The present invention relates to a molding method and a molding device.
This application claims priority based on Japanese Patent Application No. 2018-026484 filed on Feb. 16, 2018, the entire disclosure of which is incorporated herein.
A molded resin article is manufactured by, for example, injection molding. When the molded resin article has a through-hole, the through-hole is formed by a perforation pin provided in a mold. The molten resin introduced into the mold is split into two by the perforation pin and joins on a back surface side of the perforation pin. At the junction, since a resin temperature is slightly decreased, the two resin flows cannot be completely merged, and a weld line may be formed (see, for example, PTL 1). The weld line may cause a decrease in strength of the molded resin article. In addition, the appearance of the molded resin article may be impaired by the weld line.
In the mold used in the molding method disclosed in PTL 1, the perforation pin can be made to protrude with respect to a cavity by a driving device. In this molding method, after filling the cavity, into which the perforation pin is not protruded, with the molten resin, the perforation pin is protruded into the uncured molten resin to form a through-hole. According to this molding method, in a case where the cavity is filled with the molten resin, the flow of the resin is not hindered by the perforation pin, and accordingly, no weld lines are formed.
[PTL 1] Japanese Patent No. 2717896
In a case of manufacturing a thick molded article by using a high-strength resin such as a super engineering plastic (PEEK, PPS, or PI) or a fiber-containing resin (a resin containing a carbon fiber, a glass fiber, or the like), pressing weight of the perforation pin when forming the through-hole in the resin increases, in the molding method disclosed in PTL 1. Therefore, it may be difficult to form a through-hole. In addition, the installation of the driving device may be difficult, since a large-sized driving device is required to drive the perforation pin.
An object of the invention is to provide a molding method and a molding device which can easily produce a molded resin article having a hole and by which a weld line is hardly generated.
According to an aspect of the invention, there is provided a molding method including a first step of making a perforation pin protrude into a cavity of a mold, a second step of injecting a molten resin and filling the cavity with the molten resin so as to envelop a protruding part of the perforation pin, a third step of making the perforation pin further protrude, in a state where the resin is not cured, and a fourth step of obtaining a molded resin article having a hole by curing the resin and extracting the perforation pin.
According to the molding method, a movement distance of the perforation pin in the third step can be reduced, and the pressing weight in a case of pressing the perforation pin into the resin can be prevented. Accordingly, it is easy to manufacture a molded resin article having a hole. In addition, since the pressing weight can be reduced, a small-sized driving mechanism with a low output can be used, so that a problem hardly occurs in the installation of the driving mechanism. Therefore, a molded resin article can be easily manufactured.
According to the molding method, a weld line is difficult to be formed, since the protrusion length of the perforation pin in the second step is short.
In the first step, a protrusion length of the perforation pin may be 25% to 40% with respect to a dimension of the cavity in a protruding direction of the perforation pin.
Therefore, the pressing weight in a case of making the perforation pin protrude in the third step can be reduced, and the formation of the weld line can be prevented.
In the third step, the perforation pin may penetrate the resin.
Therefore, a molded resin article having a through-hole can be easily manufactured.
In the molding method, the mold includes a first mold and a second mold facing each other with the cavity interposed therebetween, and in the first step, a plurality of the perforation pins are used, and among the plurality of the perforation pins, a first perforation pin is made to protrude into the cavity from the first mold, and a second perforation pin is made to protrude into the cavity from the second mold.
According to the molding method, since the plurality of perforation pins are used, the movement distance per perforation pin in the third step can be reduced. Therefore, the pressing weight can be reduced.
According to another aspect of the invention, there is provided a molding device including a mold for injection molding, a perforation pin capable of protruding into a cavity of the mold, a driving mechanism for the perforation pin, and a control section which controls a protrusion length of the perforation pin in the cavity.
According to the molding device, since the control section is provided, the pressing weight of the perforation pin is prevented by making the perforation pin protrude in a plurality of stages, thereby facilitating the manufacturing of the molded resin article. The molding device can set the protrusion length of the perforation pin in the first step to be short, thereby preventing a weld line.
According to one aspect of the invention, a molded resin article having a hole can be easily manufactured, and a weld line is hardly generated.
Hereinafter, embodiments to which the invention is applied will be described in detail with reference to the drawings. The drawings used in the following description are for describing the configuration of the embodiments of the invention, and sizes, thicknesses, dimensions, and the like of each portion shown in the drawings may be different from dimensional relationships of the actual device.
As shown in
The mold 1 is a mold for injection molding and includes a first mold 11 and a second mold 12. A cavity 13 is provided between the first mold 11 and the second mold 12. The cavity 13 has a shape corresponding to the molded resin article 20 to be manufactured (see
The first mold 11 has an insertion hole 15 through which the perforation pin 2 is inserted. The inner surface 11a of the first mold 11 faces the cavity 13. The inner surface 11a has a shape conforming to a first surface 20a of the molded resin article 20 (see
The inner surface 12a of the second mold 12 faces the cavity 13. The inner surface 12a has a shape conforming to a second surface 20b of the molded resin article 20 (see
The perforation pin 2 may have a columnar shape having a central axis along the thickness direction (Z direction) of the cavity 13, for example, a columnar shape, a prismatic shape (a quadrangular prism shape, a triangular prism shape, or the like). A length direction of the perforation pin 2 (perforation member) faces the thickness direction (vertical direction in
The perforation pin 2 is movable in the length direction (vertical direction in
As shown in
The driving mechanism 3 is, for example, a motor or the like, and can move the perforation pin 2 in a protruding direction (downward in
The control section 4 can drive the driving mechanism 3 based on position information of the perforation pin 2 detected by a sensor (for example, an optical sensor) (not shown), and control a length of the perforation pin 2 in the protruding direction (the protrusion dimension from the inner surface 11a).
Next, a molding method according to the first embodiment will be described with reference to
(First Step)
In the molding device 10 shown in
As shown in
The protrusion length L1 of the perforation pin 2 in the first step is smaller than the total thickness T of the cavity 13. Therefore, the leading end 2a of the perforation pin 2 does not reach the inner surface 12a of the second mold 12.
It is desirable that the protrusion length L1 is 25% to 40% of the total thickness T. When the protrusion length L1 is 25% or more of the total thickness T, the pressing weight can be reduced when making the perforation pin 2 further protrude in the third step which will be described later. When the protrusion length L1 is 40% or less of the total thickness T, formation of a weld line in the molded resin article 20 (see
(Second Step)
As shown in
As the resin 16, a thermoplastic resin is preferable. Examples of the thermoplastic resin include polyetheretherketone (PEEK), polyphenylenesulfide (PPS), polyimide (PI), polyethersulfone (PES), aromatic polyamide (PA), and polyamideimide (PAI). The resin 16 may be a fiber reinforcing resin. As the fiber reinforcing resin, for example, a carbon fiber reinforcing resin, a glass fiber reinforcing resin, or the like can be used. A tensile strength (for example, based on ASTM D638) of the molded resin article made of the resin 16 is, for example, 90 MPa or more (for example, 90 MPa to 262 MPa).
As shown in
As shown in
(Third Step)
As shown in
In this step, a movement distance of the perforation pin 2 to the most protruding position when making the perforation pin 2 protrude is smaller than a movement distance of the perforation pin 2 from the non-protruding position (see
(Fourth Step)
As shown in
According to the molding method of the first embodiment, the cavity 13 is filled with the resin 16 in a state where the perforation pin 2 is protruded (see
According to the molding method of the first embodiment, since the protrusion length L1 (see
In the molding method of the first embodiment, the perforation pin 2 penetrates the resin 16 in the third step, so that the molded resin article 20 having the through-hole 18 can be easily manufactured.
Since the molding device 10 includes the control section 4, the pressing weight of the perforation pin 2 is suppressed by making the perforation pin 2 protrude in two stages, and the molded resin article 20 is easily manufactured. The molding device 10 can set the protrusion length L1 of the perforation pin 2 in the first step to be short by the control section 4, so that the weld line can be prevented.
The molding device 110 includes a mold 101, perforation pins 2A and 2B, driving mechanisms 3A and 3B, and control sections 4A and 4B.
The mold 101 is a mold for injection molding and includes a first mold 111 and a second mold 112. A cavity 13 is provided between the first mold 111 and the second mold 112. An inner surface 11a of the first mold 111 and an inner surface 112a of the second mold 112 face each other with the cavity 13 interposed therebetween. The first mold 111 has an insertion hole 15A through which the first perforation pin 2A is inserted. The second mold 112 has an insertion hole 15B through which the second perforation pin 2B is inserted.
The perforation pins 2A and 2B are movable in the length direction and can protrude with respect to the cavity 13.
The driving mechanisms 3A and 3B are, for example, motors or the like, and can move the perforation pins 2A and 2B respectively in a protruding direction and in the opposite direction thereof.
The control sections 4A and 4B can drive the driving mechanism 3 based on position information of the perforation pins 2A and 2B detected by a sensor (not shown), and control a length of the perforation pins 2A and 2B in the protruding direction.
Next, a molding method according to the second embodiment will be described with reference to
(First Step)
In the molding device 110 shown in
As shown in
A total of protrusion lengths L3A and L3B of the perforation pins 2A and 2B in the first step is smaller than the total thickness T of the cavity 13. Accordingly, the leading ends of the perforation pins 2A and 2B do not come into contact each other. It is desirable that the total of the protrusion lengths L3A and L3B is 25% to 40% of the total thickness T. Therefore, the pressing weight in a case of making the perforation pins 2A and 2B protrude in the third step can be reduced, and the formation of the weld line can be prevented.
(Second Step)
As shown in
(Third Step)
As shown in
(Fourth Step)
The resin 16 is cured by cooling or the like. The cured resin 16 becomes the molded resin article 20 (see
According to the molding method of the second embodiment, the cavity 13 is filled with the resin 16 in a state where the perforation pins 2A and 2B are protruded in the second step (see
In the molding method of the second embodiment, since two perforation pins 2A and 2B are used, the movement distance of the perforation pins 2A and 2B in the third step (movement distance per perforation pin) can be reduced, compared to that in the molding method of the first embodiment. Therefore, the pressing weight can be reduced.
According to the molding method of the second embodiment, since the protrusion lengths L3A and L3B of the perforation pins 2A and 2B in the second step are short, and accordingly, a weld line is not easily formed. In the molding method of the second embodiment, since two perforation pins 2A and 2B are used, the protrusion length of the perforation pins 2A and 2B in the second step (protrusion length per perforation pin) can be reduced, compared to that in the molding method of the first embodiment. Therefore, a weld line is not easily formed.
In the molding method of the second embodiment, the perforation pins 2A and 2B penetrate the resin 16 in the third step, so that the molded resin article 20 having the through-hole 18 can be easily manufactured.
As shown below, the pressing weight and the joining angle when manufacturing the molded resin article 20 by the molding method of the first embodiment were evaluated by using the molding device 10 shown in
As shown in
In the example, the thickness ratio (thickness t/total thickness T in
For comparison, the same evaluation test as in the example was performed, except that the perforation pin 2 was not protruded in the first step (that is, the thickness ratio was set to 1) (Comparative Example 1). In addition, the same evaluation test as in the example was performed, except that the perforation pin 2 was set at the most protruding position in the first step (that is, the thickness ratio was set to zero) (Comparative Example 2). In Comparative Example 2, since the perforation pin 2 is at the most protruding position in the first step, the perforation pin 2 does not move in the third step.
From
In particular, in a case where the thickness ratio is 0.6 or more, it is considered that a weld line is hardly formed, since the joining angle is 135° or more. Therefore, at least in a range of the thickness ratio of 0.6 to 0.75, it can be said that good results were obtained for both the joining angle in the second step and the pressing weight in the third step. The thickness ratio of 0.6 corresponds to that a ratio of the protrusion length of the perforation pin 2 in the first step to the thickness dimension of the cavity 13 is 40%. The thickness ratio 0.75 corresponds to the ratio of 25%.
Hereinabove, the preferred embodiments of the invention have been described in detail, but the invention is not limited to such specific embodiments, and various modifications or changes may be made within the gist of the invention described in the appended claims.
For example, in the molding methods of the first embodiment and the second embodiment, the perforation pin penetrates the resin in the third step, but the perforation pin may not penetrate the resin. Therefore, the hole formed in the molded resin article may be not a through-hole.
In the molding methods of the first embodiment and the second embodiment, the perforation pin is protruded in two stages, but the number of stages in which the perforation pin is protruded may be any number of three or more.
The number of perforation pins used in the molding method of the first embodiment is 1, and the number of perforation pins used in the molding method of the second embodiment is 2, but the number of perforation pins used in resin molding may be any number of 3 or more. In addition, the number of holes formed in the molded resin article is not limited to one, and may be any number of 2 or more.
According to the molding method and the molding device described above, a molded resin article having a hole can be easily manufactured, and a weld line is hardly generated.
Number | Date | Country | Kind |
---|---|---|---|
2018-026484 | Feb 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/005603 | 2/15/2019 | WO | 00 |