A better understanding of the exemplary embodiments of the present invention (including alternatives and/or variations thereof) may be obtained with reference to the detailed description of the exemplary embodiments along with the following drawings, in which:
The drawings are not necessarily to scale and are sometimes illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted.
Preferably, the in-line rotors 106, 108 are mountable to a common shaft 110. The common shaft 110 may be a single shaft or multiple, connected shafts forming a longer shaft. According to a variant, the common shaft 110 includes a hollow shaft; according to another variant, the common shaft 110 includes a solid shaft. The common shaft 110 is connectable to a molding-system component 112, such as a processing screw 114. Attached to a distal end of the processing screw 114 is a check valve 113. The processing screw 114 is receivable in a barrel 115 of the molding system 10. The in-line stators 102, 104 and the in-line rotors 106, 108 are energizable to move (either rotate or translate) the molding-system component 112 via the common shaft 110. As depicted in
Preferably, the in-line stators 102, 104 include a first stator 102, and a second stator 104 offset from the first stator 102 along the common shaft 110. The in-line rotors 106, 108 include a first rotor 106, and a second rotor 108 offset from the first rotor 106 along the common shaft 110. The in-line stators 102, 104 are operatively couplable to and controllable by a drive-controller 111. The in-line stators 102, 104 are mountable to a common housing 132. According to a variant (not depicted), stator 102 is mountable in a first housing (not depicted), while the stator 104 is mountable in a second housing (not depicted).
Preferably, the first rotor 106 is cooperative with the first stator 102 while the second rotor 108 is cooperative with the second stator 102. The two in-line stators 102, 104 are coolable by a cooling circuit 134. A plate 133 is used to cover the cooling circuit 134. Bearings 150 are used to rotatably support the shaft 110, and an end plate 152 is used to cover the ends of the drive 100. A junction box 154 is used to house connections for: (i) electrical power used to energize the drive 100, (ii) control signals used to connect the a drive-controller 111 or a drive-controllers 118, 120 and/or (iii) sensor signals used to indicate angular position of the shaft 110. The spline insert 156 is attachable to the shaft 110, and the spline insert 156 may be used to couple or connect the shaft 110 to the molding-system component 112 of
According to variants, the drive 100 is energizable under the following scenarios: (i) concurrently energizing (at least in part) the first stator 102 and the second stator 104, and/or (ii) de-energizing at least in part the second stator 104 while the first stator 102 remains energized at least in part.
Preferably, during acceleration of the molding-system component 112, the drive 100 is energizable under the following scenarios: (i) energizing at least in part the in-line stators 102, 104, (ii) the first stator 102 is de-energized at least in part, (iii) the first stator 102 is de-energized at least in part while the second stator 104 remains energized at least in part, (iv) the first stator 102 acts to brake, at least in part, acceleration of the molding-system component 112, and/or (v) the first stator 102 acts to regeneratively brake at least in part acceleration of the molding-system component 112 (that is, the first stator 102 acts to generate electrical power as the molding-system component 112 moves so that this condition permits increased braking action to the molding-system component 112).
Preferably, the stator 102 and the corresponding rotor 106 are used as a core or prime provider of motive function of the molding-system component 112, while the stator 104 and the corresponding rotor 108 are followers to complement (or add) power and torque requirements that the core provider cannot provide (for peak-performance situations).
Other technical effects of the drive 100 may be realized depending on the technical features used, such as: (i) during steady state operation of plasticization of a molding material, at least one of the stators 102, 104 which is required for satisfying a transient performance of the molding-system component 112 may be switched off to improve the energy efficiency, (ii) reduction of cost of the drive 100 by usage of multiple (smaller) standard stators and rotors where one stator and one corresponding rotor (capable of providing the same performance) is not a commonly available commercial item (this arrangement would also permit reduction in the lead time of manufacturing through stocking of inventory of standard parts which could be used to selectively assemble to form the drive 100 having the required characteristics for moving the molding-system component 112, (iii) improve energy efficiency of a function of the molding system component 112 by switching off one or more sets of stators and rotors during a lower power consumption of a process of the molding system 10.
According to a variant, the molding-system drive 100 includes at least two in-line stators 102, 104, and the at least two in-line stators 102, 104 may be usable with either: (i) at least two in-line rotors 106, 108 cooperative with the at least two in-line stators 102, 104, or (ii) a rotor 106 (that is, a single rotor) cooperative with the at least two in-line stators 102, 104.
According to another variant, the molding-system drive 100 includes at least two in-line rotors 106, 108, and the at least two in-line rotors 106, 108 may be used with either: (i) at least two in-line stators 102, 104 cooperative with the at least two in-line rotors 106, 108, or a stator 102 (that is, a single stator) cooperative with the at least two in-line rotors 106, 108.
The stators 102, 104 are stationary. The rotors 106, 108 are either movable: (i) rotatably or (ii) linearly translational. The electrical motor 110 may be: (i) a rotating electric motor (in which the rotor is rotatable), and/or (ii) a linear electric motor (in which the rotor is movable linearly).
The description of the exemplary embodiments provides examples of the present invention, and these examples do not limit the scope of the present invention. It is understood that the scope of the present invention is limited by the claims. The concepts described above may be adapted for specific conditions and/or functions, and may be further extended to a variety of other applications that are within the scope of the present invention. Having thus described the exemplary embodiments, it will be apparent that modifications and enhancements are possible without departing from the concepts as described. Therefore, what is to be protected by way of letters patent are limited only by the scope of the following claims: