(1) Field of the Invention
The invention relates to suspended panel ceilings, and more particularly to a wall molding that supports the ends of the beams that abut the walls surrounding such ceilings.
(2) The Prior Art
The prior art includes suspended panel ceilings of a general construction and such suspended ceilings that also conform to seismic requirements.
a. Suspended Panel Ceilings of a General Construction
Panel suspended ceilings use spaced beams to support panels on flanges of the beams. The beams are rollformed from a strip of steel into an inverted T cross section with a bulb at the top, a web, and flanges extending horizontally from the bottom of the web. Generally, a bottom cover or cap extends over the bottom of the flanges, and then upward and inwardly along the edges of the flanges to form hems that secure the cap to the flanges. Main and cross beams are generally interconnected to form a grid having rectangular 2′×2′ or 2′×4′ openings for the panels. The beams are usually suspended with hanger wires embedded in a structural ceiling. The ends of the beams that abut the walls around the ceiling rest on ledges of angled wall moldings. The ledges of the wall moldings also support the panels along the walls.
At times, in short spans of ceiling of up to, for instance, 7 feet, as in the direction across a corridor, the beams that extend across the corridor may be supported only at their ends, on the ledges of the wall molding, without hanger wires. There may be 2 ft. long interconnected cross beams in a direction lengthwise of such corridor.
In prior art panel suspended ceilings that do not conform to any seismic code, there has generally been no fixed connection between the end of a beam and the ledge of the wall molding, since the beam merely rests on the ledge.
b. Such Suspended Panel Ceilings that Also Conform to Seismic Requirements
In suspended panel ceilings in the prior art that conform to seismic requirements, means are used to prevent the ends of the beams resting on the wall moldings from shaking off the molding during an earthquake, so that the panels in the ceilings do not fall.
Such means include stabilizer bars that run along the wall molding to keep the ends of the beams from shaking in a direction parallel to the wall, and perimeter clips on the beams which keep the ends of the beams from shaking off the molding in a direction away from the wall. Two-inch wide ledges on the wall moldings may also be used in accordance with seismic requirements, instead of perimeter clips, to prevent the ends of the beams resting on the wall molding from falling off the ledge, away from the wall, during a quake.
a. Suspended Panel Ceilings of a General Construction
The wall molding of the present invention, in a panel suspended ceiling, provides a quick and accurate way of positioning, and fixing, the end of a beam abutting a wall, on the ledge of a wall molding.
As in the '436 application, which relates to drywall ceilings, referred to above, and incorporated herein by reference, the wall molding of the present invention is formed with a pair of retaining tabs, regularly spaced along the molding, lanced from the horizontal ledge of the molding, while the molding is being made. The pair of tabs work jointly, along with a single ratchet tooth in a tab in one embodiment, or a ratchet tooth in each tab in another embodiment, to position and lock the beam flanges to the ledge, by a single back and forth motion. The flanges are held downwardly against the ledge by the tabs, which are spring biased downwardly.
The wall molding of the present invention has a cover, or cap, under the bottom of the wall molding ledge, to hide the lanced portions that form the tabs in the ledge. The cap is secured on the ledge by a hem that engages a detent on one side of the ledge, and by a hem that extends over the other side of the ledge.
The angle of the wall molding of the invention can be made of heavier or stiffer metal than that of the cap that is fixed on the bottom of the horizontal ledge of the wall molding. Such heavier or stiffer metal in the angle can serve to keep the ledge stabilized in a flat plane, free of the distortion that often occurs when the vertical leg of the molding is secured to a wall with a wavering surface. The angle can be made without any color coating, and of a rougher and less expensive grade metal than the cap, since it is not seen by an observer from below. The cap, which is the only visible part of the molding to an observer from below, is formed of metal with a smooth finish and a color coat. Such a molding then blends with the underside of the flanges of the beams in the ceiling. Such beams also have color coated caps. Such a two piece construction yields a strong and attractive molding at a minimum cost.
In a first embodiment of the invention, a first flange that extends horizontally on one side of a beam, is manually slid rearwardly under a hold-down tab until a second, oppositely extending, flange on the other side of the beam clears a forwardly positioned locking tab on the ledge. The motion of the beam is then reversed to move the second flange on the beam under the locking tab. The second flange, with its upwardly extending hem, passes over a ratchet tooth in the locking tab, whereby the locking tab secures the second flange to the molding ledge, and the ratchet tooth on the locking tab prevents rearward movement, with both the first flange and second flange held downward in contact with the ledge by the downward spring bias of the tabs.
In another embodiment, each tab is associated with a ratchet tooth.
By the above-described action, the beam is locked to the wall molding at a predetermined position along the molding, in a quick and relatively easy manner.
The opposite end of the beam is likewise positioned and locked to a wall molding on the opposing wall. The moldings on opposite walls are placed in exact opposite registry, so that the beams are positioned and secured in the moldings, parallel to one another, at selected, regularly spaced, intervals.
When the wall moldings are made by rollforming, or otherwise continuously formed, the hold-down and locking tabs, and ratchet teeth, are continuously lanced from the molding ledge with suitably designed, well-known, punching machinery.
b. Such Suspended Panel Ceilings that Also Conform to Seismic Requirements
The present invention is particularly suited for seismic ceilings that support ends of both main beams and cross beams on wall moldings, as in a grid, regardless of whether the beams are primarily supported by hang wires in addition to the wall molding support, or whether supported by the wall molding alone.
The wall moldings of the invention, for seismic ceilings, use a 2″ wide ledge, as in the prior art.
The 2″ ledge continues, in an earthquake, to support the ends of the beams as they shake toward and away from the perimeter wall. No perimeter clips are necessary. With the present invention, the tabs restrain the ends of the beam from moving along the perimeter wall, during a quake, whereby the beams then continue to maintain their positions to support panels, and prevent the panels from falling. This eliminates any need for the use of the stabilizer bars of the prior art.
a. Suspended Panel Ceilings of a General Construction
As seen in
Beam 50, as well-known in the prior art, has a bulb 51, web 52, and flanges 53 and 55 extending horizontally at the bottom of web 52. The beam 50 has a cap 54 that extends over flanges 53 and 55, and is secured to the flanges by upwardly and inwardly extending hems 58 and 59. Stitches 56 secure layers of web 52 together.
Molding 30 has a vertical leg 42 and a horizontal ledge 43.
Main beams and cross beams are generally interconnected to form a ceiling grid that supports the panel.
Such ceilings are well-known in the prior art.
In the present invention, a wall molding 30, as seen in
Positioned opposite to hold-down tab 61 is locking tab 62. Tab 62 is similar to tab 61 except tongue 63 is shorter as shown. Extending downwardly from tongue 63 of the locking tab 62 is a ratchet tooth 70 which has a slope extending away from the hold-down tab 61, toward the pivot line 71 of locking tab 62.
A cap 80 extends over the bottom of wall molding 30 so that the lanced portions of ledge 43 cannot be seen from below. The cap is desirably formed of a smooth finish metal that is color coated to match the caps of the bottom of the flanges of the beams in the ceiling. Such a cap 80 not only hides the lanced holes in ledge 43, but also gives a decorative appearance to the molding, without the expense of making the entire molding of such smooth finish that is color coated.
The cap 80 may be applied in a rollforming operation as seen in
The cap 80 on the bottom of the wall molding ledge 43 is desirably made of thinner metal than that of the angled vertical leg 42 and horizontal ledge 43 of the wall molding 30, since the function of such cap 80 is primarily decorative to hide the lanced holes in ledge 43, and to provide a surface appearance, including color, on the bottom of the molding that matches the surface and color of the cap on the bottom of the beams as constructed in the prior art.
The molding 43 with the indent 81 formed therein passes between rollers 86 and 87. A web 88 of cap metal is fed into the rollers 86,87, which form hem 89 on one side of the ledge 43, and hem 91, which is formed about the indent 81.
Optionally, there may be formed, as by rollforming, along the outside edge of ledge 43, a hem 93 that is integral with, and extends upwardly and inwardly from the ledge 43 when the molding 30 is in position on a wall. Such a hem further stiffens the ledge. When such a hem 93 is formed from, and on, the edge of ledge 43, hem 91 of the cap is rollformed over such ledge hem 93. Such a hem 93 on ledge 43 is shown in
The completed molding 30 then advances to a cut-off station to be cut into suitable lengths.
A typical wall molding 30 may have a vertical leg 42 and a ledge 43, each ⅞″ wide. Each of the tabs 61,62 may be ½″ wide in a direction across the molding 30, with a space of about ⅘″ between a pair of opposing tabs 61 and 62. The distance between the pivot lines 65 and 71 of the tabs 61,62 may be about 2″.
A channel wall molding may be used that is U-shaped in cross section, wherein the base of the U is attached vertically to the wall and acts as the vertical leg and the lower horizontal leg of the U acts as a ledge 43.
The beam 50 is engaged with the pair of tabs 61 and 62 and ratchet tooth 70 as seen in
In
Both hold-down tab 61 and locking tab 62 have a downward bias in the form of a spring action that results when the tabs 61,62 are lanced out of the steel web stock from which the angle moldings 30 are formed. The forming of angle molding by rollforming, and the steel used in the web from which the molding is formed, is well-known in the prior art.
As seen in
As seen in
As seen in
In an alternative embodiment of the invention, as seen in
As shown in
In the embodiments set forth above, the above described positioning and locking actions at opposite ends of beam 50 may occur simultaneously, if for instance, an installer is positioned at each end of the beam 50 to perform the position and securing action as described.
After a series of beams 50 are positioned and secured, as described, panels 25 of, for instance, acoustic material, are positioned on the flanges of the beams 50, to form the ceiling.
A panel 25 is supported in position in the ceiling along a wall by the wall molding ledge 43 and the flanges 53 and 55 of beams 50.
A pair of tabs 61 and 62, in the various embodiments described above, are regularly spaced along the molding ledge 43, at, for instance, 2′ intervals, so that the ends of beams 50 that abut a wall can be secured at selected distance to receive panels 25. Beams 50 are locked in to wall moldings 30 that are in registry opposing walls, so that the beams 50 run across the ceiling parallel to one another.
b. Such Suspended Panel Ceilings that Also Conform to Seismic Requirements
In a ceiling that meets seismic requirements, ledge 43 is extended to a 2″ width. The end of beam 50 is cut so that at rest position on the ledge, as seen for instance in
The tabs 61 and 62 again extend along the beam 50 as described above, and keep the beam end from moving along the wall 21,22 during a quake.
This application is a continuation-in-part of prior application Ser. No. 10/890,436, filed Jul. 14, 2004, now U.S. Pat. No. 7,240,460 for Molding for Drywall Ceiling Grid.
Number | Name | Date | Kind |
---|---|---|---|
3486311 | Allan, Jr. | Dec 1969 | A |
4055930 | Weinar et al. | Nov 1977 | A |
4115970 | Weinar | Sep 1978 | A |
4406104 | Beck et al. | Sep 1983 | A |
4554718 | Ollinger et al. | Nov 1985 | A |
4598516 | Groshong | Jul 1986 | A |
4852325 | Dunn et al. | Aug 1989 | A |
5046294 | Platt | Sep 1991 | A |
5191743 | Gailey | Mar 1993 | A |
5609007 | Eichner | Mar 1997 | A |
6324806 | Rebman | Dec 2001 | B1 |
6516581 | Paul et al. | Feb 2003 | B2 |
6516582 | Paul et al. | Feb 2003 | B2 |
6748713 | See | Jun 2004 | B2 |
20070022690 | LaLonde | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20060010812 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10890436 | Jul 2004 | US |
Child | 11226506 | US |