The present invention relates to the field of stackable inter-engaging bricks, blocks, stones and the like for building mortarless walls. This invention relates more precisely to the process of manufacturing individual smooth or embossed face or attached splittable inter-engaging bricks, blocks, stones and the like. As used herein, the word “bricks” also refers to blocks, stones and the like.
Stackable inter-engaging bricks are used to build mortarless walls and this is known in the art. Wall building blocks which may be stacked and interlocked without being held together by a binding agent such as mortar are known. One such block has a top face which comprise a tongue element and a bottom face which comprise a mortise element. Both elements are configured in such a way that when two blocks are stacked, the bottom face of a block engages with the top face of a like block disposed below while the top face of the block engages with the bottom face of an above-disposed block. An example of such a block is shown in U.S. Pat. No. 6,108,995 (Bouchard et al.).
In the process of manufacturing stackable inter-engaging bricks 101 (
The reason for manufacturing two split face bricks from a single attached splittable brick unit is found in the fact that, prior the completion of the curing procedure, an uncured single brick would be too fragile to be conveyed in the manufacturing plant without being unacceptably damaged or deformed in the process. Conveying uncured individual prior art bricks would result in an increase of defective or rejected bricks.
Also, the process of cutting attached brick units into individual bricks causes the bricks to have split faces, which may not be always desired.
The Bouchard mold, as the present mold, molds bricks standing on their side. It is important to understand that molding bricks on their side is not a simple design choice. As a matter of fact, inter-engaging bricks such as the bricks molded by the Bouchard mold are not held together by mortar. Such inter-engaging bricks are stacked rows upon rows in an inter-engaging manner. In that sense, the bricks are shaped such that the bottom portion of one brick is configured to engage the top portion of a brick located underneath.
The advantages of inter-engaging bricks are many. For instance, since they do not need mortar, their installation is typically much faster then regular mortar-held bricks. Also, such bricks can typically be installed by less skilled workers.
However, to provide a proper wall structure made from such inter-engaging bricks, it is important that the height of the brick, as viewed in their normal installed orientation, be constant, with low tolerance. Indeed, since such inter-engaging bricks are not held by mortar, the installer cannot use mortar to compensate for height variations between bricks during installation. Should the bricks have large height variations, the resulting wall constructed with such bricks would be misaligned as the cumulative effect of large height variations would be compounded over several rows of bricks.
Hence, by molding the bricks on their side, the bricks have very limited height variation but some length variations. However, variations in length are much less critical since bricks installed on the same row are installed side-by-side and any variation in length is or can be compensated for.
However, depending on the shape of the side section, bricks molded on their side can be unstable when standing on their side during the manufacturing process. In that sense, the shape of the side section of the bricks shown in Bouchard has been found to be somewhat unstable. The solution proposed in Bouchard was to link two bricks together with a bridging element. Once bridged, the overall side section of the bridged bricks is much more stable. Consequently, the bridged bricks can be carried around in the manufacturing plant with less risk of falling apart or being deformed, particularly in uncured state. In addition, the bridged bricks cannot rub against each other, preventing damages during transportation.
Still, the bridged bricks of Bouchard must be manually separated prior to installation. The manual separation involves the manual splitting of the bricks by hand and then the manual removal of the remaining portions of the bridge with a hammer. All these steps increase the manual labor required by the installers.
There is thus a need to find a mean by which stackable bricks could be molded, conveyed and cured individually without being damaged or deformed unacceptably and in such a way that the resulting brick faces could be smooth or embossed.
To overcome such shortcomings, the bricks resulting from the presently claimed molding equipment are individual in that they are not connected nor bridged as in the prior art. However, to achieve such a result, the individual bricks must be able to stand on their side in uncured state and be carried around without being damaged or otherwise deformed.
One of the main goals of the presently claimed invention is to provide a molding equipment capable of molding pairs of individual bricks suitably sized and shaped to be able to stand on their side in uncured form without being damaged or otherwise deformed during the manufacturing process.
After being molded, bricks, still uncured, travel through the manufacturing plant on steel plates. As they travel, the bricks are subjected to some shocks and vibrations. If the uncured bricks are too fragile, they will be damaged or otherwise deformed as they travel from the molding equipment to the kiln, thereby resulting in defective bricks to be discarded.
Another goal of the presently claimed invention is to have the molding equipment also capable of molding pairs of attached bricks, if needed.
The present invention discloses that when the individual bricks have a certain ratio of the side-section to the length, uncured bricks will be able to stand on their side and be carried around with less risks of being damaged or otherwise deformed.
According to an aspect of the present invention, using the shape of bricks as disclosed herein, a satisfactory ratio of approximately 26.65:1 must be used.
As such, the presently claimed invention comprises a molding equipment comprising a mold having a plurality of cavities, and removable brick separating elements configured to separate the cavities into two fully separated sub-cavities, each sub-cavity being configured to mold an individual brick standing on one of its sides.
According to another aspect of the invention, there is provided a molding equipment for molding multiple pairs of individual stackable inter-engaging bricks with a smooth or embossed face and without being damaged or deformed during molding, the molding equipment comprising:
a main body comprising cavities, each of the cavities being adapted to cast an appropriate material to produce the bricks, and each of the cavities comprising first attachment points; and
brick separating elements distinct from the main body, each of the brick separating elements comprising an upper part configured to be secured to the main body, and comprising several brick separating plates extending downwardly from the upper part and being respectively attachable to the first attachment points of the cavities to create two fully separated sub-cavities in the cavities;
wherein the sub-cavities are configured to form bricks with an appropriate side-section area to brick length ratio of approximately 26.65:1 so as to prevent the bricks from being damaged or deformed during molding, and wherein each of the separated sub-cavities is adapted to mold individual smooth or embossed face bricks standing on one of their sides.
According to still another embodiment, there is provided a molding equipment for molding multiple pairs of individual stackable inter-engaging bricks with a smooth or embossed face and without being damaged or deformed during molding, the molding equipment comprising:
a main body comprising cavities, each of the cavities being adapted to cast an appropriate material to produce the bricks, and each of the cavities comprising first attachment points; and
brick separating elements distinct from the main body, each of the brick separating elements comprising an upper part configured to be secured to the main body, and extending downwardly from the upper to the lower portion of the main body;
wherein brick separating elements are secured to the main body using dogs, wherein the sub-cavities are configured to form bricks and wherein each of the separated sub-cavities is adapted to mold individual smooth or embossed face bricks standing on one of their sides.
To attain these and other objects which will become more apparent as the description proceeds. According to one aspect of the present invention, a method to manufacture both individual smooth or embossed face bricks and attached splittable bricks is provided. Each of the bricks has a tongue interlock element and a mortise interlock element configured in such a way that the bricks are in a mutual engagement when bricks, blocks or stones or the like are stacked one of top of the other.
Molding equipment in accordance with the present invention comprises a mold having at least one and preferably a plurality of cavities. Each cavity allows the formation of a pair of splittable bricks. A brick separating element may be installed in the middle of each cavity to allow the formation of two individual free standing bricks. The brick separating element is typically secured in place by mean of a fastening device such as screws or bolts. Once the brick separating element is installed, the attached splittable brick cavity is effectively separated in two individual mold cavities.
The brick separating element has an upper part which contains openings. The openings are provided to receive fasteners such as screws or bolts. The fasteners are generally used to secure the brick separating element to the molding equipment main body.
The brick separating element is made from a hard and resistant material such as steel or cast iron.
The brick separating element can have a smooth surface or a surface with projection and/or cavities.
A method for manufacturing individual smooth or embossed face bricks using the molding equipment and the cavity separating element is also provided.
The method comprises: a) selecting the individual molds in which individual smooth face or embossed face bricks are to be molded, b) installing the smooth face brick separating element in the selected molds, c) installing the embossed face brick separating element in the selected molds, d) fastening the smooth face brick separating element with fasteners, e) fastening the embossed face brick separating element with fasteners, f) installing the molding equipment in the molding machine.
The invention accordingly comprises the construction, combination of elements, and arrangement of parts which will be exemplified in the construction herein set forth. Although the above summary describes more precisely the manufacturing of stackable inter-engaging bricks blocks, stones and the like to build mortarless wall on a structure, the present invention could also be used for example, to manufacture stackable inter-engaging bricks, blocks, stones and the like to build landscaping walls.
Other and further aspects and advantages of the present invention will be obvious upon an understanding of the illustrative embodiments about to be described or will be indicated in the appended claims, and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice.
The above and other aspects, features and advantages of the invention will become more readily apparent from the following description, reference being made to the accompanying drawings in which:
A novel molding equipment for molding inter-engaging bricks and a method for using the same will be described hereinafter. Although the invention is described in terms of specific illustrative embodiments, it is to be understood that the embodiments described herein are by way of example only and that the scope of the invention is not intended to be limited thereby.
With reference to the annexed drawings, the preferred embodiments of the present invention will be herein described for indicative purposes and by no means as of limitation.
The drawings and the description attached to it are only intended to illustrate the idea of the invention. As to the details, the invention may vary within the scope of the claims. So, the size and shape of the individual stackable inter-engaging brick 1 (
Referring to
Referring to
Referring to
Notably, in the presently claimed invention, the brick separating elements 11 fully separate the cavities 21 into two fully separated sub-cavities. Moreover, the bricks resulting from the molding equipment are fully separated and do not need any additional splitting step.
Now referring to
The main body 200 further comprises at least one, preferably a plurality of molding blocks having a series of moulding cavities for the manufacture splittable stackable inter-engaging bricks 1. According to the present invention, the moulding cavities may be used for the manufacture of splittable stackable inter-engaging bricks 1 or may additionally comprise a middle plate 111 used to mold the brick without any further splitting required. According to this latter embodiment, the mortarless inter stackable bricks 1 are typically manufacture using a similar molding cavity whereas the user employ a fixation system for securing the separating plates 111, to the molding blocks.
The fixation system referred herein comprises dog elements designed to secure the separating elements, such as separating plates 111, to the molding blocks. The separating elements are inserted in the molding cavities of the molding blocks. The separating elements are than secured using an upper and lower dog respectively located on top and below the separating elements. The dogs are generally fixated to the molding blocks using at least one, preferably two fasteners. Depending on the configuration of the molding blocks there may be various types of dogs. In the present embodiment, three different types of upper 130, 132, 134 and lower 140, 142, 144 dogs are used. The first upper dogs type 130 are located toward the lowed portion of the inter-engaging stackable brick 1, the second upper dogs type 132 are overlapping two mold cavities and the third upper dogs types 134 are at the top of the upper portion of the decorative brick portion. Similarly, according to the present embodiment, the first lower dogs type 140 are located toward the lowed portion of the inter-engaging stackable brick 1, the second lower dogs type 142 are overlapping two mold cavities and the third lower dogs types 144 are at the top of the upper portion of the decorative brick portion. Understandably, depending on the configuration of the molding blocks and the molding cavity one could according to another embodiment without departing with the principle of the present invention, envision a dog designed to be universal thus having the ability to fit in all dog securing positions.
According one aspect of the present embodiment, the same mold cavities may be utilised for the manufacture of both mortarless stackable inter-engaging bricks 1 and mortarless splittable stackable inter-engaging bricks 1. In the former mortarless inter-engaging stackable bricks 1 the dogs 130, 132, 134, 140, 142, 144 will be used in combination with separating plates 111 whereas in the later mortarless splittable inter-engaging stackable bricks 1 the dogs 130, 132, 134, 140, 142, 144 will be used in combination with elongated “v” shaped inducing member 120.
According to one embodiment, to account for the use of the present dogs 130, 132, 134, 140, 142, 144, the molding blocks and molding cavities 212 preferably have grooves for mating with the protruding portion 160 of the elongated “v” shaped inducing member 120 or the protruding portion 170 of the plate 111. These protruding portions 160, 170 are preferably used to respectively insure secure fixation of the elongated “v” shaped inducing member 120 and plate 111 to the mold during use of the molding equipment.
According to one aspect of the present embodiment, the groove inducing portion 120 and plates 111 generally have indentations 113, 114, 112, 115 on their lower and upper portion as to mate with the groove or plate 111 securing portions of the dogs 130, 132, 134, 140, 142, 144.
The separating plates 111 may be of various kind to produce different patterns or textures. They optionally also may be flat. In addition, the separating plates 111 typically comprise a portion inducing part of the “v” groove shape the stackable inter-engaging bricks preferably have.
Now referring to
As such, the present invention typically allows one molding block and molding cavities to be used for various king of stackable inter-engaging bricks.
Referring to
Referring to
Understandably, one mold may use various or identical separating plates 111. Using identical plates 111 will result in identical stackable inter-engaging brinks whereas using different plates 111 will result in bricks having different designs.
Now referring to
Although the molding equipment and method for molding stackable inter-engaging bricks with smooth or embossed face has been described with a certain degree of particularity, it is to be understood that the disclosure has been made by way of example only and that the present invention is not limited to the feature embodiment(s) described and illustrated herein, but includes all variations and modifications within the scope and spirit of the invention as hereinafter claimed.
While illustrative and presently preferred embodiments of the invention have been described in detail hereinabove, it is to be understood that the inventive concepts may be otherwise variously embodied and employed and that the appended claims are intended to be construed to include such variations except insofar as limited by the prior art.
Number | Date | Country | Kind |
---|---|---|---|
2492250 | Jan 2005 | CA | national |
The present patent application is a continuation-in-part of U.S. patent application Ser. No. 11/813,374, entitled “A MOLDING EQUIPMENT AND METHOD TO MANUFACTURE STACKABLE INTER-ENGAGING BRICKS, BLOCKS, STONES AND THE LIKE WITH A SMOOTH OR EMBOSSED FACE”, and filed at the United State Patent and Trademark Office on Jan. 9, 2006, which claims the benefits of priority of Canadian Patent Application No. 2,492,250, entitled “A MOLDING EQUIPMENT AND METHOD TO MANUFACTURE STACKABLE INTER-ENGAGING BRICKS, BLOCKS, STONES AND THE LIKE WITH A SMOOTH OR EMBOSSED FACE”, and filed at the Canadian Patent Office on Jan. 11, 2005, the content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1642247 | Krause | Sep 1927 | A |
2532049 | Wittke | Nov 1950 | A |
3017683 | Huch et al. | Jan 1962 | A |
3354592 | Curci | Nov 1967 | A |
3542329 | Ridenour | Nov 1970 | A |
3888060 | Haener | Jun 1975 | A |
4274824 | Mullins | Jun 1981 | A |
4335549 | Dean, Jr. | Jun 1982 | A |
5062610 | Woolford | Nov 1991 | A |
5297772 | Stefanick | Mar 1994 | A |
5445514 | Heitz | Aug 1995 | A |
5542837 | Johnston | Aug 1996 | A |
5771631 | Dawson | Jun 1998 | A |
5866026 | Johnston | Feb 1999 | A |
6108995 | Bouchard | Aug 2000 | A |
6224815 | La Croix et al. | May 2001 | B1 |
6322742 | Bott | Nov 2001 | B1 |
6505809 | Reed | Jan 2003 | B1 |
8162638 | Stott | Apr 2012 | B2 |
20030164574 | Hammer | Sep 2003 | A1 |
20030182011 | Scherer | Sep 2003 | A1 |
20050108973 | Hammer et al. | May 2005 | A1 |
20060145050 | Price | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2220413 | Dec 1996 | CA |
2254517 | May 2000 | CA |
WO 0026484 | May 2000 | CA |
2346555 | Nov 1999 | CN |
1938134 | Jul 2004 | CN |
8116262 | Nov 1982 | FR |
10156824 | Jun 1998 | JP |
WO9532083 | Nov 1995 | WO |
WO0026484 | May 2000 | WO |
WO2005009707 | Feb 2005 | WO |
WO2006074538 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20150090861 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11813374 | US | |
Child | 14506538 | US |