Applicants claim priority under 35 U.S.C. §119 of German Application No. 102 41 238.3 filed on Sep. 6, 2002. Applicants also claim priority under 35 U.S.C. §365 of PCT/EP2003/009652 filed on Aug. 30, 2003. The international application under PCT article 21(2) was not published in English.
1. Field of the Invention
The invention relates to a molding insert for molding machines, for the production of compacted molded bodies.
2. The Prior Art
Such molding inserts are particularly in use devices for the production of stones molded from concrete and, in this connection, form a vibrating mold, together with a mold frame. The mold cavities of a mold insert set onto a vibrating table are filled with concrete mass and closed off at the top with pressure dies. By means of vibration excitation of the vibrating table, the concrete mass is compacted to such a great extent that the damp molded stones subsequently de-molded from the molding insert retain their shape and can be stored in intermediate storage for final drying and curing.
For such intermediate storage, a differentiation is made between:
The invention is based on the task of indicating an advantageous molding insert for multi-layer production.
The invention provides a molding insert having one or more mold cavities for use in molding machines, for the production of compacted molded bodies, particularly concrete molded stones, and their deposit in a multi-layer arrangement. The device contains pressure devices for pushing the compacted molded bodies out of the molding insert, in the downward direction. The walls of the mold cavity have relief structures, with depressions that possess holding flanks that drop down towards the center of the mold cavity. The relief is coordinated with the volume of the mold cavity and the material of the molded body, in such a manner that on the one hand, the inherent weight of the molded body is not sufficient to de-mold the material of the molded body from the mold cavity and, on the other hand, the molded body can be de-molded from the mold cavity, under the influence of the pressure device, without shearing off the projections that are located in depressions of the relief, on lateral surfaces of the molded body. Discussed below are advantageous embodiments and further developments of the invention.
In the case of the molding insert according to the invention, advantage is taken of the fact, for one thing, that the compacted molded bodies are supposed to be stable in shape, in and of themselves, in accordance with the goal of compaction, and therefore can be held in the molding insert with a positive lock, counter to the inherent weight force (as well as any acceleration forces or inertial forces that might occur). For another thing, the property of compacted concrete molded bodies known from DE 44 43 475 A1 or DE 197 47 770 A1, for example, of still being elastically resilient in the damp state, is advantageously utilized. Both properties, which are actually known, are advantageously combined in such a manner that the positive-lock engagement between depressions in the relief structure in the walls of the mold cavity and the projections on lateral surfaces of the molded body that are produced in these depressions during compaction are sized to be so large that on the one hand, a force that exceeds the inherent weight of the molded body (which results from the volume and the material), downward, is required for de-molding the molded body, which force is applied, in simple manner, by means of a vertical movement of the molding insert relative to the pressure direction used for compaction, but on the other hand, the positive-lock engagement is limited, in such a manner that the projections on the lateral walls of the molded body which engage in the depressions of the relief structure are not sheared off during the forced de-molding, and/or that no residues that go significantly beyond the normal measure of conventional molding inserts having flat walls remain in the relief structure. The relief structure particularly also allows the use of molding inserts having hardened walls, with a very slight material adhesion to the concrete mass of the molded body.
The relief has holding flanks that are inclined downward at a slant towards the interior of the mold cavity, as support surfaces on which projections of the lateral surfaces of the compacted molded body support themselves. The angle of these holding flanks from the vertical is preferably at most 30°, so that during the forced de-molding, sliding of the projections along the holding flanks takes place, with a gradual lateral deformation of the material of the molded body, preferably within the range of elastic deformation. A slight remaining deformation of the projections on the lateral surfaces is not critical, since the function of these projections, that of holding the molded body in the molding insert counter to its weight force, is eliminated after de-molding.
The inherent weight of the molded body depends not only on the volume but also on the density of the material, but this typically does not vary significantly, so that the weight of the compacted molded body can essentially be considered to be known. In the estimate of the required holding force, it must also be taken into consideration that in the case of multi-layer production, after compaction of the molding insert, movement of the compacted molded bodies takes place vertically and possibly also horizontally, and that in this connection, acceleration forces occur, which are not yet allowed to result in the molded bodies falling out of the molding insert. With regard to the deformability of the damp molded body after compaction, greater variations can occur, depending on the degree of compaction, and this can have an effect on the holding force and the maximal elastic deformability. It is therefore advantageous that the depth of the relief structure can be designed for great rigidity with low elastic deformability, and the entire holding surface of all holding flanks can be designed for low rigidity, with easy deformability of the compacted, damp molded body, within the scope of the variations to be expected.
A depth of maximally 1.5 mm, particularly of maximally 0.8 mm, proves to be advantageous for the relief depth of the relief structure. The minimal depth is advantageously 0.2 mm. In order to obtain a sufficient holding force over the sum of the holding surfaces of all the holding flanks, the cumulative expanse of all the holding flanks in the horizontal direction, parallel to the walls, is at least equal to the circumference of the molded body, preferably at least equal to twice this circumference. It is advantageous that the relief structure can have several holding flanks, one after the other, in the vertical direction, which are separated by segments of the relief structure that do not apply any holding forces.
In an advantageous embodiment, the relief structure contains concave and/or convex regions having a radius of curvature that is relatively great, preferably at least five times as great, as compared with the relief depth. Concave and/or convex regions can form a wave-like profile, following directly one after another.
It is advantageous that the relief structure can contain elongated, preferably essentially horizontal grooves, particularly grooves having a constant cross-section. In the case of polygonal footprints, such grooves advantageously extend over more than half the distance between two adjacent corners. The holding flanks of the relief structure are preferably present at wall surfaces that lie opposite one another with reference to the volume center of gravity of the mold cavity, and/or in an arrangement of rotational symmetry about a vertical center axis of the mold cavity.
The concepts of the depressions in the relief structure and projections on the lateral walls can also be used interchangeably, in principle, but relate in evident manner to a preferred embodiment in which the mold cavity, preferably in the upper edge region, has at least one prismatic segment having vertical wall surfaces without any relief structure, and the relief structure recedes behind the continuation surfaces of this prismatic segment.
It is advantageous if the relief structure is predominantly, particularly by at least 60%, formed in the lower half of the vertical expanse of the mold cavity. According to a further development, it can be provided that the clear cross-section of the mold cavity widens in the downward direction, in the progression of the relief structure.
The invention is explained in detail below, on the basis of preferred exemplary embodiments, making reference to the drawings. These show:
A molding insert or a detail of such a molding insert FE, having several mold cavities FN, is shown in
In the case of multi-layer production, the molding insert is set onto a deposit area, for example a pallet as the first layer, or onto layers that already exist, after the compaction process has been completed, while maintaining the relative position of the molding insert and the pressure device. In this connection, either the pallet can be moved underneath the molding insert, in place of the vibrating table, or the molding insert plus pressure plates can be moved sideways over the pallet. By means of lifting the molding insert, the molded stones are pressed out of the mold cavities, in the downward direction, by means of the pressure plates of the pressure device, which are not lifted, and deposited on the deposit area or on a layer of molded stones that already exists, for drying and curing.
In the case of the molding insert drawn in
The relief structures consist of horizontal grooves NU that are arched away from the interior of the mold cavity, in concave shape, as can be seen in the enlarged detail according to
The holding force applied by the holding surfaces HF is limited because of the fact that the molded body is still elastically deformable even after compaction, and can be pushed downward along with holding surfaces HF, with lateral compression. However, the relief structures are dimensioned in such a manner that the weight force of the molded body by itself is not sufficient to deform the molded body to such an extent that the projections of the molded body that rest in the relief structures, along the holding surfaces, overcome the relief in the downward direction. On the other hand, the relief structures are dimensioned in such a manner that a deformation of the molded body is possible, using a greater force than the inherent weight force, at least in the circumference, without shearing off the projections of the molded body that engage in the relief structures, that these projections overcome the relief structures in the downward direction, and the molded body can be pressed out of the mold cavity.
The relief depth RT is advantageously at least 1.5 mm, preferably maximally 0.8 mm, particularly maximally 0.5 mm. The minimal depth RT of the relief structures is advantageously 0.1 mm, preferably 0.2 mm, particularly 0.3 mm. In the example shown, let us assume a uniform relief depth for all the grooves, which is preferred but not necessary.
In the representations according to
The depth of the recesses AA for the formation of spacer elements on the lateral walls of the molded body is typically significantly greater than the relief depth RT. These recesses are open in the downward direction, so that the spacer element AH formed on the molded body does not experience any compressing deformation during de-molding of the molded body from the mold cavity.
The relief structures that are evident in
The characteristics that are indicated above and in the claims, as well as those that can be derived from the figures, can advantageously be implemented both individually and in different combinations. The invention is not limited to the exemplary embodiments described, but rather can be modified in many different ways, within the scope of the ability of a person skilled in the art. In particular, a plurality of possibilities of combinations of the shapes described, or other, non-linear partial structures, is possible for the shape of the relief structure. The partial structures can also be smaller and/or spatially separated to a greater extent.
Number | Date | Country | Kind |
---|---|---|---|
102 41 238 | Sep 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/09652 | 8/30/2003 | WO | 00 | 2/11/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/022294 | 3/18/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2532049 | Wittke | Nov 1950 | A |
3095629 | Long | Jul 1963 | A |
4545754 | Scheidt et al. | Oct 1985 | A |
6464199 | Johnson | Oct 2002 | B1 |
Number | Date | Country |
---|---|---|
44 43 475 | Jun 1996 | DE |
296 11 484 | Sep 1996 | DE |
197 47 770 | May 1999 | DE |
Number | Date | Country | |
---|---|---|---|
20050238751 A1 | Oct 2005 | US |