Filed herewith and expressly incorporated herein by reference in its entirety is a Sequence Listing submitted electronically as an ASCII text file via EFS-WEB. The ASCII copy, created on Jan. 20, 2022, is named ROS-09416-US-CIP1_SL.txt and is 59,290 bytes in size.
The present disclosure generally relates to molecular electronic sensors, and in particular, to sensor devices configured with hybridization probes for analyzing genetic material, such as in the detection, monitoring, and diagnosis of infectious diseases.
In the field of genetic analysis, it is important to be able to determine if a given sample of biological material contains a DNA or RNA segment of interest. Also important is species identification, where a sequence characteristic of a species is searched for within a sample. These analyses are important for the environmental monitoring of, and diagnosis of, infectious disease. For example, a DNA segment that identifies a pathogen, such as a parasite, bacteria or virus, can be looked for within a sample taken from the environment, or in a bio-sample from an animal or human that may be infected. This is especially important for the environmental surveillance and epidemiology of viral diseases with the potential for large scale, rapidly progressing infection or pandemics, such as COVID-19. It is also important in genetic analysis to look for known genetic variants that may occur relative to a give segment of DNA. This type of measurement is known as genotyping, and in various aspects comprises looking for known variants in humans and animals. In the context of pathogens, this often takes the form of identification of strains, which are defined by DNA or RNA variants relative to a reference genome sequence, or by the sequence differences between two genomes.
Also, in the field of genetic analysis, it is important to be able to determine the concentration of a DNA or RNA segment of interest in a sample. One such example is in gene expression analysis, where the activity level or expression level of genes, represented in the form of messenger RNA, can be assessed in a sample. This is important, for example, in studying gene function, or in characterizing the pathology of cancers for research, diagnosis and treatment. Another such example is in Non-Invasive Pregnancy Testing (NIPT), which requires measurement of levels of non-maternal cell-free DNA fragments in blood samples. Another similar example is Liquid Biopsy, for early detection or recurrence monitoring of cancer, which may look to detect of the levels of known mutant sequences in blood samples. Another example is Comparative Genomic Hybridization (CGH), where the relative concentration of a segment of genomic DNA in a sample is used to detect genomic duplication or deletion events, both in diagnosing germline disease such as Down Syndrome (Trisomy 21), or in characterizing genomic alterations in cancers as a component of Precision Medicine for Oncology. Another example arises in the field called metagenomics, where the goal is to characterize complex populations of diverse organisms present in an environmental sample, such as a soil or water sample, by extracting and quantifying the abundance of different forms of genomic DNA present in the organisms in the sample. Of particular interest for health and disease is the special case of assessing microbiomes, such as gut microbiome, or oral microbiome, for the populations of bacteria present. For the purpose of quantifying such complex populations, one common approach is to use PCR to target a common “barcode of life” DNA segment that is present in all the organisms of interest, and has enough diversity to distinguish species and strains of interest, an in this approach, the focus becomes identifying and measuring the relative concentrations of these fragments.
Recent demonstrations have shown that SARS-CoV-2 can be detected in wastewater, and this can be used to trace back to infected individuals if such testing is done frequently, at a granular community level, and in a coordinated network. This potentially provides for a highly efficient new public health tool to battle the COVID-19 pandemic at the community level, and could greatly improve the response to this and future pandemics. In order for this to have major impact at the national level, many local networks of wastewater testing sites need to be deployed. This will be far more practical if the testing is done by networks of automated, autonomous sampling and testing devices, connected by wireless links back to data coordination hubs. To make such a system maximally powerful, it would also be ideal to have highly informative testing, that could detect all SARS-CoV-2 strains or genetic variants of interest, or additional other viral targets of interests. Current wastewater testing for SARS-CoV-2 is done mainly by semi-manual sample collection, pooling and manually transport back to centralized labs for manual qPCR-based tests. This can produce highly effective monitoring and tracing results, but involves substantial manual work and travel, resulting in time delays to results, cost, and lack of scalability to high impact national-scale deployment. In addition, the common qPCR tests performed are—due to the limitations of qPCR testing—not multiplexed, and provide only information on only one or a at most a few SARS-CoV-2 targets, without information on strain, variants, or other the presence of other viruses. Also needed are portable electronic sensors that can be configured as point of care devices to monitor the breath of a subject, a ‘Breathalyzer’ for the detection and monitoring of a SARS-CoV-2 infection. Each of these and other aspects of genetic analysis would benefit from having new devices, systems and methods usable for rapid, low cost and accurate genetic analysis.
In accordance with various embodiments of the present disclosure, a molecular electronics sensor is described. In various embodiments, a molecular electronics sensor in accordance with the present disclosure is configured for genetic analysis. In various embodiments, a molecular electronics sensor configured for genetic analysis comprises a multiplexed array of individual sensors configured in subsets of sensor pixels having different configurations and detection abilities.
In various embodiments, a molecular electronics sensor configured for genetic analysis has the potential for faster and lower cost testing, testing that is simpler to perform, and enablement of distributed deployment or point-of-use deployment.
In various embodiments, these benefits are extended to the problems of genetic analysis that occur in the field of infectious disease, and especially viral disease, such as influenza, colds/respiratory viruses, including rhinoviruses and adenoviruses, AIDS virus/HIV, Ebola, Dengue, other hemorrhagic fever viruses, Hanta, Zika and West Nile Virus, SARS, MERS, and novel viruses with pandemic potential, such as COVID-19.
In various embodiments, the present disclosure provides an all-electronic, single molecule detector of DNA or RNA, methods for deployment of sensors in a semiconductor chip format, e.g., a CMOS chip device format, methods to prepare samples containing genetic material using primers for amplification, and methods to address genetic analysis problems in general.
In various embodiments, a sensor device comprises: a plurality of sensor pixels configured in an array on a semiconductor chip, the plurality of sensor pixels comprising at least a first subset of sensor pixels and a second subset of sensor pixels; wherein each sensor pixel in the plurality of sensor pixels comprises a molecular electronics sensor further comprising: a first electrode; a second electrode spaced-apart from the first electrode by a nanogap; a bridge molecule having a first end and a second end, the first end coupled to the first electrode and the second end coupled to the second electrode; and a hybridization probe having an oligonucleotide sequence conjugated to the bridge molecule; wherein each molecular electronics sensor in the first subset of sensor pixels includes a first hybridization probe comprising a first oligonucleotide sequence; and wherein each molecular electronics sensor in the second subset of sensor pixels includes a second hybridization probe comprising a second oligonucleotide sequence.
In one embodiment, a sensor device comprises: a plurality of sensor pixels configured in an array on a semiconductor chip, the plurality of sensor pixels comprising at least a first subset of sensor pixels and a second subset of sensor pixels; wherein each sensor pixel in the plurality of sensor pixels comprises a molecular electronics sensor further comprising: a first electrode; a second electrode spaced-apart from the first electrode by a nanogap; a bridge molecule having a first end and a second end, the first end coupled to the first electrode and the second end coupled to the second electrode; and a hybridization probe having an oligonucleotide sequence conjugated to the bridge molecule; wherein each molecular electronics sensor in the first subset of sensor pixels includes a first hybridization probe comprising a nucleic acid sequence from or complementary to a pathogen sequence (e.g. a SARS-CoV-2 sequence); and wherein each molecular electronics sensor in the second subset of sensor pixels includes a second hybridization probe comprising a second oligonucleotide sequence at least partially complementary to the first hybridization probe.
In various embodiments, each bridge molecule comprises a polypeptide.
In various embodiments, the first oligonucleotide sequence is complementary to a segment of a first pathogen genome.
In various embodiments, a first pathogen genome is SARS-CoV-2.
In various embodiments, the plurality of sensor pixels further comprises a third subset of sensor pixels, and wherein each molecular electronics sensor in the third subset of sensor pixels includes a third hybridization probe comprising a third oligonucleotide sequence.
In various embodiments, each bridge molecule in the plurality of sensor pixels comprises a polypeptide.
In various embodiments, the first oligonucleotide sequence is complementary to a segment of a first pathogen genome, the second oligonucleotide sequence is complementary to a segment of an expressed human gene, and the third oligonucleotide sequence is complementary to a segment of a second pathogen genome. In various embodiments, the expressed human gene comprises a constitutively expressed human gene.
In some embodiments more than one pathogen is detected, the first pathogen genome is SARS-CoV-2, and a second pathogen genome is a strain of Influenza A, a strain of Influenza B, RSV, etc.
In various embodiments, the plurality of sensor pixels further comprises a third subset of sensor pixels and a fourth subset of sensor pixels, wherein each molecular electronics sensor in the third subset of sensor pixels includes a third hybridization probe comprising a third oligonucleotide sequence, and wherein each molecular electronics sensor in the fourth subset of sensor pixels includes a fourth hybridization probe comprising a fourth oligonucleotide sequence.
In various embodiments, each bridge molecule in the plurality of sensor pixels comprises a polypeptide.
In various embodiments, the first oligonucleotide sequence is complementary to a segment of a first pathogen genome, the second oligonucleotide sequence is complementary to a segment of an expressed human gene, the third oligonucleotide sequence is complementary to a segment of a second pathogen genome and the fourth oligonucleotide sequence is complementary to a segment of a third pathogen genome. In various embodiments, the expressed human gene comprises a constitutively expressed human gene.
In various embodiments, the first pathogen genome is SARS-CoV-2, the second pathogen genome is a strain of Influenza A or a strain of Influenza B, the third pathogen genome is RSV, and the human gene is human RNase P gene.
In various embodiments, the plurality of sensor pixels further comprises a third subset of sensor pixels, a fourth subset of sensor pixels, and a fifth set of sensor pixels, wherein each molecular electronics sensor in the third subset of sensor pixels includes a third hybridization probe comprising a third oligonucleotide sequence; wherein each molecular electronics sensor in the fourth subset of sensor pixels includes a fourth hybridization probe comprising a fourth oligonucleotide sequence; and wherein each molecular electronics sensor in the fifth subset of sensor pixels includes a fifth hybridization probe comprising a fifth oligonucleotide sequence.
In various embodiments, each bridge molecule in the plurality of sensor pixels comprises a polypeptide.
In various embodiments, the first oligonucleotide sequence is complementary to a segment of a first pathogen genome, the second oligonucleotide sequence is complementary to a segment of an expressed human gene, the third oligonucleotide sequence is complementary to a segment of a second pathogen genome, the fourth oligonucleotide sequence is complementary to a segment of a third pathogen genome, and the fifth oligonucleotide sequence is complementary to a segment of a fourth pathogen genome. In various embodiments, the expressed human gene comprises a constitutively expressed human gene.
In various embodiments, the first pathogen genome is SARS-CoV-2, the second pathogen genome is a strain of Influenza A, the third pathogen genome is a strain of Influenza B, the fourth pathogen genome is RSV, and the human gene is human RNase P gene.
In various embodiments, each molecular electronics sensor in the first subset of sensor pixels further comprises a first decoding probe bonded to either the bridge molecule or the first hybridization probe in the molecular electronics sensor; each molecular electronics sensor in the second subset of sensor pixels further comprises a second decoding probe bonded to either the bridge molecule or the second hybridization probe in the molecular electronics sensor; each molecular electronics sensor in the third subset of sensor pixels further comprises a third decoding probe bonded to either the bridge molecule or the third hybridization probe in the molecular electronics sensor; each molecular electronics sensor in the fourth subset of sensor pixels further comprises a fourth decoding probe bonded to either the bridge molecule or the fourth hybridization probe in the molecular electronics sensor; and each molecular electronics sensor in the fifth subset of sensor pixels further comprises a fifth decoding probe bonded to either the bridge molecule or the fifth hybridization probe in the molecular electronics sensor.
In various embodiments, a method of detecting a target oligonucleotide sequence in a bio-sample comprises: providing a sensor device comprising a plurality of sensor pixels configured in an array on a semiconductor chip, the plurality of sensor pixels comprising at least a first subset of sensor pixels; wherein each sensor pixel in the plurality of sensor pixels comprises a molecular electronics sensor further comprising: a first electrode; a second electrode spaced-apart from the first electrode by a nanogap; a bridge molecule having a first end and a second end, the first end coupled to the first electrode and the second end coupled to the second electrode; and a hybridization probe having an oligonucleotide sequence conjugated to the bridge molecule; wherein each molecular electronics sensor in the first subset of sensor pixels includes a first hybridization probe comprising a first oligonucleotide sequence capable of hybridizing to the target oligonucleotide sequence; initiating at least one of a voltage or a current through each sensor pixel in the plurality of sensor pixels; exposing the plurality of sensor pixels to the bio-sample; and measuring electrical signals from the first subset of sensor pixels as the target oligonucleotide sequence and the first hybridization probe engage in hybridization, wherein the electrical signals provide a signature indicating the target oligonucleotide sequence is present in the bio-sample.
In various embodiments, the method further comprises amplifying at least the target oligonucleotide sequence prior to exposure of the plurality of sensor pixels to the bio-sample. In various embodiments, the amplifying comprises a Polymerase Chain Reaction (PCR).
In various embodiments, the target oligonucleotide sequence comprises a segment from a genome of a first pathogen.
In various embodiments, the first pathogen is SARS-CoV-2.
In various embodiments, the plurality of sensor pixels further comprises a second subset of sensor pixels, wherein each molecular electronics sensor in the second subset of sensor pixels includes a second hybridization probe comprising a second oligonucleotide sequence capable of hybridizing to a segment of an expressed human gene. In various embodiments, the expressed human gene comprises a constitutively expressed human gene.
In various embodiments, the method further comprises confirming the bio-sample is of human origin by measuring electrical signals from the second subset of sensor pixels as the segment of an expressed human gene and the second hybridization probe engage in hybridization, wherein the electrical signals provide a signature indicating the segment of an expressed human gene is present in the bio-sample. In various embodiments, the expressed human gene comprises a constitutively expressed human gene.
In various embodiments, the human gene is human RNase P gene.
The subject matter is pointed out with particularity and claimed distinctly in the concluding portion of the specification. A more complete understanding, however, may best be obtained by referring to the detailed description and claims when considered in connection with the following drawing figures:
The detailed description of exemplary embodiments makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration and their best mode. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that logical, chemical, and mechanical changes may be made without departing from the spirit and scope of the invention. Thus, the detailed description is presented for purposes of illustration only and not of limitation. For example, unless otherwise noted, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
In various embodiments of the present disclosure, a molecular electronics sensor is disclosed. The molecular electronics sensor may be configured to perform genetic analysis, such as detection of particular DNA or RNA oligonucleotides and fragments. In various embodiments, a molecular electronics sensor herein is configured to identify the presence of and the identity of various strains of organisms in a sample, such as pathogens in a bio-sample.
In various embodiments, the molecular electronics sensor configured for genetic analysis comprises an array of sensor pixels. The array of sensor pixels may be multiplexed such that different analytes may be sensed in parallel. In various embodiments, the array may be multiplexed such that analog or digital signals are combined to enhance data quality.
In various embodiments, each sensor pixel comprises at least one biosensor. Each biosensor comprises a first nanoelectrode, a second nanoelectrode spaced apart from the first nanoelectrode by a nanogap, and a bridge molecule or bridging molecular complex electrically connected to the first and the second nanoelectrodes bridging the nanogap. In various embodiments, the bridging molecular complex comprises at least one DNA or RNA hybridization probe attached to a site on a single molecular wire bridging the electrodes and spanning the nanogap.
Definitions and Interpretations:
As used herein, the term “DNA” refers generally to not only to the formal meaning of deoxyribonucleic acid, but also, in contexts where it would makes sense, to the well-known nucleic acid analogs of DNA that are used throughout molecular biology and biotechnology, such as RNA, or RNA or DNA comprising modifications such as bases having chemical modifications, such as addition of conjugation groups at the 5′ or 3′ termini or on internal bases, or which includes nucleic acids analogues, such as peptide nucleic acid (PNA) or locked nucleic acid (LNA). DNA may generally refer to double stranded or single stranded forms in contexts where this makes sense, and unless specifically designated. In particular, when referring to hybridization and the probes and targets for a DNA molecule, they are interpreted in this broader sense of any of these analogs that undergo hybridization to form a bound duplex.
As used herein, the terms “hybridization” or “DNA hybridization” refer to the process by which a single stranded segment of DNA in solution pairs with its reverse complement sequence to form a duplex molecule via. Watson-Crick base pairing, forming a double helical segment. It is understood here this includes the cases of DNA-RNA pairs forming, RNA-RNA pairs forming, and that such DNA could also include modified bases or nucleic acid analogs such as PNA or LNA. It is understood this pairing can occur between single strands of different length, such pairing occurring between the complementary segments of these longer sequences.
As used herein, the terms “complement,” “match,” “exact match,” and “reverse complement,” in relation to a given segment of single stranded DNA or RNA, all refer to another single strand of DNA or RNA that will hybridize properly with this strand to form a duplex with Watson-Crick base pairings (and base pairing U-A in the case of RNA-DNA or RNA-RNA pairings, in view that RNA has uracil (U) instead of thymine (T)) for the segment of interest.
As used herein, the term “hybridization probe” refers to a molecule having a specific segment of DNA (or RNA) that is used to bind a complementary oligonucleotide strand of interest. Such a strand of interest may exist within a sample or complex pool of known or unknown DNA or RNA fragments, or a diverse set of oligonucleotides presented in a solution environment that allows for the hybridization reaction. A hybridization probe may also include a segment that provides a conjugation site to anchor the molecule in place in a sensor for exposure to a test sample solution. In context, the hybridization probe may refer to the single molecule of interest, or to a quantity of such molecules that all have the same sequence or different sequences. A hybridization probe in many instances may be a short segment of DNA, in the range of from about 10 to about 100 bases, but in general can be a DNA strand of any length. As used herein, the hybridization probe may generally refer to a DNA segment for which only a portion of it is used to hybridize to a target of interest, with other portions of the segment serving different purposes, such as spacers, segments comprising conjugation sites, segments intended to hybridize to other distinct targets, segments intended to bind DNA primers, or sites for binding of decoding probes use to produce location maps for sensor arrays on a chip, including segments that are sites for hybridization to targets that are decoding probes comprising DNA hybridization oligonucleotides, including such oligonucleotides used for combinatorial decoding, wherein oligonucleotides may be labelled or unlabeled with additional signaling groups to aid in decoding of sensor arrays. In various embodiments, a hybridization probe herein may be set forth as a probe functionalized for PCR in that any one of a dye molecule or quencher may be part of the oligonucleotide probe. In various embodiments, a PCR probe having functionalization may be anchored into a molecular electronics sensor by leaving the PCR probe with a free 5′-end or 3′-end, or having an internal position between the 5′ and 3′ ends capable of conjugation to a bridge molecule of a molecular electronics sensor. Thus, in various embodiments, a probe functionalized at both the 5′ and 3′ ends may still be used as a hybridization probe attached to a molecular electronics sensor since the probe may be functionalized with a suitable conjugation site somewhere between the 5′ and 3′ ends (e.g., as per the probe-bridge conjugation illustrated in
As used herein, the term “primer” refers to a single stranded DNA oligonucleotide that has a hybridization binding site on a single stranded DNA template molecule of interest, and the term “primer binding” refers to hybridization of this oligonucleotide to its target site. This term arises from the well-known process of priming a single strand for synthesis of the complementary strand by a polymerase enzyme. However, in the present context, primers and primer binding are merely an alternative way to refer to the process of an oligonucleotide DNA that binds to its complementary site via hybridization, in a context where the primer is typically a relative short segment, e.g., from about 6 to about 60 bases, and more commonly from about 12 to about 40 bases, or from about 16 to about 25 bases in length. In various embodiments, oligonucleotide sequences herein may provide multiple functions, in that a particular sequence may be used as any one of a forward primer, reverse primer, or hybridization probe in various PCR methods, or used as a hybridization probe conjugated to a molecular electronics sensor.
As used herein, the term “decoding probe” generally refers to any molecule whose binding and subsequent detection is used in a process of constructing a sensor map of where hybridization probes for different targets are located on a sensor pixel array. In this context, it is assumed there are a multiplicity of different types of DNA hybridization probes, having different target DNA as defined by the probe sequences, and that molecules of these types have been randomly assembled into a sensor pixel array, or otherwise placed in such a way that their location in the pixel array is unknown. It this context, each hybridization probe is assumed to have physically linked or connected to it, one or more binding sites configured to bind to one or more of the decoding probe molecules. The series of decoded probes are applied to such an array in series or in pooled form, allowed to bind to their specific targets on the hybridization probes, and the bound state is read out using the detectable signal generated by the binding probes. Such binding probes are single stranded DNA oligonucleotide hybridization probes, with hybridization targets on or linked to the DNA hybridization probes on the array. In various embodiments, the detectable signal in decoding is the electrical hybridization signal measurable by the sensor. In other embodiments, dye labels on such probes can be read out with an optical microscope imaging system. Other embodiments can use binding probes that are not based on DNA hybridization, such as aptamers or antibodies or libraries of small molecules.
As used herein, the term “combinatorial decoding” generally refers to any process of decoding the locations of hybridization probes on a sensor array, where a series of outcomes of multiple decoding probe binding reactions is used to generate a unique identifier “barcode” for the array of probes, which determines the hybridization probe identity and where such identification is not simply a one-to-one relation between individual decoding reactions and individual hybridization probes.
As used herein, the term “hybridization target” means DNA or RNA molecules which contain an oligonucleotide sequence complementary to a sequence on a DNA hybridization probe. Such a target could be the exact complementary strand to a hybridization probe, but in most cases the target will be a longer oligonucleotide strand that contains only a segment that is exactly complementary to the probe. In the context of targets with mismatches, molecules may match to the probe except at one or more bases. In the context of hybridization, a “perfect match” means a target sequence that correctly hybridizes to the probe sequence with no mis-paired bases, while a “mismatch” refers to a sequence that may bind to the probe sequence, but which has one or more mis-paired bases, i.e., bases not engaged in the standard Watson-Crick pairing found in natural double helix DNA-DNA or double helix DNA-RNA pairings. Such incomplete pairing will have reduced stability compared to the perfect match binding, which can be generally be used to discriminate perfect matches from mismatched forms, also known as cross-hybridization, in assay methodologies. A perfect match scenario results in a longer lived hybridization event, measured in time, versus a mismatch scenario having a shorter lived hybridization event measured in time. In various embodiments, a hybridization target comprises a segment of the genome from a pathogen, such as a short RNA segment from the SARS-CoV-2 genome, or from an Influenza A or Influenza B strain genome.
As used herein, the term “hybridization assay” refers to an assay or test that comprises the process of hybridization.
As used herein, the interchangeable terms “sample” or “bio-sample” refer to any material intended for testing. In various embodiments, a sample for testing may be in a solid or liquid physical form, and may also be packaged in some form of container, such as a tube, and/or reside in or on a carrier medium such as a swab or filter paper. In various embodiments, a sample may comprise animal or other tissue, cells, bodily fluids, excrement, food products, portions of plants, or any materials collected by a swab, an air filter or a water filter. Such samples may also be stably maintained with some form of preservative or stabilizing agents. The terms sample or bio-sample may refer to a material in its state as initially collected, or materials that have undergone various process steps, such as to extract or amplify DNA or RNA present, prior to being in a form suitable for introduction to a sensor device for analysis.
As used herein, the term “PCR” refers broadly to methods that use polymerase or reverse-transcriptase reactions to produce multiple copies of sequences from source DNA or RNA. In this context, the term “copies” may in general refer to single stranded reverse complements of segments of the source molecule, or single stranded exact copies of segments of the source molecule, or double stranded forms where one strand is identical to a segment of the source molecule. The term “copies” also may refer to the product arising from methods where an RNA template is converted to DNA molecules of the corresponding sequence, or a DNA template is converted to RNA molecules of the corresponding sequence. Such “PCR” methods in this context may include methods with linear amplification or exponential amplification, relative to time or cycle numbers. Such methods include those that use specific primers, or degenerate primers. Such methods also include isothermal reactions that occur in continuous time, or reactions that rely on thermal or chemical cycling. The “PCR” process may produce copies of specific target segments of the source DNA or RNA, as defined by specific primers, or may produce copies from many sites or random sites, as may result from degenerate primers. In particular, “PCR” in this context may refer to isothermal amplification methods that can be used to rapidly produce large amounts of DNA copy fragments from a source genome of RNA or DNA.
As used herein, the term “amplification” of DNA or RNA in a sample material refers to the use of PCR methods, such as recited above, to make copies of a source DNA or RNA. In various embodiments, particular primers may be used to amplify pathogen genetic material that may be present in a bio-sample prior to presenting the bio-sample to a sensor array chip in accordance with the present disclosure.
As used herein, the term “pathogen” refers to any disease-causing agent that has a genome, such as parasites, fungi, viruses, or bacteria, or other single or multicellular organisms that cause disease.
As used herein, the term “strain” refers to genetic variants within a species, i.e., members of the same species that have genomes that differ in sequence.
As used herein, the term “molecular electronics” refers to electronic devices in which a single molecule or a single molecular complex is integrated as a component in an electronic circuit.
As used herein, the term “molecular electronics sensor” refers to a device that transduces molecular interactions into electronic signals, such as by using a single molecule or molecular complex integrated into an electrical circuit as the primary transduction mechanism and wherein the molecular interactions occur between the single molecule or molecular complex and target molecules provided in solution.
As used herein, the term “molecular complex” refers to an assemblage of a small number of molecules, such as only two, held together by chemical conjugation, bioconjugation, or covalent or non-covalent bonds, such that the assembly retains an assembled configuration or affiliation during a process of incorporating the molecular complex into an electrical circuit to provide a sensor, and during use of the resulting sensor in assays. In various embodiments, a small assemblage of molecules may comprise just two molecules, such as a DNA oligonucleotide hybridization probe chemically bound to a bridge molecule. In other embodiments, a molecular complex for use in a molecular electronics sensor may comprise from 2 to 10, from 10 to 100, or from 100 to 1000 molecules in the complex.
As used herein, the term “nanoelectrode” refers to an electrically conducting element having dimensions such as height, width and length of nanometer scale. In various embodiments, a length of a nanoelectrode may be substantially greater than both the height and width of the nanoelectrode such that an end portion of each nanoelectrode can be connected into a circuit. In various configurations, nanoelectrodes are disposed in pairs, wherein in each pair of nanoelectrodes a first nanoelectrode and a second nanoelectrode are spaced-apart by a nanoscale gap referred to as a nanogap. For simplicity, both nanoelectrodes and nanogaps may be called electrodes and gaps, respectively. In various embodiments, a nanoelectrode herein may comprise a metal such as Ag, Al, Au, Cr, Cu, Ni, Ga, Ti, Pt, Pd, Rb, Rh, Ru, or an alloy of these metals. In various embodiments, a contact may be disposed on a nanoelectrode, and the contact may be the same material as the nanoelectrode or a different material. For example, in various embodiments nanoelectrodes comprising Pt may each further comprise an Au nanoscale island in the form of nanopillars disposed at an end of the nanoelectrode.
As used herein, the term “bridge” or “bridge molecule” refers to a molecular wire or other electrically conducting molecule than may be used to make a conducting connection across a gap between spaced-apart nanoelectrodes in a pair of electrodes. Such molecules that function as bridges include, but are not limited to, double stranded DNA, peptide alpha helices, polypeptides having particular amino acid sequences, graphene nanoribbons, pilin filaments or bacterial nanowires, other multichain proteins or conjugates of multiple single-chain proteins, antibodies, carbon nanotubes e.g., single-walled carbon nanotubes (CNTs, SWCNTs), semiconductor layers such as transition metal dichalcogenides (TMD) or other semiconductor nanoribbons or nanowires, or conducting polymers such as polythiophene, poly(3,4-ethylenedioxythiophene (PEDOT) or other synthetic electrically conducting polymers. Such molecules may include attachment groups, i.e., functionality that provide for specific attachment to, and/or self-assembly to, nanoelectrodes or contacts such as islands or deposits thereon.
As used herein, the term “peptide” refers to any contiguous single chain of amino acids, wherein the amino acids are standard, non-standard or modified, or amino-acid analogs that engage in a peptide bond. In various embodiments, peptides herein may be in the range of 10 to 300 amino acids long, or 20 to 200 amino acids long.
As used herein, the terms “sequence identity” and “percent sequence identity,” in the context of two or more peptide sequences or oligonucleotide sequences, refer to two or more sequences or subsequences that have a specified percentage of amino acid or nucleotide base residues that are the same, when compared and aligned for maximum correspondence, as measured using a known sequence comparison algorithm for such comparisons or by visual inspection.
As used herein, the term “chip” refers to a semiconductor chip or a CMOS chip.
As used herein, the term “semiconductor chip” refers to an integrated circuit chip comprising semiconductor materials such as silicon or gallium, and which can be fabricated with techniques used in the semiconductor industry.
As used herein, the term “CMOS chip” refers to an integrated circuit chip fabricated using CMOS process techniques from the semiconductor industry. CMOS is an acronym for Complementary Metal-Oxide Semiconductor, and refers to a specific manufacturing process for making integrated circuit chips of the type most produced for processors, DRAM memory, and digital imager devices. As used herein, “CMOS chip” also refers to a device fabricated at the foundries that make such chips in industry, but which may also be postprocessed in accordance to the present disclosure, for example to add or to expose nanoelectrodes, suitably protection over such nanoelectrodes (e.g., dielectric layers), in order to configure the CMOS chip for use in molecule electronics sensor arrangements.
In various embodiments, the term “pixel” refers to a sensor circuit and/or a measurement circuit that is repeated throughout an array of such identical circuits disposed on a chip. A pixel may in context refer to just a measurement circuit, such as an electrical current meter measuring circuit, or may also include a sensor transducer element or elements affiliated with the circuit, which here are the molecular electronic components, i.e., molecules attached to nanoelectrodes. In various embodiments, a pixel may comprise at least one sensor, wherein each sensor comprises first and second nanoelectrodes separated by a nanogap and a bridge molecule bridging the gap and conjugated to at least one hybridization probe. In various embodiments, a pixel may comprise only one sensor circuit, i.e., only one pair of electrodes with its associated bridging molecular complex. In other embodiments, a pixel may comprise more than one molecular sensor, even a plurality of sensors. For definiteness, the term “measurement pixel” as used herein refers to a measurement circuitry of the pixel, and the term “sensor pixel” refers to a pixel circuit affiliated with a given sensor element. The origins of this term come from image sensors, where such pixels contain light sensing elements and measurement circuitry for capturing an element of a picture. In accordance with the present context, the term pixel is unrelated to light sensing or imaging, but rather the pixels disclosed herein are configured for sensing chemical interactions rather than light.
In various embodiments, the term “sensor” refers to a molecular electronics complex comprising a pair of nanoelectrodes, a bridge molecule and a hybridization probe conjugated to the bridge molecule, which is the primary transducer of interactions of the hybridization probes to electrical signals. In contexts where it makes sense, a sensor can also refer to this basic configuration plus the supporting current measurement circuitry, such as including the pixel circuits. “Sensor pixel” refers to the pixel circuitry that provides measurements to a particular sensor. In various embodiments, each sensor comprises a first nanoelectrode and a second nanoelectrode spaced-apart from the first nanoelectrode by a nanogap, and wherein a bridge molecule electrically connects the first and second nanoelectrodes together and bridges over the nanogap, and wherein at least one DNA or RNA hybridization probe is conjugated to a specific site along the bridge molecule.
As used herein, the term “signal group” or “signal enhancing group” refers to a chemical group that could be added to an oligonucleotide, such that the presence of this group complexed into a probe-bridge complex, versus dissociation from this complex, produces a detectable signal. In particular, such a group may be displaced from the critical position by target probe binding, or may be brought into proximity as a label on the target strand.
As used herein, the term “secondary structure” refers to the physical conformation that a DNA strand assumes in response to bonds it forms with itself or with other molecules. In particular, secondary structures include structures that form from hybridization between portions of a DNA molecule, or between two DNA molecules. Also included are structures that may result from the DNA strand interacting with the bridge molecule. Secondary structure can be induced by hybridization binding, or from other forms of binding.
As used herein, the term “multiplexed” refers to arrangements of individual sensor pixels for the purpose of sensing different analytes in parallel and/or for combining multiple analog or digital signals to augment the quality of data obtained from a sensor array. In various embodiments herein, a sensor array may be referred to as multiplexed in the sense that the array comprises a plurality of sensor pixels, each sensor pixel comprising at least one molecular sensor, and wherein each molecular sensor may be configured to hybridize with and thus detect either different analytes or the same analyte. Multiplexed sensor arrays herein, configured to detect different analytes in parallel, may further comprise switching arrangements that allow for individual pixels or groups of pixels to be queried as to the analyte or analytes they may have sensed. The multiplexed arrays may be organized in subsets of sensor pixels, wherein the summation of the subsets of sensor pixels equals the plurality of sensor pixels, and wherein each subset of sensor pixels is configured to detect a different analyte. Subsets may be geographically arranged on a chip, or may be interspersed.
In various embodiments, a molecular electronics sensor herein utilizes DNA or RNA hybridization in order to obtain benefits of testing speed, simplicity, robustness, and broad applicability that hybridization-based detection provides.
In various embodiments, a molecular electronics sensor herein, configured for genetic analysis, has the benefits of providing for faster testing, lower cost testing, lower cost test apparatus, and testing that is simpler to perform, and that also enables highly distributed deployment or point-of-use deployment of such testing systems, including mobile use and home use of such testing systems.
In various embodiments, an all-electronic, single molecule detector of DNA or RNA segments of interest is disclosed. In various embodiments, a molecular electronics sensor configured for genetic analysis can also obtain the concentration of DNA or RNA segments of interest. Further, the present disclosure provides methods for these sensors to be deployed in a semiconductor chip format, e.g., in a CMOS chip device format, and provides methods to perform highly multiplexed measurements on such chip devices in order to provide the benefits of low cost, rapid and portable testing, and the added benefit that such chip-based devices, systems and kits can be manufactured in extremely high volumes at low cost by leveraging existing manufacturing of the semiconductor industry. In various embodiments, the present disclosure provides methods by which these devices and systems can be used to address genetic analysis problems of importance specifically in the areas concerning the diagnosis and treatment of a disease.
In various embodiments, a DNA or RNA hybridization probe, which is a short piece of single stranded DNA or RNA, is suitably attached to a bridge molecule that spans the nanogap between two spaced-apart nanoelectrodes, whereby the bridge molecule is suitably and electrically attached to each. A voltage is applied across the electrodes, which is accompanied by current flow through the bridge molecule. This current can be measured versus time. When this molecular electronics sensor is exposed to a sample of DNA or RNA in solution, if the hybridization probe encounters and binds to its exact match target, a distinguishable signal is produced in the measured current. This signal provides primary detection of the target being present in the sample. If the exact match target is not encountered, there is no such distinguishable signal. This provides for the primary detection of targets of interest in a sample. In this configuration, a molecular electronics single molecule hybridization sensor detects the presence or absence of a target DNA or RNA molecule of interest in a sample.
In various embodiments, the detectible signal corresponding to a hybridization event comprises a series of spikes seen in the current measured over time, corresponding to target DNA or RNA binding to the hybridization probe (the “on” state), and then coming back off of the probe (the “off” state). This binding/unbinding is expected hybridization behavior, as the binding is reversible. Further, the rate of binding “on” is influenced by the concentration of the target DNA or RNA in solution, as well as the composition of the solution such as salt levels, divalent cation levels (such as Mg++, Mn++, etc.), pH, temperature, etc., and the rate of coming “off” is also dependent on these properties of the solution. In various embodiments, the binding/unbinding hybridization may be referred to as an “on-off event” having a particular and measurable rate.
In various embodiments, the properties of the observed signals, e.g., electrical current spikes, on-off rates, time between pulses, or the ratio of time on to time off, are relatable to the concentration of the target undergoing the hybridization event, and therefore provide a measure of concentration of the target of interest. In this way, a molecular electronics single molecule hybridization sensor can detect a concentration of a target DNA or RNA molecule of interest in a sample, including samples that may also comprise a complex pool of off-target oligonucleotide fragments.
In various embodiments, a perfect match between hybridization probe and DNA or RNA target will produce a detectible signal, whereas a single mismatch in a target DNA or RNA relative to the DNA or RNA probe in the sensor will produce a distinguishably altered signal. Further levels of mismatches will produce little or no distinguishable signals. In this way, the sensor signal can be used to distinguish targets that are a perfect match to the hybridization probe from even a single base mismatch. This provides sufficient sensitivity to perform genotyping and organism strain determination assays, which often require the ability to discriminate nucleic acid targets that differ by as little as a single base mismatch, or otherwise differ by just a few bases of mismatch, or insertions or deletions of one or a few bases. In particular, the identification of single nucleotide polymorphism (SNP) genotypes is possible, as these require single base discriminations.
In various embodiments, the present disclosure provides a method for SNP genotyping where, in a sample to be assessed, two or more sequence variants may be present, differing by one or more bases. To distinguish between two very closely related nucleic acid sequences, specific hybridization probes are made for each sequence variation contemplated and the probes are put into molecular electronic sensors as disclosed herein. From a primary bio-sample of interest, DNA or RNA is suitably amplified as necessary and/or purified as necessary using any of various means known in molecular biology, and the amplified/purified sample is applied to the sensors having probes for each of the two sequence variations. The sample may be applied separately, in different reaction volumes, or within one reaction volume applied to a device containing both sensors. Such a device could be a CMOS chip with both sensors present on the chip. By monitoring the signals from each sensor, one can determine if either, or both, or neither of the two variants are present in the sample, and this information can be used to determine a genotype for subsequent interpretation or to identify the presence of one or more specific strains of a pathogen. In various embodiments, analysis of a sample in this way determines the strain of a parasite, fungi, bacteria, or virus.
In various embodiments, a bridge molecule for any individual sensor may comprise any molecule that can serve as a conducting connection between the spaced-apart nanoelectrodes in a pair of electrodes. Such a conducting bridge molecule may comprise a double stranded DNA segment, an alpha-helical protein, a polypeptide having a desired amino acid sequence, a carbon nanotube, a graphene nanoribbon, a multi-chain protein such as a bacterial pilin filament or bacterial nanowire, or a conducting synthetic organic polymer such as PEDOT.
In various embodiments, such a bridge molecule includes a specific conjugation site to which the DNA or RNA hybridization probe conjugated. The conjugation between bridge molecule and hybridization probe may comprise covalent or noncovalent bonding, such as through any of many possible bioconjugation mechanisms. In various embodiments, the conjugation between hybridization probe and bridge molecule may comprise a click chemistry coupling, such as dibenzocyclooctyne-azide (DBCO-azide) or trans-cyclooctene-azide (TCO-azide), or other non-copper or copper click reactions, an 3-arylpropiolonitrile-thiol (APN-thiol) coupling, an amine-N-hydroxysuccinimide (amine-NETS) ester coupling, a biotin-avidin coupling, a peptide-tag based coupling such as Spy-Tag/Spy-Catcher, or an AviTag™ (GeneCopoeia, Inc.) or an aldehyde tag.
In various embodiment, a DNA or RNA hybridization probe for use herein may be between about 8 and about 200 bases in length, preferably between about 10 and about 100 bases in length, and more preferably from about 12 to about 60 bases in length. In applications requiring single base discrimination, such as in SNP genotyping or viral strain determinations, the probe length is preferably from about 12 to about 30 bases in length, or more preferably from about 15 to about 25 bases in length. In various embodiments, a DNA (or RNA) probe may also comprise other nucleic acids or nucleic acid analogs, such as RNA (or DNA), peptide nucleic acid (PNA) or locked nucleic acid (LNA), any of which may provide stronger binding or greater specificity of binding.
In various embodiments, a hybridization probe for use herein may comprise a fluorescent group, such as to be used for quality control in the fabrication of such sensor molecules or the finished sensors. In various embodiments, a hybridization probe may contain both a dye and a quencher group, provided there is at least one site on the hybridization probe, e.g., the 5′-end, the 3′-end, or a site internal in the sequence, for conjugation to a bridge molecule in each sensor.
In various embodiments, molecular sensors configured for genetic analysis in accordance with the present disclosure may be used for gene expression analysis of any cellular samples, and in general any application where methods such as DNA microarrays have been used for gene expression. In various embodiments, this would include gene expression applied to tumor tissue as might be used in cancer diagnostics.
In various embodiments, molecular sensors configured for genetic analysis in accordance with the present disclosure may be used for SNP genotyping in human, animal, or other cellular samples, and in general any application where methods such as DNA microarrays have been used for genotyping. In various embodiments, molecular sensors configured for genetic analysis can be used for SNP genotyping in humans.
In various embodiments, molecular sensors configured for genetic analysis in accordance with the present disclosure may be used for species identification, in particular for determining what species a given tissue sample is taken from, or in the identification of which bacteria or viruses are present in a given sample. In various embodiments, molecular sensors configured for genetic analysis can test environmental samples for the presence of a given virus, such as COVID-19. In various embodiments, a sample for testing may comprise a tissue sample from any of the common animal and insect vectors for viral transmission, such as bats, birds, rodents or mosquitoes. In various embodiments, a sample could comprise material previously filtered from air or water (e.g., taken from air or water filtration media), or material previously swabbed from a surface. In various embodiments, a sample may comprise a bio-sample taken from a human or animal subject, such as saliva, mucous, buccal swab, blood, sweat, urine, stool, or exhaled air.
In various embodiments, molecular sensors configured for genetic analysis in accordance with the present disclosure may be used for organism strain identification, in particular for determining what strain of bacteria or viruses are present in a given sample. In various embodiments, environmental samples may be tested for the presence of a given strain of a virus, such as COVID-19. The samples for testing could be the same as for the previous species identification application.
In various embodiments, molecular electronic sensors described herein are deployed as a sensor pixel array on a CMOS chip device.
In various embodiments, chip-based devices are deployed in a compact, low-cost electronic instrument that is suitable for distributed use, field use, or point-of-care use.
In various embodiments, starting from a primary bio-sample acquired directly from a test subject or from the environment, some form of sample prep is required to prepare materials suitable for application to the sensor device for analysis. The primary sample may comprise tissue, saliva, mucous, buccal swab, blood, sweat, urine, stool, or exhaled air, or material filtered from air or water onto various types of media, or material swabbed from a surface. The sample prep could may result in a crude lysate containing DNA, or could be DNA purified from the sample by standard purification columns, filters, and procedures. In various embodiments, a prepared sample may be the result of applying any of the many forms of PCR amplification to a sample, which may comprise, for example, thermocycling or isothermal PCR using the primer sequences set forth herein. In various embodiments, sample prep is conducted by a self-contained sample prep device, or in other embodiments, a device integrated with the sensor platform, such as in the case of fully integrated point-of-use testing devices.
In various embodiments, a molecular wire used to bridge between spaced-apart nanoelectrodes in a pair of electrodes may have a length of from about 3 to about 10 nm, or from about 10 to about 100 nm, or from about 100 to about 1000 nm, or from about 1000 to about 10,000 nm.
In various embodiments, more than one hybridization probe is conjugated at specific sites on the bridging molecular wire, such probes being identical DNA probes or different DNA probes. The benefits of having multiple probes bonded to a common bridging molecular wire include, but are not limited to, increased signal, increased signal-to-noise ratio, robustness against failures in conjugation between probe and molecular wire, robustness against probes being physically inaccessible, or to allow for the ability to multiplex the sensor for detection of multiple targets, for greater robustness or breadth of detection. In various embodiments, multiple probes conjugated to a single molecule wire may number between 2 and about 10, between about 10 and about 100, or between about 100 and about 1000. Multiple probes on a single molecular wire bridge may be located so as to directionally point in similar orientations relative to the bridge, or may be located so as to point in different orientations away from the bridge. The spacing between each of the probes along a single molecular bridge can be in the range of about 1 to about 10 nm, or in the range of from about 10 nm to about 100 nm.
In various embodiments, molecular electronic sensors herein are deployed onto a CMOS chip device in the form of a sensor pixel array, where each pixel comprises at least one molecular sensor disclosed herein with nanoelectrodes appropriately configured and coupled into a circuit that provides for application of a voltage and measurement of a current, and for readout of the array of measured currents, and with the circuitry for the transfer of such data off-chip. In various embodiments, such data is digitized by on-chip ADC circuits before being transferred off-chip.
In various embodiments, more than one pair of nanoelectrodes are used per measurement pixel, and therefore more than one molecular electronic sensor exists per pixel so that one measurement pixel circuit may be used to monitor signals from multiple sensor devices (nanoelectrode pairs with bridge and hybridization probe molecule). In various embodiments, the measurement circuitry configured for applying voltages, measuring current, and reading out data from each pixel is applied serial1y in time to each sensor within the pixel, under control of transistor-based switches in the sensor circuit that can select any of the sensors individually or in groups for measurement. In this way, a number of N pixel circuits on chip can acquire measurements from a larger (and potentially much larger) number, M of sensors. This configuration has the benefit of greatly lower cost of chips deploying M sensors, versus having one pixel per sensor, because the size of the pixel is not increased in proportion to the number of nanoelectrode pairs in each pixel. In various embodiments, each pixel may have from about 2 to about 1024 sensors per pixel, and preferably in the range of from about 4 to about 128 sensors per pixel. In various embodiments, the chip array architecture is such that nearby pixels in the array share a common staging area where the many nanoelectrode pairs for these neighbors are all located and suitably electrically routed back to these adjacent pixel circuits. The use of such staging areas further improves the efficiency of circuit layouts and thereby improves pixel density, ultimately lowering chip costs for a given number of pixels and sensors.
Multiplex Probe Maps and Decoding Methods
In various embodiments, sensor arrays in which multiple distinct hybridization probe sensors are deployed on a single chip for the purpose of multiplex testing, interpretation of sensor data from the chip device benefits from a sensor map that shows which of the specific hybridization probes are present at the different pixel locations, or sensor locations within a pixel if multiple sensors are affiliated with each pixel. This allows the measured sensor data readout from the pixel array to be related to the particular probe target being assessed at each sensor. Such a sensor map may be produced by various techniques based on how the probe molecules are prepared and applied to assemble into the array. This map is referred to as the probe map for the sensor array or pixel array.
In various embodiments, a method for constructing a probe map of a sensor array comprises spatially controlled exposure of pixels to different solutions containing particular hybridization probes (or previously formed hybridization probe-bridge complexes) during sensor assembly, such that the probe map is determined by knowing which probe or molecular complex was applied to which pixels. This spatial control can be achieved by mechanically applying solution only to certain regions of the chip, instead of applying solution to the entire chip pixel array. In other embodiments, spatial control is achieved by applying a probe assembly solution to the entire chip array, but contemporaneously with a voltage-driven assembly process such that only electrically activated pixels attract and assemble the probe molecules or probe-bridge complexes thus applied into various sensor nanoelectrodes. In various embodiments, this can be accomplished by applying an appropriate voltage and/or polarity to electrodes to electrically configure electrodes to either attract or repel the probes or probe-bridge complexes in the local environment. For example, a positive voltage may be used to attract negative charges on DNA in solution, or a negative voltage may be used to repel such negatively charged DNA. This phenomena relies on the process of electrophoresis.
In other embodiments, an AC voltage may be used to selectively attract or repel the various probe or probe-bridge molecules, using the process of dielectrophoretic forcing. In particular, the solution containing a particular probe type or probe-bridge type destined for a particular target is applied to the solution for a short period of time and in a low concentration, such that diffusive transport is unlikely to deliver these molecules to bind to nanoelectrodes on the chip array. However, for the desired nanoelectrode locations of the molecules, an AC voltage of proper frequency and amplitude creates a dielectrophoretic force that will drive these molecules to concentrate near the electrode gaps of the intended sites in the form of localized concentrations, and allowing the electrodes to selectively bind the intended probes or probe-bridge complexes. The solution is then flushed away, and the next probe introduced in the presence of other dielectrophoretic forces at other electrodes. This procedure may be done for individual probes, or pools of distinct probe types, in which case their locations are restricted to a much smaller set of possible sites, yet probe type from the pool is still randomly distributed across electrodes within those site sets, and further location information would be required to complete the map to the individual sensor level. In various embodiments, the low concentrations of the probes used may be in the range of about 1 pM (pico-Molar) to about 100nM (nano-molar), the exposure time used may be in the range of about 0.1 sec to about 100 sec, and the amplitude of applied voltage used to locally concentrate probe or probe-bridge molecules maybe be in the range of from about 0.1 V to about 10 V, and the frequency of AC modulation used may be in the range of from about 1 KHZ to about 100 MHZ.
In various embodiments, a probe map may be constructed by decoding hybridization probe locations by interpreting the results of special binding reactions, with special detectable probes (that are not necessarily DNA hybridization probes), designed to be able to locate or localize each specific hybridization probes type on the array. In various embodiments of a method for constructing a probe map of a sensor array, each distinct hybridization probe type (or probe-bridge complex) may be provided with one or more binding sites directly coupled to, or integrated into, the probe molecule (or probe-bridge complex), wherein the binding sites are capable of producing a unique, observable binding signature for that hybridization probe type in response to binding with the corresponding decoding probe molecules, and with such a signature being localizable down to the resolution of a specific probe site (i.e., nanoelectrode pair) or pixel, as required for the complete hybridization probe map. These decoding signatures can then be used to decode the pixel locations of the different types of probes post-assembly on the array. In this method, the hybridization probes (or probe-bridge complexes) are applied as a pool to the pixel array and allowed to randomly assemble onto the nanoelectrode pairs present on the pixels. After they are assembled into each of the pixels, the decoding probe molecules are applied to the array and the array is observed for the unique binding signatures localized to sensor sites, identifying which pixel sites have bound which hybridization probes.
In various embodiments, the observation of a decoding signature from a pixel array may be accomplished by monitoring electrical signals from the pixels produced in response to the decoding probe binding events. In various embodiments, these decoding probes are themselves DNA hybridization probes whose targets are affiliated with the hybridization probes, and their hybridization events also produce detectable signals in the sensor. The decoding scheme may require one or a multiplicity of such decoding hybridization targets affiliated with the hybridization probe. There are many ways such targets can be affiliated with a hybridization probe. For example, a DNA target of a decoding probe may be linked to a primary hybridization probe DNA by a linker molecule, and there may be two or more such linked targets. In general, any number of decoding targets can be affiliated with the probe to be encoded. For various other examples, a segment of a DNA strand containing the hybridization probe may also include another contiguous segment that is a target of the decoding probe and, in various embodiments, a number of such targets can be present in series, all encompassed within a single DNA strand. In various embodiments, conjugation of such a strand to the bridge molecule may be located at an interior part of the strand in order to allow both the hybridization probe segment, and the decoding target segments, to be similarly close in proximity to the bridge molecule to promote more sensitive detection of the decoding targets.
In other embodiments, these signature may comprise optical signatures produced from dye molecules by imaging the chip under white light or fluorescence conditions. In various embodiments, the dye molecules or fluorescent groups may comprise quantum dots configured on the decoding probes, wherein the optical signatures may be acquired by microscopic imaging of the chip under white light or fluorescent light, and widefield imaging or confocal scanning conditions. This procedure is sufficient to localize the optical signals to within approximately 1 micron, or one wavelength of the emitted light, of the location of the decoding probe itself, thus providing spatial resolution in the range of approximately 0.5 microns to about 1 micron. This is sufficient to localize the probes. If super-resolution imaging methods are employed, localization below the wavelength of light (the so-called diffraction limit) is possible, down to about 100 nm or down to about 20 nm.
In various embodiments, a probe map may be constructed by a process of “direct decoding” in which there are N total distinct decoding probe types D1, D2, . . . DN, whose targets are put in one to one fashion on N distinct hybridization probe types H1, H2, . . . , HN, and where the decoding reactions are directly reacting D1 against the array to observe all H1 locations, reacting D2 against the array to observe all H2 locations, and so forth, up to reacting DN against the array to observe HN locations. These should have distinct sequence targets, having very low cross-hybridization between them. These probes are assembled randomly onto the sites on the chip array. Then, a series of N hybridization reactions is performed on the chip. In reaction i, decoding probe Di is hybridized to the array, and the detection readout of each sensor is recorded. Sensors where Di finds its target produce a detection signal, and this directly identifies which sensors have probe Pi. In doing this process for reactions i=1 . . . N enables the decoding of the locations of all probes, resulting in the probe map. In various embodiments, this same method works in instances where instead of an electrical readout, optical labeling and imaging location is used to localize the decoding probes. For example, the decoding probes may be taken to be the targets of the hybridization probes in question, i.e., Di is the target of Hi. This has the advantage that no extra target sequences need to be added to the hybridization probes to achieve decoding. However, the decoding probes Di may be chosen to have better physical hybridization properties than simple choice might afford, such as stronger on-target binding and weaker cross-hybridization with other decoding probe targets, or more uniform performance across the set.
In various embodiments, decoding methods that produce a probe map may be generally referred to as “combinatorial encoding and decoding.” In these methods, a series of decoding probe reactions are applied, and for each given probe site on the array, the series of detection/non-detection results from these reactions provide enough information, in aggregate, to uniquely determine the identity of the probe at the site. Several canonical embodiments of such combinatorial methods are discussed herein. It is understood that there are other variations, reformulations, and combinations of these that can be used as alternative decoding schemes for building a probe map. All such variations, reformulations, and combinations are meant to be encompassed by these example embodiments.
In various embodiments, the canonical combinatorial decoding embodiments provided may be described succinctly and efficiently as follows, wherein to achieve this, the assay to be performed, their order, and their outcomes are arranged and represented with 0/1 in ways that allow the direct relationship of decoding probe assay results to probe identification codes. For example, assuming there are N hybridization probes types H1, H2, . . . Hi . . . HN for which a location map is desired. In various embodiments of this method, there is provided a set of N distinct K-bit binary code strings {B1, B2, . . . Bi, . . . BN}, where these Bi are various strings of length K, composed of the symbols “0” and “1”, such as, for example, might be the string B=“1001011” in a case where the length is K=7. The code Bi is assigned to probe Hi, for i=1 . . . N, and these codes will be used in physical encoding and decoding processes to identify this probe for the probe map on the array. Note that any such set of N strings will provide a valid encoding for the methods that follow, although special sets of such strings, as described herein, can also provide for the additional feature of error detection and correction in the decoding measurement process used in array assays. Also, note that as there are exactly 2K distinct strings of length K, so it is required (in order to have enough such binary codes) that 2K≥N. Indeed, for any K satisfying this requirement, various embodiments include the choice of any subset set of N strings from the master set of 2K possibilities, and if N=2K, an embodiment is simply to use all K-bit strings, listed in any order. Note that in these code assignments, if all the code strings {B1, B2 . . . Bi . . . BN} have the same binary digit in position j (i.e., the jth digit is always 0, or always 1), this position is uninformative and can be eliminated from the strings, reducing their length K to K−1. This can be repeated to remove all such uninformative positions in the strings, so as to reduce the number of physical encoding probes required in the methods herein.
In various embodiments, there are N decoding probes and N hybridization probes as explained herein but the reactions comprise applying pools composed of a randomly chosen subset of half of the decoding probes. The outcome for each hybridization probe in such a pooled reaction is one bit of information regarding a target site of any probe in the pool. A series of K these reactions generates K bits of decoding information, and, probabilistically, after K=Log2[N] reactions, the expectation is that the hybridization probes are uniquely identified and mapped to the array. The advantage of this approach is to perform much fewer decoding hybridization reactions than for the direct approach, since for N>2 probe types, K is less than N, and much less for N>>2 (e.g., for N=64 probe types, K=6, for N=1024 probe types, K=10, and for N=1 million probe types, K=20).
In various embodiments of combinatorial decoding, there are 2K decoding probes with unique targets, denoted Dij, where i=0 or 1, and j=1 . . . K, i.e., D01, D11, D02, D12, . . . D0i, D1i, . . . D0K, D1K, linked to each hybridization probe is a series of K targets uniquely chosen by assigning one target from each decoding probe pair {D01, D11}, {D02, D12}, . . . , {D0K, D1K}. This encodes a total of 2K hybridization probes, one for each unique binary pattern of D0i/D1i selections. By performing these 2K hybridization reactions for the individual decoding probes, each hybridization probe on the array receives a K-bit identifier for whether Ai or Bi target the probe, i=1 . . . K. This K bit identifier uniquely determines the probe identity and map location. These decoding probes should have distinct target sequences, and preferably have low potential for cross-hybridization. For a probe Hi, the associated physical encoding targets are taken to be the target DNA oligonucleotides of the encoding probes D(b1)1, D(b2)2, . . . , D(bK)K, where b1, b2, . . . , bK are the binary digits of the encoding string Bi, i.e., bj is the jth digit of string Bi. These encoding probe target DNA oligos are then to be physically linked or affiliated with the physical hybridization probe oligonucleotides. Note that with the probes so encoded, that for any probe, Hi, and a pair of encoding probes D0j and D1j, precisely one of these two probes will have its target on the physically encoded probe for Hi. To achieve decoding of probe locations on the arrays, the series of 2K reactions trying to hybridize the individual encoding probes D01, D11, D02, D12, . . . , D0j, D1j, . . . , D0K, D1K is performed, and for any probe site of the array, the outcome of these reactions is recorded by taking the trial of both D0j and D1j, and recording the outcome of these two reactions for the site as trialj=0 if D0j is bound or trialj=1 if D1j is bound, at the site in question. Then the complete binary string of trial outcomes for the site in question is succinctly written as (trial1)(trial2) . . . (trialk). As constructed in this process, this string will be identical to the code Bi assigned to the hybridization probe Hi that is in fact located at the site in question. In this way, for each site, the reaction results from the decoding probes are decoded to some precise Bi code and related Hi probe from the probe set. Therefore, the outcomes of this series of 2K decoding hybridizations across all sites on the array provides the code strings that identify and localizes in the array all occurrences of every probe H1 . . . HN. Thus, the probe map is constructed.
The advantage of this combinatorial decoding scheme is that the number of both the decoding probes, 2K, and decoding reactions, are much less than the number of hybridization probes, so this process does not require generation of a large number of individual decoding probes. For example, 12 decoding probes can decode 26=64 hybridization probes, 20 decoding probes can decode 210=1024 hybridization probes, and 40 decoding probes can decode 220=1 million hybridization probes. The disadvantage of this approach versus the other, is that here each hybridization probe must be linked to K decoding probe binding sites, and this can become limiting due to the size of steric hinderance constraints, since these sites must correspond to physical binding groups linked to the primary hybridization probe, such as K additional DNA oligonucleotide binding sites in the case where the decoding probes are DNA hybridization probes. In other embodiments, these two combinatorial methods, i.e., probe pooling and combinatorial encoding, can be combined. In the combined approach, there are a total of LK unique decoding probes, organized into groups of L probes, with K groups: {D01,D11, . . . , DL1}, . . . , {D0i, . . . , DLi}, {D0K, . . . , DLK}. The hybridization probes to be mapped each have K target sites, and at the ith target site, a target for a probe in group i is assigned. There are a total of LK unique assignment patterns, and thus this many hybridization probes can be decoded. The decoding reactions use the random 50% sub-pool method to decode the probes in each group so that each group requires Log2[K] reactions for decoding with high statistical confidence. Thus, with a total of L×Log2[K] pooled decoding reactions, with high statistical confidence, a total of LK hybridization probes can be mapped. This allows for tradeoffs between the total number of decoding probes that must be produced, N=LK, the number of reactions that must be performed, L×Log2[K], and the number of probes mappable, LK. K=1 corresponds to pure decoding with 50% pools, and L=2 corresponds to the completely combinatorial encoding.
In various embodiments, physical encoding is performed more compactly. For the probe Hi, the associated physical encoding targets are taken to be the target DNA oligonucleotides of the encoding probes D(b1)1, D(b2)2, . . . , D(bK)K, but probes are only physically tagged with the D1x targets. That is, probes are note tagged with any of the D0x targets when performing the decoding. Further, when performing this decoding above, only the K reactions of the probe D1x probes, D11, D12, . . . , D1j, . . . , D1K are applied. The results of these trial assays can be recorded as testj=1 if D1j binds at a probe site, and testj=0 if it does not bind. In this case, the result string (test1)(test2) . . . (testj) . . . (testK) is the same binary string as recovered above in the previous embodiment, because above, if D1j did bind, testj=1, as in the present method, and if D1j did not bind, this is the same as D0j binding, which also recorded as 0 above and in the present method. Thus, the same probe map decoding is achieved. It is a benefit of this embodiment that fewer physical target oligonucleotides need to be linked to each hybridization probes, and overall the method requires only half as many physical encoding probes to be produced, and their associated targets to be produced and linked to probes.
In various embodiments, reaction procedures and outcomes are efficiently encoded by 0/1 indicators that allow direct interpretation of decoding assay results for an unknown probe as the binary code identifying the probe. This method relies on reacting pools of decoding probes rather than individual probe reactions, but otherwise within a similar logical framework. In an example, hybridization probe types H1 . . . HN, are assumed present and assigned K-bit binary codes {B1 . . . BN}. There are then further provided the same number of N decoding probes that are hybridization probes denoted as D1, . . . , DN. These decoding probes should have distinct target sequences and preferably a low potential for cross-hybridization. The target of each Di is to be physically linked to the corresponding probe Hi. A total of 2K pools of decoding probes P01, P11, P02, P12, . . . , P0i, P1i, . . . , P0K, P1K, are defined as follows. The members of pool P0j are all probes Di for which bit j of code Bi is 1, and similarly, the members of pool P1j are all probes Di for which bit j of code Bi is 0. Given these pool memberships, the corresponding physical probe pools are produced as equimolar mixtures of the decoding probe oligonucleotides for the pool. Under this construction, the result of reacting the physical pool of probes P1j against a probe Hi on the array will be a match if code Bi has 1 in position j, and this outcome is to be recorded as trialj=1, while otherwise, if there is a 0 in position j off code Bi, the match will instead occur for pool P0j, and this outcome is denoted by trialj=0. With the outcome of all the K pooled reactions against the array recorded by the string (trial1)(trial2) . . . (trialK), then this string matches the code Bi of the probe in question Hi, and these series of reaction outcomes provides decoding of the probe identity. Thus, the results of reacting the 2K pools to the array decodes all occurrences of all probes on the array, and provides the required probe map. Note in one embodiment above, the Di could be taken as the targets of the Hi, in which case no special linkage of targets to the Hi is required. However, in general, other sets of {Di} could have more desirable hybridization properties of uniformity of Tm and low cross-hybridization potential, and better discrimination of perfect match signals from background.
In various embodiments, only the K pools P11, P12, . . . , P1j, . . . P1K are physically constructed, and these are reacted to the array in a series of K reactions. For each site on the array, the result is recorded as trialj=1 if hybridization was observed with pool P1j, other 0 if it was not observed. The resulting string (trial1)(trial2) . . . (trialK) that encodes this outcome, is identical to the string in the above embodiments, and therefore this string provides the code string Bi that identifies the probe Hi. The results of reacting these K pools to the array, therefore, decodes all occurrences of all probes on the array, and provides the required probe map. This requires half as many pool constructions and hybridizations as the previous embodiments.
In various embodiments, decoding of a pixel array may comprise a combinatorial process, wherein a series of binding events, followed by signature detection events, is used to build up a meta-signature as a series of individual signatures. In various embodiments, decoding probes are themselves DNA hybridization probes that are added to the single stranded DNA oligonucleotide that also includes the primary hybridization probe sequence. In such embodiments, these decodable hybridization probes are longer single stranded DNA oligonucleotides that comprise a segment comprising the sequence of the hybridization probe for the target of interest, and other distinct sequence segments that are hybridization targets for the series of decoding hybridization probes. In such embodiments, the decoding process comprises a series of hybridization reactions, applying the decoding hybridization probes one at a time, and each time detecting for each pixel or nanoelectrode pair a signature indicating the presence or absence of the target sequence on the probe, and thereby building up a combinatorial signature to uniquely identify the probe type present at each pixel or nanoelectrode pair.
In various embodiments of decoding, any set of N binary K-bit strings {B1, . . . , BN} provides an encoding and decoding method. Within this framework, the specification of specific code word sets provide substantial benefits. For illustration of this point, note that in the combinatorial decoding schemes above, if the number of probes N=2K, each and every K-bit binary string is then necessarily assigned a probe, in 1-to-1 fashion. However, in this minimal code length K scenario, if an error were made in measuring the code of a probe, one would produce the code of a different probe since all codes are used, and thus an incorrect decoding. Allowing a larger binary coding string length K than the minimum required allows for robustness against such errors. Specifically, it is possible that the set of binary codes {B1, B2, . . . , BK} is chosen as a set that allows for error correction or detection, such that if a code string from this set were corrupted by one or more bit flipping errors, it is possible to determine that such corruption has occurred, and with some encodings, also to correct the error back to the uncorrupted state. This will provide for protection against errors that could be made in the decoding measurement process outlined above, in the form of a false detection of hybridization (error of 0→1), or missing a true hybridization (error of 1→0), so that such errors do not lead to incorrect or indeterminate decoding of probe identity. Many such error correction or error detection encodings are known to those skilled in binary data. In various embodiments, one such method is the use of binary strings that add one or more parity bits add the end of an initial given string, which provide power to detect or correct certain errors. Another embodiment comprises use of Hamming Codes and Hamming distance to detect and correct errors. In this class of methods, the assigned number N of code words must be only a small fraction of all possible binary codes of length K, and the precise code words are taken to have highly distinct bit sequences, such as, for example, this could be N randomly selected code words from all 2K>>N. In such a case, if there is a corrupted code, it may be detected because it does not match any of the assigned codes, and it can be corrected back to the closest of the allowed assigned code strings, with closeness measured by the Hamming Distance (number of mismatches between the digits of two binary strings). This general technique always affords some power for error correction of at least limited number of bit errors, and for any proposed set of code words, {Bi, . . . , BN}, the error correction properties of this can be directly and exactly assessed by examining all possible corrupted versions of each Bi and noting for which corruptions this process corrects them. Various embodiments of such methods are provided by specific Hamming Codes, which are strings sets {B1, . . . BN} that have optimal or highly effective and uniform error correction by this means of correcting to the Hamming distance closest allowed code. In general, many other error correction encoding schemes are known to those skilled in the art of coding theory, and any of these schemes defined for K-bit strings can be used to provide K-mer code word sets that also have powerful error correction capabilities, and which can be used here to correct for possible decoding hybridization errors. In general, this provides a mechanism with arbitrarily good power to correct errors, at the cost of larger K, and therefore more physical decoding probes and more decoding reactions.
In various embodiments, decoding probes usable in these electrical or optical decoding methods may comprise short oligonucleotides, such as for example in the range of from about 8 to about 25 bases. Further, any two such targets have multiple mismatches between them, to reduce cross-hybridization, preferable 2 or more, and preferably 4 or more. In various embodiments, decoding probes may comprise PNA probes, so that a short probe can have stronger binding and higher Tm, and so that the impact of single mismatches can be greater on reducing cross-hybridization. In various embodiments, all of the decoding methods disclosed herein can be used with electronic detection of decoding probe hybridization provided by the sensor chip array, or using optically labeled decoding probes such as a dye label, quantum dot label, or gold nanoparticle label, or any other label detectable by microscopy and compatible with attachment to a single molecule DNA oligonucleotide and localization of probe binding by microscopic imaging.
In various other decoding methodologies, the objective and benefit is to have a decoding method in which the number of decoding targets added to each probe is a number J that can be specified as desired, so as to control the amount of hybridization target added to the probes for decoding purposes. This can be achieved using the compact form of the first family of methods discussed above. For these methods, the binary codes string {B1, . . . , BN} are defined as follows: for the set of numbers {1, . . . , L}, for some L, a subset S of this set is represented by the K-bit string (b1)(b2) . . . (bK), where bi=1 if i is in the subset S, and bi=0 if it is not. This is the sometimes called the indicator function for the subset. For example, the subset {2,4} would have indicator string 0101000 . . . 0. There are 2K such strings, corresponding to the membership indicator strings of all 2K subsets of S. In the setting, the set of all strings that have exactly J 1's in them is defined as the codes. The number of such strings is known in combinatorics as “L choose J”, and is N=L!/(J!(L−J)!), where “n!” denotes n factorial=n×n−1× . . . ×2×1. When this set of code strings is used in specified “compact” forms of the decoding methods above, there is the advantage that for the physical encoding, wherein a target is added for every 1 occurring in the encoding string Bi, there are always exactly J such 1's, and so exactly J hybridization targets are added to encode each hybridization probe. This process therefore has the advantage of controlling the amount of target material added for decoding, to be J oligonucleotide targets. For any desired number of hybridization probes N to be encoded, and any desired J>1, L can be chosen large enough to that L!/(J!(L−J)!) in ≥N, and therefore provides enough such codes. The cost of achieving this as that L encoding probes are required. For example, suppose there were N=1024 hybridization probe types. One option would be to take all K=10-bit binary strings, and assigns all these as codes. However, in the above methods, each probe would get linked to either 10 targets (in the non-compact scheme), or a variable number of targets between 0 and 10 in the compact schemes. The decoding would require 20 reactions in the full scheme, or 10 in the compact scheme. However, restricted to linking to J=2 targets per probe, L=46 encoding probes and reactions are required, but allowing J=3 reduces this to L=20, and J=4 allows L=15. These are generally more desirable, such as required 15 probes and reactions, but only needing to add 4 decoding oligo targets to each probe. However, these do not provide any error correction capability, as a single bit error would produce a 3 element or 5 element subset indicator string, which does not have a unique Hamming distance closest string in 4 element set indicators.
Chip-Based Systems
In various embodiments, chip-based, multiplex hybridization probe sensor devices are deployed in a compact, low cost electronic instrument that is suitable for distributed use, field use, or point-of-care use. Such instrument architectures comprise a chip board that mates to the chip, motherboard that hosts the chip, and FPGA-based control and data transfer subsystem, a data processing subsystem, which may comprise CPUs, GPUs, FPGAs or other signal processing hardware, a fluidics subsystem, on instrument data storage, and of-instrument data transfer systems.
In various embodiments, a molecular electronic sensor chip device configured for genetic analysis may be deployed within a cartridge that also contains some or all necessary reagents to prep an input sample as required for “on-cartridge” analysis. In various embodiments, analysis of an input sample on-cartridge allows for a partial or fully dry instrument platform. In various embodiments, this cartridge is run on a desktop instrument that provides for a user interface, a control computer controlling chip and system functions, control of any on-board fluidics or actuators that control on-cartridge fluidics to supply a prepped input sample and necessary reagents to the chip, transfer data from the chip to internal storage or data processors, such as FPGA, GPU or CPU data processors, and transfer data off-instrument via direct internet or wireless connectivity to remote or cloud-based data centers. In this way, such genetic analysis systems provide a sample prep system, internally or as a companion instrument, capable of converting bio-samples of interest to a form suitable for on-chip application.
In various embodiments, a molecular electronic sensor system for genetic analysis can have a compact form factor suitable for mobile use. In other embodiments, such a system can have a highly compact form factor suitable for point-of-use or point-of-care, or suitable for field deployment. Such point-of-use applications may include testing stations deployed at airports, transportation hubs, hospitals, schools, stadiums, cruise ships, transport ships, or other major sites of congregation, or deployed at sites of business or commercial activity. In various embodiments, such testing stations can be configured for home use, e.g., for personal testing and health monitoring. In various embodiments, point-of-use systems may be deployed in the field for military, police, customs or border control point-of-contact testing, or other in-the-field testing and monitoring applications, such as testing of commercial vehicles, trains or aircraft for the presence of certain pathogens.
Methods and Applications for Infectious Disease
In various embodiments, testing or monitoring applications include testing for the presence of pathogens, such as, for example, testing for parasites, fungi, bacterial pathogens or viral pathogens. Such parasites include, but are not limited to, Malaria, Giardia, and Toxoplasmosis. Such bacterial pathogens include, but are not limited to, Salmonella and E. coli. Viral pathogens include, but are not limited to, influenza, flu viruses, cold viruses including rhinovirus, adenovirus, and human corona virus, HIV, Ebola, Dengue, Hanta, Zika and West Nile viruses, SARS, MERS, and SARS-CoV-2 virus (the etiological agent of COVID-19), and novel viruses of DNA or RNA type related to or unrelated to these having a known genetic sequence to define sequencing for the hybridization probes.
In various embodiments, a genetic test system is deployed at a testing site. A primary bio-sample is collected and delivered to the testing site where the sample is to be tested for the presence of a given pathogen or pathogen strain. At the testing site, a sample preparation process is applied to the primary bio-sample to produce a product suitable for application to the molecular electronic sensor array chip device that comprises a multiplicity of hybridization probe sensors configured to target a pathogen or pathogen strain of interest. After application of the prepped sample to the sensor array chip, device signals are readout, the signals undergo primary local signal processing, and then these data are transferred to a centralized or cloud-based server for subsequent analysis or testing outcome report generation.
In various embodiments, a testing site may comprise a centralized testing facility of high capacity, e.g., for a business, hospital or other organization, or for a region such as a city, county, state, or country. In other embodiments, the testing site can be a field deployment site, or a point-of-contact site, such as at an airport, transportation hub, or major gathering site such as an arena or stadium, or at an immigration control checkpoint or temporary monitoring point set up by the military, police, or government officials. In other embodiments, the testing site can be a mobile van deployed to sites as needed. In other embodiments, the testing site may be in a residential home occupied by private individuals. In other embodiments, the testing site can be autonomous environmental monitoring stations deployed into the field, stationary or mobile, including driving, flying or aquatic drones that monitor samples acquired locally from the environment, such as through filtering of air, or water, or trapping of known disease vectors or carriers in the environment, such as insects, rodents, bats or birds, or aquatic snails. In various embodiments, mosquitoes are one such vector.
In various embodiments, a primary bio-sample can be obtained as a swab of a surface that collects material deposited on the surface, as filtered material collected from air or water, or a water sample, or as a bodily fluid sample or buccal swab or saliva or excrement or tissue sample provided from a person or animal, or as a sample of a food item, or agricultural product.
In various embodiments, sample collection may be done in close proximity to a test system, such as within 1 foot, 10 feet, or 100 feet, and those samples rapidly delivered to the test system, such as within 10 seconds, one minute, 10 minutes or 1 hour, in order to have the benefit of distributed sample collection combined with rapid testing and test results. In various embodiments, the sample collection includes the assignment of a unique ID to the sample, such as an alpha-numeric code, serial number, barcode or QR code, to be used for sample tracking, and affiliation of final report back to the sample. In various embodiments, other identifying information may be collected and attached to the sample or affiliated with the sample ID, such as personal identifier, such as a personal name, social security number, government issued ID number, employee number, or date of birth, facial image or fingerprint.
In various embodiments, a sample preparation process comprises a PCR-based amplification method applied to the sample to produce amplified DNA material for detection. In other embodiments, the sample preparation process is a process to extract and purify DNA or RNA without any amplification to produced purified material for detection. In various embodiments, the sample prep process is performed in a separate instrument from the sensor chip instrument, and the prepped sample is then transferred to that instrument. In other embodiments, the sample prep process is performed on a subsystem integrated into the same instrument that runs the sensor chip device.
In various embodiments, a pathogen of interest is a pathogenic bacteria, such as E. coli, Salmonella, or Listeria, and the corresponding hybridization probes include specific DNA probes common to many strains of such bacteria of interest. In other embodiments, the pathogen is interest includes the specific strains of bacteria, and the corresponding hybridization probes include strain-specific DNA probes.
Application to Viral Pandemics and COVID-19 Pandemic
In various embodiments, a pathogen of interest is a virus, such as influenza, flu viruses, cold viruses—including rhinovirus, adenovirus, and human coronavirus, HIV, Ebola, SARS, MERS, and SARS-CoV-2 (the etiological agent of COVID-19), and novel viruses of DNA or RNA type related to or unrelated to these, such as those having a known genetic sequence that can define a sequence in a hybridization probe. In such cases, the hybridization probes include specific DNA probes common to many strains of viruses of interest. In other embodiments, the pathogen includes the specific strains of such viruses, and the corresponding hybridization probes include strain-specific DNA probes.
In various embodiments, primary data analysis on-system includes data reduction algorithms that reduce the amount of data needed to be transferred off-system. Such methods may include discarding uninformative portions of a signal trace, subsampling or parameterization of parts of a signal trace, and general data compression algorithms such as methods utilized in zip, gzip, bzip, and other common compression utilities. In various embodiments, the primary analysis also includes analysis of traces to produce a net hybridization intensity score for each probe on a sensor chip, and in various embodiments, a final call of detection, non-detection, or indeterminate measurement for each probe on the sensor chip. In other embodiments, such analysis is done in the off-instrument phase of an analysis. In other embodiments, the off-instrument analysis includes the generation of a final report that affiliates sample identifiers with the outcome of the test for the presence of pathogens of interest. Such identifiers may include a subject name or assigned ID or other identifier provided at the point of sample collection, as well as sample identifiers such as the time and place of sample collection, and time and place of sample processing on the sensor chip system.
In various embodiments, genetic analysis testing by a molecular electronic sensor system herein is performed rapidly, with the time from providing a primary bio-sample to completion of analysis and report generation being less than about 24 hours, and more preferably, less than about 8 hours, less than about 4 hours, less than about 1 hour, less than about 30 minutes, or less than about 15 minutes.
In various embodiments, a molecular electronics sensor system configured for genetic analysis is used in the monitoring of the pandemic disease COVID-19, a viral disease outbreak in 2019 originating in Wuhan, China. In accordance with the present disclosure, the hybridization probes for the individual sensors in an array are selected to be complements to segments of the genome of the underlying virus, the Severe Acute Respiratory Syndrome Coronavirus 2, also designated SARS-CoV-2. The SARS-CoV-2 virus has a single stranded RNA genome of 29,902 bases. One exemplar sequence for this genome is available at the Genbank® database as accession ID LC528232 (see https://www.ncbi.nlm.nih.gov/genbank/). Thus, in embodiments where a DNA hybridization probe is configured to directly detect the genomic material by hybridization, there will be DNA-RNA hybridization, and the sample prep must therefore be designed to extract and purify RNA from the primary bio-sample. In various embodiments where the sample prep comprises a PCR amplification of the genome, the process would comprise a reverse-transcriptase mediated PCR that produces amplified DNA product, either of specific target segments, or non-specific segments of the entire genome, and the resulting hybridization detection is DNA-DNA hybridization. By taxonomy, the pandemic virus is a specific strain of the Severe Acute Respiratory Syndrome-related Coronavirus (SARSr-CoV), which is a species of coronavirus that infects humans, bats and certain other mammals. There are hundreds of known strains of this virus, and hybridization probes must be chosen for sequence segments that distinguish the COVID-19 strain from other harmless coronavirus strains, or other disease causing strains, such as the strain designated SARS-CoV, which caused SARS disease outbreak in 2002 in Guangdong Province, China. There are numerous sequence differences between these strains, providing many candidates for distinguishing target sequences.
In various embodiments for COVID-19 testing, primary samples comprise environmental surface swabs or air filters, and such testing provides for monitoring of the presence of the virus in a target location where such samples are collected. In other embodiments for COVID-19 testing, primary samples comprise bio-samples such as saliva, buccal swab or mucus samples from individuals, and such testing provides for detection or diagnosis of subjects with active viral infections. In embodiments of such testing, the present sensor array device provides for rapid, distributed testing. In various embodiments, the system provides for a test in less than about 1 hour, or less than about 30 minutes, or less than about 15 minutes.
Other Infectious Disease Applications
In various embodiments, sensor systems according to the present disclosure can be applied to testing for, and response to, outbreaks of influenza, such as Influenza A and Influenza B strains. In these instances, hybridization probes are designed to have an oligonucleotide sequence that is complementary to a segment of an Influenza A or an Influenza B genome. In various embodiments, sensor systems can be used in the testing for, and the response to, various bacterial diseases, such as when the food supply is contaminated by E. coli or Salmonella. For example, this could be an outbreak where lettuce is contaminated by E. coli, or where ground beef is contaminated by Salmonella. In various embodiments, testing platforms are deployed in point-of-use format to sites of food production, such as farms, fields, and processing plants. Testing platforms may also be deployed in point-of-use form, as well as mobile or distributed permanent or temporary monitoring installations, to points of distribution, such as warehouses, shipping centers, or grocery stores and restaurants. In various embodiments, testing platforms are deployed to the end point of consumption, such as in the home, for home-based testing. In various embodiments, aggregated cloud-based analysis, including Big Data, A.I. and machine learning techniques, can be used to track the outbreak and pinpoint the source.
In various embodiments, sensor systems according to the present disclosure can be used in testing for sexually transmitted diseases (STDs). In accordance with the present disclosure, it is an advantage that such molecular electronic hybridization sensor systems can be deployed for rapid, low-cost testing in highly distributed fashion, such as in community or field clinics, or for use in the privacy of a residential home. For STDs, the causal pathogens to be detected may be parasites, such as Trichomoniasis, or a fungi, such as Candidiasis (yeast infection), or bacteria such as Syphilis, Gonorrhea, or Chlamydia, or viruses such as Herpes, HPV, EBV, Hepatitis, and HIV. In such applications, the primary samples required are clinically well established, and may be a blood sample, or a swab of bodily fluids or of discharges, or from open sores. In various embodiments of such testing, the present sensor array device provides for rapid, distributed testing. In various embodiments, the sensor system provides for a test in less than about 1 hour, or less than about 30 minutes, or less than about 15 minutes. In various embodiments, the sensor system provides the advantage of extreme personal privacy, with systems and test kits that can be used entirely within the home.
Various embodiments of a molecular electronics sensor configured for genetic analysis in accordance with the present disclosure may be further understood and appreciated with reference to the drawing figures, as per the discussions below:
With reference now to the drawing figures,
With voltage “v” 108 thus applied, conformational changes in the bridge molecule, or external influences, produce perturbations 111 in the measured electrical parameter, i.e., current over time, as shown in the inset trace of current versus time 110 directly below the sensor drawing. That is, molecular interactions, or “events,” are transduced into signals 111 or detectible signatures present in the measured current versus time trace 110. Molecular interactions between the bridging molecule 105 and various analyte targets change the conductivity of the bridge molecule, resulting in perturbations 111 in the measured current over time 110 corresponding to the molecular interactions between the bridge molecule and various analyte targets. The resulting system has the potential to be used as a sensor for a great variety of molecular interaction processes. As detailed in various embodiments herein, the bridge molecule may be modified into a molecular complex by conjugating at least one probe molecule to the bridge molecule, such as an oligonucleotide hybridization probe. The process of forming a molecular bridge complex may be before or after the bridge molecule 105 is bonded between the two electrodes 101/102 in the pair of electrodes. In various embodiments, a DNA or RNA hybridization probe is conjugated to the bridge molecule by its 3′ or 5′ end, and it is the hybridization probe, not the bridge molecule per se, that interacts with various target molecules to produce the perturbations seen in the measured electrical parameter, such as current in the circuit over time.
In
In the basic sensor circuit shown in
As shown in
In various embodiments, the bridge molecule 305 may comprise any molecule that can provide an electrically conducting connection between the first 301 and second 302 electrodes in a pair of nanoelectrodes. Such a conducting bridge molecule 305 could, in various embodiments, comprise a double stranded DNA segment, an alpha-helical protein, a polypeptide, a carbon nanotube, a graphene nanoribbon, a multi-chain protein such as a bacterial pilin filament or bacterial nanowire, or a conducting polymer such as PEDOT. In various embodiments, a bridge molecule 305 herein is fabricated by a “bottom up” chemical synthesis, and is made to have a defined chemical structure including engineered-in specific binding groups at precise locations in its chemical structure to provide the conjugation or binding sites for the hybridization probe 312 and for conjugation to each of the nanoelectrodes 301/302. In various embodiments, such a bridge molecule 305 has a specific conjugation site 313 to which the DNA or RNA hybridization probe is conjugated to, either covalently or non-covalently, through any of many possible conjugation mechanisms known to those skilled in the art of bioconjugation. In various embodiments, the conjugation 313 between hybridization probe 312 and bridge molecule 305 may comprise a click chemistry coupling, such as dibenzocyclooctyne-azide (DBCO-azide) or trans-cyclooctene-azide (TCO-azide), or other non-copper or copper click reactions, an 3-arylpropiolonitrile-thiol (APN-thiol) coupling, an amine-N-hydroxysuccinimide (amine-NETS) ester coupling, a biotin-avidin coupling, a peptide-tag based coupling such as Spy-Tag/Spy-Catcher, or an AviTag™ (GeneCopoeia, Inc.) or an aldehyde tag.
In various embodiments of the sensor illustrated in
In
Similar to DNA, any combination of complementary DNA and RNA strands can pair by hybridization in this way, as can strands of DNA or RNA that contain various nucleotide analogs such as locked nucleic acid (LNA) or peptide nucleic acid (PNA), or various other chemically modified nucleotides. Longer segments of DNA that match along a segment will form a duplex pair along that segment, even if other portions of the longer segment, such as the ends, do not match, although the presence of single stranded free ends may result in a slightly lower melting point. Strands that are not perfectly matched can bind, but the presence of mis-paired bases substantially lowers the melting point, and these partial duplex structures may not be stable under many conditions of interest. This relatively lower Tm for mis-paired strands (sometimes called cross-hybridization) can be used advantageously to design hybridization detection assays wherein an exact match is preserved over a finite period of time and produces an enduring detectable signal, while all the many possible mismatch interactions with off-target fragments can be eliminated from producing signals at all, or that otherwise result in signals that are substantially below some form of detection threshold.
With continued reference to the basic sensor device of
With continued reference to the basic sensor device of
In various embodiments of the basic sensor device illustrated in
Furthermore, as indicated in
As shown in the current-time trace 510 in
In various embodiments, such sensor arrays can be configured for SNP genotyping in human, animal, or other cellular samples. In various embodiments, this would be applied to SNP genotyping in humans.
With reference to
In various embodiments, molecular electronics hybridization sensors are deployed on integrated circuit semiconductor chip devices, where such chips include the circuitry to supply voltages to the sensors, measure currents in the sensors, and transfer such data off-chip, and to control such operation.
In various embodiments, a multiplexed array of sensor pixels as per
In various embodiments, a multiplexed array of sensor pixels per
In various embodiments, the ADC converts each analog measured value to a binary digital value having a bit resolution of 8 bits, 10 bits, 12 bits, or 16 bits, or a bit depth selected in the range of about 1 to about 32 bits. In addition, other blocks as indicated in the architecture of the chip 700 in
With continued reference to
With continued reference to
In various embodiments, a chip 700, such as illustrated in
With reference now to
In various embodiments, the chip pixel array architecture is such that nearby pixels in the array share a common staging area, where the many nanoelectrode pairs for these neighbors are all located, and suitably electrically routed back to these adjacent pixel circuits. This applies to both cases where each pixel has one sensor affiliated with it (e.g.,
In various embodiments of pixel arrays on chips such as depicted in
In various embodiments of sensor arrays on a chip, e.g., per
In various embodiments of sensor arrays on a chip, e.g., per
In various embodiments, a primary bio-sample is acquired directly from a test subject or the environment, and then some form of sample prep is required to prepare materials to the proper state to apply to the sensor device for measurement. A primary sample for analysis may comprise tissue, saliva, mucous, buccal swab, blood, sweat, urine, stool, other bodily fluids, or exhaled air, or material filtered from air or water, or material swabbed from a surface. It could also be such samples acquired from plants or animals in the environment, or from food, or from known vectors in the environment that carry such pathogens, such as bats, rodents, mosquitoes or snails. In various embodiments, sample prep may result in a crude cell lysate extract containing DNA, or can comprise DNA further purified from the sample by standard purification column or filter paper purifications, or other extraction such as phenyl-chloroform. In various embodiments, the purified sample can be the result of applying any of the various forms of PCR amplification to the sample, which may be thermocycling or isothermal forms of PCR. In various embodiments, such sample prep is done by a self-contained sample prep device, or in other embodiments, a sample prep device may be integrated with the sensor platform, such as in the case of fully integrated point-of-use testing devices.
Experiments that have reduced these devices, methods and apparatus to practice are presented herein. Actual working sensors have been constructed and demonstrated to function.
The sensor embodiments used for these experiments are shown in
As illustrated in
The bridge molecule 1005 for these experiments is a 227 amino acid sequence polypeptide capable of forming an alpha-helical protein structure:
In various embodiments, a polypeptide having at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 3 may be used as a bridge molecule herein.
The structure of this peptide comprises a repeat of the helix-promoting motif EAAAR (SEQ ID NO: 4), wherein a centrally located amino acid is replaced by a C to allow for cysteine-mediated conjugation between the polypeptide 1005 and the hybridization probe molecule 1012 as indicated in
The conjugation 1013 of the hybridization probe 1012 to the bridge 1005 is achieved using a bifunctional cross-linker usable for thiol-to-azide linking, abbreviated APN-BCN, which is bicyclo[6.1.0]non-4-yn-9-ylmethyl (4-(cyanoethynyl)phenyl)carbamate. The conjugation product between APN-BCN and the peptide is purified using a desalting spin-column, and the product peptide reacted with a variety of hybridization probe oligonucleotides having an azide at the 5′ end, such that the 5′ end is conjugated proximal to the bridge through the APN-BCN linker. The various peptide/DNA complexes thus resulting are purified by size-exclusion chromatography with structures verified by SDS Gel electrophoresis.
In the experimental hybridization probe sensor of
In various embodiments, a fluorescein dye can be attached to a free hydroxyl group at the 3′ end of any of the hybridization probes in any of the sensor structures herein. The relative quantities of fluorescein for labeled sequences can be checked by UV-vis spectroscopy, for example.
The hybridization experiments herein were run at 25° C. and with the following buffer composition: 50 mM NaCl; 10 mM tris-HCl; 10 mM MgCl2; 1 mM DTT, at pH=7.9.
In order to conjugate the 5′-end of this oligonucleotide to the peptide bridge molecule having the amino acid sequence identified as SEQ ID NO: 3, an azide group was incorporated at the 5′-end of the oligonucleotide so as to participate in click chemistry conjugation. Further, a FAM dye molecule was attached to the 3′-end via the terminal hydroxyl group of the oligonucleotide.
Table 1 sets forth various primer targets, including perfect match and mismatch primer targets, which were used in various genetic analysis experiments with a sensor (per
With reference to Table 1, recall that it is the 5′-end of the hybridization probe (SEQ ID NO: 8) that is conjugated to the polypeptide bridge molecule, whilst the free 3′-end of the probe distal to the bridge molecule is conjugated to a FAM dye molecule (via the 3′-terminal hydroxyl group of the probe). In Table 1, the Tm is listed if it was determined, otherwise the Tm cell is left blank.
In Table 1, the Full Complement sequence is the perfect match target analyte to the probe. That is, this target analyte has a sequence that comprises the full complementary sequence to SEQ ID NO: 8. Primer 2P-0 is a 20-mer oligonucleotide that forms a partial duplex with the probe, beginning at the 3′-end at the bridge and extending for 20-bases toward the 5′-end with no mismatching. Primer 2P-1G is a 19-mer oligonucleotide that begins hybridization with the probe two bases in from the 3′-end, leaving the cysteine at the 3′-end of the probe unpaired. Similarly, Primer 2P-2Cg is an 18-mer oligonucleotide that begins hybridization with the probe three bases in from the 3′-end, leaving both the C and the G bases at the 3′-end of the probe unpaired. Similarly, Primer 2P-3Tcg is a 17-mer oligonucleotide that begins hybridization with the probe four bases in from the 3′-end, leaving the C, G and A bases at the 3′-end of the probe unpaired. Similarly, Primer 2P-4Atcg is a 16-mer oligonucleotide that begins hybridization with the probe five bases in from the 3′-end, leaving the C, G, A and T bases at the 3′-end of the probe unpaired. Similarly, Primer 2P-5Gatcg is a 15-mer oligonucleotide that begins hybridization with the probe six bases in from the 3′-end, leaving the C, G, A, T and C bases at the 3′-end of the probe unpaired.
With continued reference to Table 1, Primer 2P-5 is a 20-mer oligonucleotide that forms a partial duplex with the probe, beginning six bases in from the 3′-end at the bridge and extending for 20-bases toward the 5′-end with no mismatching. Primer 2P-10 is a 20-mer oligonucleotide that forms a partial duplex with the probe, beginning eleven bases in from the 3′-end at the bridge and extending for 20-bases toward the 5′-end with no mismatching. Primer 2P-15 is a 20-mer oligonucleotide that forms a partial duplex with the probe, beginning sixteen bases in from the 3′-end at the bridge and extending for 20-bases toward the 5′-end with no mismatching. Primer 2P-20 is a 20-mer oligonucleotide that forms a partial duplex with the probe, beginning twenty one bases in from the 3′-end at the bridge and extending for 20-bases toward the 5′-end with no mismatching. Lastly, Primer 2P-25 is a 20-mer oligonucleotide that forms a partial duplex with the probe, beginning twenty six bases in from the 3′-end at the bridge and extending for 20-bases to the 5′-end with no mismatching.
The sensor illustrated in
The sensor illustrated in
The sensor illustrated in
As illustrated in
Multiplexed Sensor Array Configurations
As discussed herein, sensor systems in accordance with the present disclosure can be configured to identify the presence of and the identity of various strains of organisms in a sample, such as pathogens in a bio-sample. Sensor systems herein can be configured to test the presence of, and the response to, various viral and bacterial diseases.
In various embodiments, multiplexed sensor arrays, comprising a plurality of sensor pixels as explained herein, are configured such that a first subset of sensor pixels detects a first pathogen, a second subset of sensor pixels detects a second pathogen, a third subset of sensor pixels detects a third pathogen and so forth, up to as many subsets as necessary for a particular sensor application. In various embodiments, at least one subset of sensor pixels may be configured as control sensors. For example, one subset of sensor pixels may be configured as a control, such as to ensure the bio-sample is of human origin. The sum of the subsets present in an array equals the plurality (the total) of sensor pixels. A sensor array having any number of pixel subsets may be configured on a CMOS chip.
In various embodiments, a plurality of sensor pixels in a sensor array comprises at least one subset of sensor pixels. In various embodiments, the at least one subset of sensor pixels is configured to detect genetic material relating to a pathogen. In various embodiments, the pathogen may be, for example, SARS-CoV-2, Influenza A1, Influenza A2, Influenza B, or Respiratory Syncytial Virus (RSV).
In various embodiments, a plurality of sensor pixels in a sensor array comprises at least two subsets of sensor pixels. In various embodiments, one subset in the at least two subsets of sensor pixels is configured to detect genetic material relating to a pathogen. In various embodiments, the pathogen may be, for example, SARS-CoV-2, Influenza A1, Influenza A2, Influenza B, or Respiratory Syncytial Virus (RSV). In various embodiments, a second subset in the at least two subsets of sensor pixels comprises sensor pixels configured as control sensors. In various embodiments, a control may be, for example, a loading control or a sample origin control (e.g., to ensure that a bio-sample actually came from a human).
In various embodiments, a subset of sensor pixels in a plurality of sensor pixels comprises a DNA sequence complementary to a segment of a pathogen genome. For example, a plurality of sensor pixels in an array may comprise multiple subsets of sensor pixels, wherein a first subset comprises hybridization probes having a DNA sequence complementary to a segment of a first pathogen genome, a second subset comprises hybridization probes having a DNA sequence complementary to a segment of a second pathogen genome, a third subset comprises hybridization probes having a DNA sequence complementary to a segment of a third pathogen genome, and so forth. These pathogens may include, for example, SARS-CoV-2, Influenza A1, Influenza A2, Influenza B, or Respiratory Syncytial Virus (RSV). One of the subsets out of the multiple subsets present in the plurality may be configured as a control. In various embodiments, a subset of sensor pixels within a plurality of sensor pixels comprises hybridization probes with a DNA sequence complementary to a segment of a constitutively expressed human gene.
In various embodiments, an array comprises a plurality of sensor pixels further comprising two subsets of sensor pixels, a first subset and a second subset of pixels. The first subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a pathogen genome. The second subset of sensor pixels within the plurality comprises hybridization probes with a DNA sequence complementary to a segment of a constitutively expressed human gene.
In various embodiments, an array comprises a plurality of sensor pixels further comprising three subsets of sensor pixels, a first subset, a second subset and a third subset of pixels. The first subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a first pathogen genome. The second subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a second pathogen genome. The third subset of sensor pixels within the plurality comprises hybridization probes with a DNA sequence complementary to a segment of a constitutively expressed human gene.
In various embodiments, an array comprises a plurality of sensor pixels further comprising four subsets of sensor pixels, a first subset, a second subset, a third subset and a fourth subset of pixels. The first subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a first pathogen genome. The second subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a second pathogen genome. The third subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a third pathogen genome. The fourth subset of sensor pixels within the plurality comprises hybridization probes with a DNA sequence complementary to a segment of a constitutively expressed human gene.
In various embodiments, an array comprises a plurality of sensor pixels further comprising five subsets of sensor pixels, a first subset, a second subset, a third subset, a fourth subset and a fifth subset of pixels. The first subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a first pathogen genome. The second subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a second pathogen genome. The third subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a third pathogen genome. The fourth subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a fourth pathogen genome. The fifth subset of sensor pixels within the plurality comprises hybridization probes with a DNA sequence complementary to a segment of a constitutively expressed human gene. In variations of this configuration, the sensor array is capable of detecting and distinguishing between SARS-CoV-2, an Influenza A strain, an Influenza B strain, and Respiratory Syncytial Virus (RSV), and capable of confirming that a bio-sample thus analyzed is of human origin.
In various embodiments, an array comprises a plurality of sensor pixels further comprising six subsets of sensor pixels, a first subset, a second subset, a third subset, a fourth subset, a fifth subset and a sixth subset of pixels. The first subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a first pathogen genome. The second subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a second pathogen genome. The third subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a third pathogen genome. The fourth subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a fourth pathogen genome. The fifth subset of sensor pixels within the plurality comprises hybridization probes having a DNA sequence complementary to a segment of a fifth pathogen genome. The sixth subset of sensor pixels within the plurality comprises hybridization probes with a DNA sequence complementary to a segment of a constitutively expressed human gene. In variations of this configuration, the sensor array is capable of detecting and distinguishing between SARS-CoV-2, Influenza A1, Influenza A2, Influenza B, and Respiratory Syncytial Virus (RSV), and capable of confirming that a bio-sample thus analyzed is of human origin.
Any number of subsets of sensor pixels in a plurality of sensor pixels is within the scope of the present disclosure, as is any number of subsets of sensor pixels within an array that are dedicated to control functions, such as loading controls or sample origin controls. In various embodiments, any one or more of the subsets of sensor pixels present in a plurality of sensor pixels may have molecular electronics sensors further comprising decoding probes, such as conjugated to each hybridization probe in the subset.
In various embodiments, a subset of sensor pixels in a plurality of sensor pixels comprises hybridization probes having a DNA sequence complementary to a segment of β-actin human gene. In various embodiments, the hybridization probes in the control subset may have a DNA sequence complementary to a segment of any other known housekeeping gene, such as GAPDH or ubiquitin.
In various embodiments, a subset of sensor pixels in a plurality of sensor pixels comprises hybridization probes having a DNA sequence complementary to a segment of human RNase P gene, the gene coding for the RNA subunit of ribonuclease P (RNase P) in humans.
Table 2 sets forth various primers and probe sequences according to the present disclosure.
In Table 2, the references N1 and N2 for sequences relevant to the SARS-CoV-2 genome indicate two target regions with the N gene of the virus genome, known as N1 and N2. The reference Rdrp_ncov_ip4 for sequences relevant to SARS-CoV-2 genome indicates a target region within the RdRp gene of the virus genome. The reference E Sarbeco for sequences relevant to SARS-CoV-2 genome indicates a target region within the E gene of the virus genome.
In various embodiments, primer sequences may be used to amplify genetic material present in a bio-sample prior to presenting the bio-sample to a sensor array chip. In various embodiments, amplification provides sufficient amounts of a target oligonucleotide and/or ensures that a particular target oligonucleotide is not present.
In various embodiments, primers amplify the target sequence that is complementary to the probe sequence. For example, forward and reverse primers may produce an amplification product from which a probe sequence can be generated. In specific embodiments, multiple pairs of primers are used to amplify a segment of the SARS-CoV-2 genome, such as a segment within the Rdrp region.
In various embodiments, a multiplexed sensor array comprises a plurality of sensor pixels, wherein the plurality of sensor pixels further comprise at least two, at least three, at least four, at least five, or more subsets of sensor pixels. The totality of the subsets of pixels necessarily equals the plurality. As an example, the chip architecture in
Table 3 sets forth additional probes that may be suitably functionalized for conjugation to a bridge molecule in a molecular electronics sensor. As discussed, conjugation may be at the 5′-end, at the 3′-end, or at a site between the 5′ and 3′ ends. The end or ends of the probe not conjugated to the bridge molecule may be functionalized with dye and/or quencher moieties as desired. In various embodiments, an azide moiety is provided on an end of a hybridization probe oligonucleotide for use in click-chemistry conjugation.
In various embodiments, a multiplexed sensor for SNP genotyping comprises a plurality of sensor pixels, the plurality of sensor pixels further comprising at least two subsets of sensor pixels wherein the first subset of sensor pixels have sensors configured to detect a particular target sequence and the second subset of sensor pixels have sensors configured to detect a variant of the particular target sequence. Sensor arrays configured as such can be used to distinguish between variants of a pathogen, such as distinguishing between variants of the SARS-CoV-2 virus.
In various embodiments, a multiplexed sensor array comprises a plurality of sensor pixels, the plurality of sensor pixels further comprising at least two subsets of sensor pixels, including at least a first subset of sensor pixels and a second subset of sensor pixels. Each sensor pixel comprises a molecular electronics sensor comprising a hybridization probe bonded thereto. In various embodiments, the first subset of sensor pixels comprises sensors having a hybridization probe with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 62. In various embodiments, the second subset of sensor pixels comprises sensors having a hybridization probe with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect Influenza Al and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 65, 68, 74, 77, 80, 83 or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 65. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect Influenza A2 and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 68, 74, 77, 80, 83 or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 68. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect Influenza B and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 65, 74, 77, 80, 83 or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 74. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect SARS-CoV-2 and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 65, 68, 77, 80, 83 or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 77. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect SARS-CoV-2 and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 65, 68, 74, 80, 83 or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 80. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect SARS-CoV-2 and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 65, 68, 74, 77, 83 or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 83. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect SARS-CoV-2 and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 65, 68, 74, 77, 80, or 86. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
In various embodiments of the multiplexed sensor array above, a first subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 86. In various embodiments, a second subset of sensor pixels comprises sensors having hybridization probes with at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 71. In this configuration, the sensor system can detect RSV and confirm that the bio-sample is of human origin. In various embodiments, the multiplexed sensor array further comprises a third subset of sensor pixels, each sensor pixel comprising a molecular electronics sensor comprising a hybridization probe bonded thereto, wherein the hybridization probe has at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to any one of SEQ ID NOs: 62, 65, 68, 74, 77, 80, or 83. With the third subset of pixels, or even additional subsets of pixels (fourth, fifth, etc.), the sensor array is capable of distinguishing between pathogens and ensuring that the bio-sample is of human origin.
Primer Selection Considerations
TABLE 4 sets forth various primers.
In various embodiments, primer pairs are restricted so as to: (1) provide for effective priming under specified assay conditions, (e.g., buffer chemistry, temperature, etc.); (2) not be impacted by known sequence variants in the target genome; (3) reduce potential for “mispriming” against off-target genomes that might be present in the sample; and (4) provide for a suitable hybridization probe target in the resulting amplicon.
In various embodiments, further primer selection considerations include: (1) A selection of primers to target specified Tm relative to a specified buffer composition and specified assay temperature. For example, in the case of thermo cycling PCR, this may be a Tm=55° C. in a standard PCR buffer (Tris-HCL, KCL and MgCl2); (2) Primers should not overlap with variants that are likely to be present in the target viral genomes, specifically a given list of variants that are known or likely or suspected to be present in the infected population under test. In various embodiments, this includes a given list of variants to the reference viral genome that are present in commonly observed clades or strains, such as clades or strains that have been observed in more than 0.1% sequenced viral genomes for the virus of interest. In various embodiments, either primer do not overlap such variants at all, or where there is overlap, the variant does not intersect the last 10 bases of the 3′ end of a primer, and does not reduce the primer Tm by more than about 5° C.; (3) Primers should be free from secondary structure with themselves or with other primers in the same reaction. In various embodiments, the primers do not have self-complementary segments longer than 3 bases at 3′ ends, or longer than 4 bases in arbitrary segments; (4) In various embodiments, relevant genomes for off-target priming assessment are the human genome and (i) bacterial genomes that may contaminate human samples, such bacteria that reside in the human oral or nasal cavity, (ii) viral genomes that may contaminate human samples, and (iii) human respiratory viruses that may comprise an active infection, including off-target portions of the targeted viral genome that is the subject of the assay, including SARS-CoV-2 and known variants, Influenza A and B and known variants, and RSV and known variants. For all such off-target genomes to be assessed, individual primers will not have near matches against such genomes, and primer pairs will not have near matches within 2 kb of each other, such that an amplicon of that size would be produced. In various embodiments, “no near matches” may mean that the Tm of any such primer match is at least 10° C. below the assay temperature in the assay buffer; and (5) The resulting target amplicons should have the segment between primer 3′ ends being at least 15 bases, and less than 100 bases, and such a segment must provide for a complementary hybridization probe preferably in the length range of 15 bases to 50 bases, and having a Tm within 5° C. of the assay temperature in the assay buffer, and which is free from secondary structure and free from any off target near matches in the amplicons that may be produced by the assay, the primers used in the assay, or in any off target genomes that may be present. In preferred embodiments, this may mean that any such secondary structure or off target matches for the hybridization probe have a Tm that is at least 10° C. below the assay temperature, in the assay buffer.
The following Examples are included for illustration and not limitation.
An overarching goal is to bring the full power of molecular electronics sensor chips to bear on the war against COVID-19. The instant disclosure demonstrates a commercial prototype system that can perform autonomous, automated wastewater monitoring for SARS-CoV-2, with multiplex detection, options for nucleic acid or antigen tests, and with very high sensitivity and specificity, and with wireless reporting of results. This will address the current lack of the right technology for large scale deployment of highly informative wastewater monitoring and tracing for SARS-CoV-2. Rapidly and economically tracing outbreaks of SARS-CoV-2 through granular autonomous networks of automated wastewater monitors would be a new, and extremely powerful weapon in the battle against COVID-19 and future infectious viral diseases. The same technology can also be used to monitor for many other viruses of importance, such as influenza, HIV, or hepatitis, and future pandemic viruses.
In this Example we show that the molecular electronics sensor platform disclosed herein can provide an ideal solution for deploying automated autonomous wastewater monitoring stations. The disclosure also provides an outline for developing a commercial-grade prototype as well as accelerated lab testing and field-testing phases for commercial development and large-scale deployment. The disclosed platform will be based on a disruptive new technology that can provide ideal performance for automated wastewater monitoring: rapid, low-cost, ultra-compact, all-electronic devices, providing highly sensitive and highly multiplex detection. An exemplary schematic of an automated SARS-CoV-2 Wastewater Monitoring Device is shown in
In this experiment, the starting point sensor is one that detects DNA “hybridization” interactions—a single stranded DNA oligo binding its complementary strand (
A general molecular electronics sensor array CMOS chip (Complementary Metal Oxide Semiconductor chip, the standard type in computers and cell phones) is used that provides 16,000 sensors, each of which is a nano-circuit with a single molecule DNA hybridization probe that can detect single-molecule DNA target binding events (
We have demonstrated the basic specificity and sensitivity and multiplexing for this detection platform (
The sensor chip provides the rapid readout capability for the relevant DNA targets and will extend the up-front assay to be appropriate for SARS-CoV-2 detection in wastewater samples. The disclosure develops two exemplary versions of assay: one for direct detection of viral nucleic acid targets and another also for antigen (N and S protein) targets, via the use of an aptamer-based indirect detection. Both of these methods allow for an intermediate isothermal DNA amplification step, to achieve maximum sensitivity detection on the Roswell hybridization sensor array chip.
Aptamer-based Detection of Proteins. In other embodiments, hybridization sensors described are used to detect protein targets through the use of an intermediate “molecular switch” aptamer. Such an aptamer is configured with an additional bound DNA oligo that is displaced and released only when the aptamer binds its target protein in solution—this freed strand can then subsequently be detected on the hybridization sensor array.
Amplification of Signals For Extreme Sensitivity. On chip detection of any such nucleic acid targets can be made more sensitive by the insertion of a rapid isothermal DNA amplification reaction, to greatly amplify DNA targets of interest, prior to detection on the chip. This applies both to methods that target viral nucleic acids directly, or target viral antigen proteins via the use of the molecular switch aptamers.
Multiplex detection—Multiplex detection sensors are created in an easy, highly scalable manner by having distinct binding probes at distinct sensor pixels of the 16,000-sensor chip. Such multiplex chips can be conveniently fabricated in two ways: (1) using voltage-directed assembly to attract and attach different probes to the desired electrically selected pixel electrodes, or (2) by pooling and random deposition of the probes into pixels, with the probe identify subsequently decoded be a series of identifying hybridization reactions, which can be performed in minutes as part of the sensor chip fabrication process. To detect SARS-CoV-2 in wastewater an exemplary carried out in a general process that includes: (1) possible RNA extraction and purification and concentration, (2) targeted isothermal amplification reaction producing multiple single stranded DNA targets for on-chip detection, (3) possible further purification or concentration, and (4) subsequent detection on a sensor chip platform described herein. For the isothermal amplification step, in one embodiment, this includes known methods widely used in rapid nucleic acid diagnostics, such as LAMP and RPA, as well as newer oligo isothermal amplification methods such a Hybridization Chain Reaction (HCR) and Signal Amplification By Exchange Reactions (SABER). For such methods, robustness in the presence of potential wastewater-related contaminants is a consideration. For pre-amplification preparation of RNA, and post-amplification preparation of DNA, in one embodiment, the rapid, minimal complexity methods that are compatible with automated processing after amplification. Some key criteria to consider for evaluation of the resulting assay may include: sensitivity: potential to reach single viral particle input detection limits; specificity: potential to reject off target nucleic acids, and spurious detections; multiplexing: ability to allow simultaneous detection of multiple different aptamers with a single sensor chip; time to answer: potential for answers in minutes; and automated field deployment: suitability of the process for an automated, autonomous, field-deployed workflow.
Proxy Samples, Detection Targets, and Criteria Details. In one embodiment, suitable positive and negative laboratory control proxies for wastewater containing SARS-CoV-2 may be devised. Multiple desirable detection targets in the SARS-CoV-2 genome, that will be subject to multiplex isothermal amplification and multiplex on chip detection may also be selected. In another embodiment, the disclosure relates to an antigen test for SARS-CoV-2 N and S proteins, from wastewater samples, with readout on a molecular electronics hybridization sensor array chip described herein, and using aptamer-based detection. Further, the sensitivity, specificity, and limits of detection may be determined as well as the limits of multiplexing detection on one chip. This is performed for samples presenting in wastewater conditions.
In another embodiment, the antigen detection is based on molecular switch aptamers. To address Aim 2, various lab proxy samples representing SARS-CoV-2 viral particles in wastewater format are evaluated and a general process is carried out that comprises: (1) possible isolation, purification and concentration of viral particles or viral S and N proteins from the viral capsid, (2) reaction with the aptamer-switches targeting these proteins, in multiplex fashion, in a solution phase reaction, (3) possible purification and concentration of released switch oligos, (4) a targeted isothermal DNA amplification reaction to amplify the switch oligo targets for on chip detection, (5) possible further purification or concentration of oligo targets, and (6) subsequent detection on the existing Roswell sensor chip platform. These options can be assessed and optimized for various sub-procedures. For the isothermal amplification step, this may include well known methods widely used in rapid nucleic acid diagnostics, such as LAMP and RPA, as well as newer oligo isothermal amplification methods such a Hybridization Chain Reaction (HCR) and Signal Amplification By Exchange Reactions (SABER). In particular, their robustness may be assessed in the presence of potential wastewater-related contaminants. For pre-amplification preparation of antigens, and post-amplification preparation of DNA, rapid, minimal complexity methods that may be compatible with automated processing, and with the amplification reaction may be considered. Important criteria to consider for evaluation of the resulting assay may include: sensitivity: potential to reach single viral particle input detection limits; specificity: potential to reject off target nucleic acids, and spurious detections; multiplexing: ability to allow simultaneous detection of multiple different aptamers switches with a single sensor chip; time to answer: potential for answers in minutes; and automated Field Deployment: suitability of the process for an automated, autonomous, field-deployed workflow.
Existing aptamers from the literature for the S and N proteins of SARS-CoV-2 S may be used. These aptamers also have cognate molecular switches. These are complementary oligos that bind the recognition portion of aptamer, and which are displaced when the aptamer binds its target protein. These secondarily released oligos open the possibility for other “indirect” detection modes, as well as amplification, which we will assess herein. Any other aptamers suggested by our domain experts may be used to develop switches.
The N Aptamer illustrated in
Suitable positive and negative laboratory control proxies may be developed for wastewater containing SARS-CoV-2. This will in particular rely on best practices for such reference samples, for the purpose of developing aptamer antigen tests. To the extent that actual live virus samples may be required for some assay testing, the tests can be done within a dedicated SARS-CoV-2 research.
For development the antigen assay using aptamer switches, the sensitivity, specificity, and multiplex detection ability (N=10-100), including a selected amplification method for sensitivity enhancement, may be detected. The key target metrics include: (1) multiplex at least 10 targets, (2) sensitivity of at least 1000 particles per mL with amplification.
An exemplary preferred device is commercial for the automated wastewater monitoring application. In scope for this effort is the industrial design and system integration is used to make a fully self-contained sample collection, testing and reporting device. The major functional elements of an exemplary device include automated collected wastewater samples, at frequency of once per hour or more; application of the primary sample preparation to get to chip-ready material; transfer of this to the chip flow cell for detection; wireless transmission the results back to a local communications hub or repeater; reagents and consumables replacement procedures; and capacity matching of sample prep and readout. Because the chip reader system can read out in minutes, whereas sample acquisition and prep may take 10 times longer, a preferred configuration is one where multiple sample acquisition and prep systems feed a single chip reader, to match the capacities, and ensure proper frequency of sampling without latency in processing. A schematic of an exemplary embodiment is illustrated in
Another exemplary device is a breath analyzer. In operation, a subject breathes into device, viral particle(s) in the breath are transferred to solution phase, where they are directly detected by a molecular electronics sensor chip with single-molecule aptamer sensors for the viral spike proteins. This direct electronic detection of the virus particle could take under 1 minute. A schematic of an exemplary embodiment is illustrated in
Additional Considerations
In various embodiments, a circuit comprises: a first electrode; a second electrode spaced apart from the first electrode; a molecular bridge attached to each of the first and second electrodes; and at least one nucleic acid hybridization probe conjugated to the molecular bridge.
In various embodiments, the molecular bridge comprises a double-stranded oligonucleotide, a protein alpha-helix, a peptide, a carbon nanotube, a graphene nanoribbon, a bacterial nanowire, or a conducting polymer.
In various embodiments, the at least one nucleic acid hybridization probe is conjugated to the molecular bridge at the 5′ end of the at least one nucleic acid hybridization probe, the 3′ end of the at least one nucleic acid hybridization probe, or at a nucleic acid base internal to the at least one nucleic acid hybridization probe.
In various embodiments, the at least one nucleic acid hybridization probe comprises from about 8 to about 25 nucleic acid bases.
In various embodiments, the circuit comprises a plurality of nucleic acid hybridization probes.
In various embodiments, each of the plurality of nucleic acid hybridization probes has a unique nucleic acid sequence.
In various embodiments, the at least one nucleic acid hybridization probe comprises a single-stranded DNA.
In various embodiments, the circuit further comprises a gate electrode.
In various embodiments, the circuit resides on a CMOS chip.
In various embodiments, a molecular sensor a circuit further comprising a first electrode; a second electrode spaced apart from the first electrode; a molecular bridge attached to each of the first and second electrodes; and at least one nucleic acid hybridization probe conjugated to the molecular bridge, wherein the circuit resides on a CMOS chip, and wherein the molecular sensor is housed in a cartridge optimized for sampling at least one source of a target nucleic acid molecule.
In various embodiments, a method of detecting a foreign nucleic acid molecule in solution comprises: (1) providing a circuit comprising a first electrode; a second electrode spaced apart from the first electrode; a molecular bridge attached to each of the first and second electrodes; and at least one nucleic acid hybridization probe conjugated to the molecular bridge, wherein the at least one nucleic acid hybridization probe is capable of hybridizing to the foreign nucleic acid molecule; (2) initiating at least one of a voltage or a current through the circuit; (3) exposing the circuit to the solution for a defined period of time; and (4) measuring electrical signals through the circuit as the at least one nucleic hybridization probe hybridizes with the foreign nucleic acid molecule, wherein the electrical signals are processed to provide information on the underlying sequence of the foreign nucleic acid molecule.
In various embodiments, the solution to be exposed to the circuit is first prepared by PCR methods of amplification to amplify the foreign nucleic acid present in the solution.
In various embodiments, the method further comprises transferring the provided information to a data processor.
In various embodiments, the electrical signals comprise a distinguishable signal event that correlates with the at least one nucleic acid hybridization probe being a reverse complement of the foreign nucleic acid molecule.
In various embodiments, the foreign nucleic acid molecule is associated with a viral genome.
In various embodiments, the viral genome comprises a SARS-CoV-2 genome, or a mutant thereof.
In various embodiments, a method of detecting a viral infection in an individual comprises: obtaining a biological sample from the individual; providing a circuit comprising a first electrode; a second electrode spaced apart from the first electrode; a molecular bridge attached to each of the first and second electrodes; and at least one nucleic acid hybridization probe conjugated to the molecular bridge, wherein the at least one nucleic acid hybridization probe is capable of hybridizing to a viral nucleic acid molecule contained in the biological sample; initiating at least one of a voltage or a current through the circuit; exposing the circuit to the biological sample for a defined period of time; and measuring electrical signals through the circuit as the at least one nucleic hybridization probe hybridizes with the viral nucleic acid molecule contained in the biological sample, wherein the electrical signals are processed to provide information on the presence or absence of the viral nucleic acid molecule.
In various embodiments, the viral nucleic acid molecule is associated with a SARS-CoV-2 genome, or a mutant thereof.
In various embodiments, the method further comprises treating the individual with an effective amount of an anti-viral therapy or anti-viral regimen.
In various embodiments, a sensor device comprises: a first molecular electronics sensor configured in a first sensor pixel, the first sensor comprising a first electrode; a second electrode spaced-apart from the first electrode by a first nanogap; a first bridge molecule bridging the first nanogap and electrically connecting the first electrode and the second electrode; and a first hybridization probe comprising a first oligonucleotide sequence conjugated to the first bridge molecule; a second molecular electronics sensor configured in a second sensor pixel, the second sensor comprising a third electrode; a fourth electrode spaced-apart from the third electrode by a second nanogap; a second bridge molecule bridging the second nanogap and electrically connecting the third electrode and the fourth electrode; and a second hybridization probe comprising a second oligonucleotide sequence conjugated to the second bridge molecule.
In various embodiments, the sensor device further comprises a third molecular electronics sensor configured in a third sensor pixel, the third sensor comprising a fifth electrode; a sixth electrode spaced-apart from the fifth electrode by a third nanogap; a third bridge molecule bridging the third nanogap and electrically connecting the fifth electrode and the sixth electrode; and a third hybridization probe comprising a third oligonucleotide sequence conjugated to the third bridge molecule.
In various embodiments, the first oligonucleotide sequence comprises a DNA sequence complementary to a segment of a first pathogen genome.
In various embodiments, the second oligonucleotide sequence comprises a DNA sequence complementary to a segment of a second pathogen genome.
In various embodiments, the third oligonucleotide sequence comprises a DNA sequence complementary to a segment of a constitutively expressed human gene.
In various embodiments, at least one of the first bridge molecule, the second bridge molecule and the third bridge molecule comprise a peptide having at least 80%, at least 85%, at least 90%, at least 95%, or at least 98% sequence identity to SEQ ID NO: 3.
In various embodiments, the first, second, third, fourth, fifth and sixth electrodes comprise Ag, Al, Au, Cr, Cu, Ni, Ga, Ti, Pt, Pd, Rb, Rh, or Ru.
In various embodiments, the first sensor further comprises a first decoding probe comprising a fourth oligonucleotide sequence conjugated to either the first hybridization probe or to the first bridge molecule.
In various embodiments, the second sensor further comprises a second decoding probe comprising a fifth oligonucleotide sequence conjugated to either the second hybridization probe or to the second bridge molecule.
In various embodiments, the third sensor further comprises a third decoding probe comprising a sixth oligonucleotide sequence conjugated to either the third hybridization probe or to the third bridge molecule.
In various embodiments, a plurality of first sensor pixels and a plurality of second sensor pixels are configured as a sensor pixel array deployed on a CMOS chip.
In various embodiments, a plurality of first sensor pixels, a plurality of second sensor pixels, and a plurality of third sensor pixels are configured as a sensor pixel array deployed on a CMOS chip.
In various embodiments, the first pathogen is SARS-CoV-2.
In various embodiments, the second pathogen is an Influenza A or Influenza B virus.
In various embodiments, the human gene comprises β-actin.
In various embodiments, a method of detecting a target oligonucleotide sequence in a bio-sample comprises: providing a sensor device comprising a plurality of sensor pixels configured in an array on a semiconductor chip, the plurality of sensor pixels comprising at least a first subset of sensor pixels; wherein each sensor pixel in the plurality of sensor pixels comprises a molecular electronics sensor further comprising: a first electrode; a second electrode spaced-apart from the first electrode by a nanogap; a bridge molecule having a first end and a second end, the first end coupled to the first electrode and the second end coupled to the second electrode; and a hybridization probe having an oligonucleotide sequence conjugated to the bridge molecule; wherein each molecular electronics sensor in the first subset of sensor pixels includes a first hybridization probe comprising a first oligonucleotide sequence capable of hybridizing to the target oligonucleotide sequence; initiating at least one of a voltage or a current through each sensor pixel in the plurality of sensor pixels; exposing the plurality of sensor pixels to the bio-sample; and measuring electrical signals from the first subset of sensor pixels as the target oligonucleotide sequence and the first hybridization probe engage in hybridization, wherein the electrical signals provide a signature indicating the target oligonucleotide sequence is present in the bio-sample.
In various embodiments of the method, the bio-sample is first amplified by methods designed to amplify at least the target oligonucleotide sequence if it is present in the bio-sample, prior to exposure of the plurality of sensor pixels to the bio-sample. In various embodiments, the PCR method utilizes at least one of the primers set forth herein.
In various embodiments of the method, the target oligonucleotide sequence is a segment of a genome of a first pathogen. In various embodiments, the first oligonucleotide sequence is complementary to a segment of a genome from a first pathogen. In various embodiments, the first pathogen is SARS-CoV-2, an Influenza A strain, an Influenza B strain, or RSV.
In various embodiments of the method, the measured electrical signals comprise perturbations in a voltage or current over time from the first set of sensor pixels in the plurality of sensor pixels, wherein the perturbations collectively provide a signature indicative the target oligonucleotide sequence is either present or not present in the bio-sample.
In various embodiments of the method, the method further comprises confirming that the bio-sample is of human origin, wherein the plurality of sensor pixels further comprises a second subset of sensor pixels and each molecular electronics sensor in the second subset of sensor pixels includes a second hybridization probe configured to detect a segment of an expressed human gene. In various embodiments, the second oligonucleotide sequence is complementary to a segment of a constitutively expressed human gene. In various embodiments, the human gene is human RNase P gene.
In various embodiments of the method, additional subsets of sensor pixels are provided in the sensor device so that the target oligonucleotide sequence can not only be detected but can also be attributed to a particular pathogen such as SARS-CoV-2, Influenza A, Influenza B or RSV. In various embodiments, electrical signals from each subset of sensor pixels are measured, and the electrical signals interpreted as to which subset of sensor pixels engaged in hybridization events with the target oligonucleotide sequence, thus identifying the pathogen source of the target hybridization sequence.
In the detailed description, references to “various embodiments”, “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected, coupled or the like may include permanent (e.g., integral), removable, temporary, partial, full, and/or any other possible attachment option. Any of the components may be coupled to each other via friction, snap, sleeves, brackets, clips or other means now known in the art or hereinafter developed. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact.
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to ‘at least one of A, B, and C’ or ‘at least one of A, B, or C’ is used in the claims or specification, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
All structural, chemical, and functional equivalents to the elements of the above-described various embodiments that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for an apparatus or component of an apparatus, or method in using an apparatus to address each and every problem sought to be solved by the present disclosure, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element is intended to invoke 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a chemical, chemical composition, process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such chemical, chemical composition, process, method, article, or apparatus.
This Application is a continuation-in-part and claims priority to International Application Serial No. PCT/US2021/024730 filed Mar. 29, 2021, entitled “Molecular Electronic Sensors for Genetic Analysis by Hybridization.” The '730 application claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 63/001,249 filed Mar. 27, 2020, entitled “Molecular Electronic Sensors for Genetic Analysis by Hybridization,” and U.S. Provisional Patent Application Serial No. 63/003,653 filed Apr. 1, 2020, entitled “Molecular Electronic Sensors for Genetic Analysis by Hybridization.” This application also claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 63/080,673 filed Sep. 18, 2020, by Barry Merriman, entitled “Breathalyzer for SARS-CoV-2 Viral Particles” and U.S. Provisional Patent Application Ser. No. 63/078,894 filed Sep. 15, 2020, by Barry Merriman, entitled “Molecular Electronic Sensors for Automated Wastewater Monitoring for SARS-CoV-2 Virus.” Each of these disclosures is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63080673 | Sep 2020 | US | |
63078894 | Sep 2020 | US | |
63003653 | Apr 2020 | US | |
63001249 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US21/24730 | Mar 2021 | US |
Child | 17476427 | US |