and a molded product of amorphous metal of a predetermined thickness is certainly obtained, because excessive molten metal


28


is sufficiently absorbed by the gap


25


formed beforehand on the press metal mold


6


. And, the flash


29


can be easily cut.




Further, according to the molded product of amorphous metal relating to the present invention, the face body


1


of a golf club head is effectively made. That is to say, a part of the metal material


26


touching the lower mold


5


may not be sufficiently fused for the lower mold


5


to take the heat, and a concave curved face side of the molded product of amorphous metal after the molding may become crystal phase. Even if the crystal phase is generated, the part of crystal phase can be intentionally disposed on the reverse side of the face body


1


(opposite side to the face


1




a


), and an amorphous phase can be disposed on the face


1


a side where high strength characteristics are required. Therefore, the face body


1


of amorphous metal of which face


1




a


for hitting a golf ball directly is excellent in strength, toughness, impact resistance, etc. can be obtained.




And, when the metal material


26


placed on the cavity portion


7


of the lower mold


5


is fused by the high energy heat source, the molten metal


28


stays (being kept spherical by its surface tension) at the concave portion


69


and does not flow to a lower position of the periphery of the cavity portion


7


. Therefore, heat energy from the high energy heat source can be effectively thrown on the molten metal


28


gathered on a central portion of the cavity portion


7


, molding stability by the press metal mold


6


is improved, and high quality products are stably supplied. And, conveniently, in case that the molded product of amorphous metal is made as the face body


1


of a golf club head, a convex portion formed by the concave portion


69


of the lower mold


5


is unnecessary to be removed by cutting and polishing because the convex portion is on the opposite side to the face


1


a.




Further, a mechanism for keeping the upper mold


4


inclined and oscillating and pushing the upper mold


4


to the lower mold


5


(the oscillation press mechanism) can be relatively easily made.




Moreover, according to the molded product of an amorphous metal relating to the present invention, when the metal material


26


is fused, the obtained molten metal


28


is gathered in the first concave portion


70


, and heat energy from the high energy heat source is effectively thrown on the molten metal


28


. That is to say, the molten metal


28


having a temperature over the melting point does not flow out of the first concave portion


70


before closing of the metal mold. And, a part of the molten metal


28


raising in the first concave portion


70


is poured into the second concave portion


71


instantaneously by the closing of the metal mold, and the molded product of amorphous metal formed by the second concave portion


71


for final molding becomes excellent in strength characteristics, such as high strength, high. toughness, etc., not mixed with crystal phase caused by non-uniform solidification and non-uniform nucleation, and without defection such as cold shut. In other words, although a part of the molten metal


28


touching the first concave portion


70


may not be sufficiently fused as the lower mold


5


takes the heat, and may become crystal phase after the molding, the molded product of amorphous metal in the final configuration is an amorphous alloy having high strength characteristics without a crystal phase, because a raising part of the molten metal


28


not touching the first concave portion


70


is formed in the second concave portion


71


.




And, in the press molding, the molten metal


28


having a temperature over the melting point raising in the first concave portion


70


can be rapidly poured into the second concave portion


71


, the amount of the molten metal


28


flowing to the opposite side to the second concave portion


71


is reduced, and amount of the flash


29


can be reduced thereby.




While preferred embodiments of the present invention have been described in this specification, it is to be understood that the invention is illustrative and not restrictive, because various changes are possible within the spirit and the indispensable features.



Claims
  • 1. A method for manufacturing a molded product of amorphous metal comprising the steps of:placing a metal material on a lower mold of a press metal mold having an upper mold having a smooth concave curved face and the lower mold having a cavity without engagement portions fitting each other; fusing the metal material by a high energy heat source to produce a fused molten metal material therein; transforming the fused molten metal material over a melting point into a predetermined configuration by pressing it between the upper mold and the lower mold; and cooling the molten metal material at over a critical cooling rate simultaneously with or after the transformation to produce the molded product of amorphous metal in the predetermined configuration wherein a gap having a thickness dimension of 0.1 mm to 3.0 mm and a width dimension of 4.0 mm to 20.0 mm is formed on the upper mold or the lower mold along a portion of a parting line therebetween into which excessive molten metal material flows in the molding process.
  • 2. The method for manufacturing a molded product of amorphous metal as set forth in claim 1, wherein the lower mold has a cavity portion, and the upper mold has a smooth surface.
  • 3. The method for manufacturing a molded product of amorphous metal as set forth in claim 1, wherein the lower mold has a cavity portion having a concave curved face whose radius of curvature is more than 5 inches or planar, and the upper mold has a smooth surface of convex curved face whose radius of curvature is more than 5 inches or planar.
  • 4. The method for manufacturing a molded product of amorphous metal as set forth in any of claims 2 or 3, wherein a gap having a thickness dimension of 0.1 mm to 3.0 mm and a width dimension of 4.0 mm to 20.0 mm is formed on the upper mold or the lower mold along a portion of a parting line therebetween into which excessive molten metal material flows in the molding process.
  • 5. The method for manufacturing a molded product of amorphous metal as set forth in 1, wherein the molded product is a face body of a golf club head.
  • 6. The method of manufacturing a molded product of amorphous metal comprising the steps of:placing a metal material on a lower mold of a press metal mold which has an upper mold having a smooth concave curved face and the lower mold having a cavity without engagement portions fitting each other; fusing the metal material in the lower mold by a high energy heat source to produce a fused molten metal material; transforming the fused molten metal material over a melting point into a predetermined configuration by pressing it between the upper mold and the lower mold; and cooling the molten metal material at over a critical cooling rate simultaneously with or after the transformation to produce the molded product of amorphous metal in the predetermined configuration wherein the lower mold has a cavity portion of convex curved face whose radius of curvature is more than 5 inches or planar, and the upper mold has a smooth surface of concave curved face whose radius of curvature is 5 inches to 100 inches.
  • 7. The method for manufacturing a molded product of amorphous metal comprising the steps of:placing a metal material on a lower mold of a press metal mold which has an upper mold having a smooth concave curved face and the lower mold having a cavity without engagement portions fitting each other, fusing the metal material by a high energy heat source to fuse the metal material; transforming obtained molten metal over a melting point into a predetermined configuration by pressing it between the upper mold and the lower mold; cooling the molten metal at over a critical cooling rate simultaneously with or after the transformation to obtain the molded product of amorphous metal in the predetermined configuration, wherein a gap having a thickness dimension of 0.1 mm to 3.0 mm and a width dimension of 4.0 mm to 20.0 mm is formed on the upper mold or the lower mold, along a portion of a parting line therebetween and into which excessive molten metal material flows in the molding process.
  • 8. The method for manufacturing a molded product of amorphous metal as set forth in claim 6, wherein the molded product is a face body of a golf club head.
  • 9. A method for manufacturing a molded product of amorphous metal comprising the steps of:placing a metal material on a lower mold of a press metal mold which has an upper mold having a smooth curved face or a plane and the lower mold having a cavity portion without engagement portions fitting each other; fusing the metal material in the lower mold by a high energy heat source to produce a fused molten metal material; transforming the fused molten metal material over a melting point into a predetermined configuration by pressing the upper mold and the lower mold so as to be relatively oscillated by moving one of said molds from an inclined state to be superposed in parallel with the other mold; and cooling the molten metal material at over a critical cooling rate simultaneously with or after the transformation to produce the molded product of amorphous metal in the predetermined configuration.
  • 10. A method for manufacturing a molded product of amorphous metal comprising the steps of:placing a metal material on a lower mold of a press metal mold which has an upper mold having a smooth curved face or a plane and the lower mold having a cavity portion without engagement portions fitting each other; fusing the metal material in the lower mold by a high energy heat source to produce a fused molten metal material; transforming the fused molten metal material over a melting point into a predetermined configuration by pressing the upper mold oscillated from an inclined state to the lower mold and superposed on the lower mold so as to be in parallel with each other; and cooling the molten metal material at over a critical cooling rate simultaneously with or after the transformation to produce the molded product of amorphous metal in the predetermined configuration.
  • 11. The method for manufacturing a molded product of amorphous metal as set forth in claim 9 or claim 10, wherein the cavity portion has a shallow first concave portion for placing and fusing materials where the metal material is placed and the obtained molten metal is prevented from flowing out, and a second concave portion for final molding where the molten metal raising on the first concave portion is poured in and transformed into the predetermined configuration when the upper mold and the lower mold are pressed as to be relatively oscillated from an inclined state and superposed in parallel each other.
  • 12. The method for manufacturing a molded product of amorphous metal as set forth in claim 11, wherein a relative inclination angle between the upper mold and the lower mold is from about 1° to about 15°.
  • 13. The method for manufacturing a molded product of amorphous metal as set forth in claim 11, wherein the second concave portion of the lower mold has a curved face of which a radius of curvature is more than 5 inches or planar, and the upper mold has a smooth face which is curved at a radius of curvature of more than 5 inches or which is planar.
  • 14. The method for manufacturing a molded product of amorphous metal as set forth in claim 9 or claim 10, wherein the molded product is a face body of a golf club head.
Priority Claims (3)
Number Date Country Kind
9-227360 Aug 1997 JP
9-227361 Aug 1997 JP
9-227362 Aug 1997 JP
Parent Case Info

This application is a divisional application of Ser. No. 09/131,348, filed Aug. 7, 1998, now U.S. Pat. No. 6,258,183.

US Referenced Citations (8)
Number Name Date Kind
4712447 Langner Dec 1987 A
5288344 Peker et al. Feb 1994 A
5620382 Cho et al. Apr 1997 A
5711363 Scruggs et al. Jan 1998 A
5735975 Lin et al. Apr 1998 A
5797176 Rose et al. Aug 1998 A
5896642 Peker et al. Apr 1999 A
6089992 Onuki et al. Jul 2000 A
Foreign Referenced Citations (1)
Number Date Country
403275268 Dec 1991 JP