The invention regards the field of nanotechnology and describes the utilization of electric fields for the manipulation of molecular mechanisms. In this way, a molecular machine is provided, which allows movement in response to said electrical fields.
In the past decades, several biomolecular mechanisms and machines have been demonstrated for the application in nanotechnology. However, none of them grew past the “proof of principle” phase.
Among the naturally occurring molecular machines mainly kinesin motors and microtubules were deployed, e.g., for the transport of nanoparticles (cf. prior art references 1 to 3). In so-called “in vitro motility assays” kinesin motors were fixed on lithographically patterned chip surfaces to transport microtubules through lithographically produced channel systems. Here electric manipulation was also used e.g. for the sorting of microtubules (cf. prior art reference 4).
In the past years, artificial biomolecular nanomachines were mainly produced on the basis of DNA molecules. The production of DNA machines utilizes the characteristic, sequence specific molecular interactions between DNA strands. Adequate choice of DNA sequences allows to “programmably” construct complex molecular structures from single DNA strands. A combination of relatively flexible single stranded DNA components with more rigid double stranded elements allows the construction of molecular mechanisms in which molecular components can be moved relative to each other. These include “DNA tweezers” as well as various “DNA walker” systems. An overview of such systems is given in prior art reference 5. With the recent development of the so-called “DNA origami method” it has become much easier to construct larger molecular systems (typically on the length scale of 10-100 nm). Recently this method was used to construct basic molecular machine elements, including several rotary joint and linear sliding structures (prior art references 6 to 9).
So far, the described molecular mechanisms have been actuated chemically or in some cases photo-chemically. In the case of chemical actuation, e.g., so-called DNA fuel strands were used to drive the movement of a mechanism through DNA strand hybridization reactions. Due to the slow kinetics of these reactions only very slow motion could be realized (prior art references 10 to 12). The same limitations apply to deoxyribozymes and DNA modifying enzymes (prior art reference 13).
Alternatively, motion of molecular mechanisms was achieved with a change of buffer conditions, e.g. by a change in pH or a change of the solution's ionic conditions. These methods come with the disadvantage that they unspecifically influence all system components and that buffer conditions are often not compatible with the chemistry of potential applications (e.g. enzymes are not functional in the specific conditions, nanoparticles can aggregate, etc.)
The aforementioned chemical methods typically require the external addition of solutions. In principle, this can be done with the help of microfluidic systems, which could allow a certain degree of automation. However, such an approach requires rather elaborate instruments and causes high material consumption.
At first glance, an attractive method for external control of nanomachines is based on photoswitchable molecules, typically derivatives of the photoswitchable molecule azobenzene (prior art references 14 to 16). Incorporation of such photoswitches into DNA double strands makes it possible to destabilize them upon light irradiation (in UV range) and stabilize them by irradiation with light of larger wavelength, and this procedure can be used to drive molecular mechanisms. The downside of this method, apart from the necessary chemical modification of the mechanisms, again is the slow and incomplete switching behavior.
Prior art reference 22 describes a biosensor including a gold platform. This biosensor allows only binary switching between an adhesive state and a non-adhesive state. No fine adjustment of the movement is possible. Prior art reference 23 describes the movement of molecular mechanisms in response to UV light.
None of the described approaches could ever demonstrate the exertion of a relevant force against an external load.
It is an object of the present invention to provide a molecular machine which allows quick reaction to control commands, which can generate high forces, and which can provide an exact movement.
The object is solved by the features of the independent claim. The dependent claims contain advantageous embodiments of the present invention.
The object is therefore solved by a molecular machine comprising a movement part and a control part. The movement part comprises several machine elements which are adapted to be moved with respect to each other. These machine parts are molecular structures, particularly nanomolecular structures. The movement part includes a first molecular element, a second molecular element and a linking element. The first molecular element and the second molecular element preferably are separate and/or independent elements. The linking element is adapted to constrain a relative movement of the first molecular element and the second molecular element while allowing a relative movement between the first molecular element and the second molecular element in at least one degree of freedom. Preferably, the first molecular element and the second molecular element can not be separated from each other and establish a moving mechanism with the linking element acting as bearing and/or joint.
In order to control the relative movement of the first molecular element and the second molecular element, the control part is configured to generate an electrical field around the movement part. Preferably, the control part includes an electrical device which applies said electrical field. The first molecular element is fixed relative to the control part such that the first molecular element is fixed relative to the electrical field generating means. Hence, even a change in the electrical field cannot cause a movement of the first molecular element. The first molecular element rather acts as a base for movement of the second molecular element. The second molecular element is therefore the only part which can be moved in response to the electrical field.
At least the second molecular element is electrically charged. The second molecular element can be an electrically charged molecule, particularly a biomolecule, or can be artificially electrically charged. In particular, an electrically charged functional group can be added to a molecular structure in order to create the electrically charged second molecular element. Due to the electrical charge, the second molecular element aligns to said electrical field. In case the electrical field is changed in orientation, the orientation of the second molecular element is also changed. This means that the control part can control fine adjustment of the second molecular element with respect to the first molecular element. The second molecular element can be transferred to and held in any orientation with respect to the first molecular element that is not prevented by the linking element. Additionally, a continuous movement of the second molecular element can be realized.
In summary, the movement part sets up the kinematics of the molecular machine, while the control part powers and controls any movement of said kinematics via electric actuation. Electric actuation solves several technical challenges that are currently faced by molecular nanomachines. In particular, electric actuation allows controlling molecular switches and mechanisms faster, with higher precision, and with less complex instrumentation compared to conventional methods. Moreover, the invention offers the solution to a central challenge of nanomanipulation (the “fat fingers” problem) since the externally controlled nanomanipulators are of the same small length scale as the manipulated nanoscale objects and molecules.
In a preferred embodiment, the control part comprises a fluidic channel. The movement part is provided in the fluidic channel. The control part further comprises an electrical device including electrodes. The electrodes are connected to the fluidic channel. In this way, the electrical field as described above can be created. The electrical device comprises a voltage source and electrical wiring to apply the voltage to the electrodes. Preferably, the electrical device comprises two electrodes for generating the electrical field. Alternatively, the voltage source can be a three-phase voltage source such that the electrical device has three electrodes. This allows providing a rotating electrical field such that the second molecular element can be rotated in a simple way.
Preferably, the control part comprises at least two electrical devices and fluidic channels with different orientations. In this way, two independent overlaying electrical fields can be created. The fluidic channels are arranged to intersect at an intersection area and the movement part is placed at the intersection area. Therefore, a two-dimensional movement of the second molecular element can be controlled. Alternatively, the above described three-phase voltage and the three electrodes might be used for two-dimensional movement control.
Favorably, the first molecular element is fixed to the fluidic channel. This means that the first molecular element can not move in response to the electrical field. The molecular element rather is a fixed base for the movement of the second molecular element. In this way, it is ensured that only the second molecular element can be moved. Further the fixation of the first molecular element allows very fine adjustment of the second molecular element, which aligns to the electrical field while the first molecular element does not move and/or align to the electrical field.
Providing the electrical device including electrodes might cause unwanted electrochemical effects. Particularly in case the movement part is employed for synthesis purposes, electrochemical effects to the synthesized products should be avoided. Therefore, the electrical device preferably includes an isolating element for isolating the electrodes from the movement part. The isolating elements particularly comprise membranes and/or gels and/or salt bridges. This means that only selected molecules can pass through the isolating elements such that the electrodes are separated from the movement part. However, the electrical field generated by the electrical devices is not influenced or at least not significantly influenced by the isolating element. Therefore, the control of movement of the second molecular element is not affected. The isolating element preferably also reduces the volume provided for reactions. This particularly allows holding the components of a desired reaction close to the movement part such that the components can manipulated and/or moved by the molecular machine.
The linking element is favorably part of the first molecular element or the second molecular element. Particularly, the first molecular element and/or the second molecular element might comprise a functional group which is adapted to link the first molecular element and the second molecular element. In this way, the manufacturing process of the molecular machine is simplified. Additionally, the linking element can be part of at least one of two or more mechanically interlocked molecules. This is particularly preferred in a case in which the movement part comprises rotaxanes. In such structures, the first molecular element comprises a linear part and the linking element and the second molecular element comprises a ring structure. The ring structure can rotate about the linear part and the linking element avoids the ring structure slipping off the linear part.
The first molecular element and/or the second molecular element and/or the linking element preferably are biomolecules. The biomolecules are particularly electrically charged. In a further preferred embodiment, the first molecular element and/or the second molecular element and/or the linking element are made of DNA (deoxyribonucleic acid), preferably DNA-origami, and/or RNA (ribonucleic acid) and/or protein and/or artificial charged supramolecular structures.
In a preferred embodiment, the first molecular element is a platform and the second molecular element is a positioning arm. The positioning arm is fixed to the platform via the linking element. The linking element constrains all relative movement of the first molecular element and the second molecular element except of a rotation of the second molecular element within a plane parallel to the first molecular element. Therefore, the positioning arm is preferably moved by aligning to two overlaid electrical fields. This allows adjusting the positioning arm in relation to the platform. Particularly, a full rotation of the positioning arm is possible, wherein the positioning arm can be stopped and hold in any position. Further, high forces are generated which allow manipulation of further molecules.
The first molecular element and/or the second molecular element are addressable. This means, that functional groups can be provided on the first molecular element and the second molecular element. Preferably, both, the first molecular element and the second molecular element can be addressed. Therefore, the movement part can be adapted to specific needs. This allows employing the molecular machine in various environments and/or for various purposes.
Preferably, fluctuations of the first molecular element and/or the second molecular element due to diffusion are within a tolerance of at most 10 nm, preferably at most 1 nm, particularly preferable at most 0.5 nm. Hence, a fine adjustment of the second molecular element is facilitated.
Preferably, any dimension of the first molecular element and the second molecular element is less than 1000 nm. Particularly, the above described platform is preferably made of square shape with a length of 50 to 55 nm. The positioning arm is preferably shorter than said length. Particularly, the positioning arm is adequately addressable within the overlap with the platform. Such dimensions allow manipulation of molecules with the molecular machine. Therefore, the molecular machine is a molecular nanomechanism.
In a preferred embodiment, the linking element is made from a crossed two-layer scaffold routing. A top layer is preferably rotated with respect to a bottom layer by an angle between 80° and 100°, particularly 90°. Therefore, a stable base plate is generated.
The second molecular element is particularly made from a DNA six-helix bundle. Therefore, the second molecular element can be provided as positioning arm. This positioning arm might be used as robot arm for several purposes, for example for manipulating molecular mechanisms.
On the top layer of the first molecular element, the second molecular element forming the positioning arm is preferably connected to the plate via two adjacent scaffold crossovers with 3 and 4 unpaired bases, respectively. These short single-stranded segments create a flexible joint, which allows rotational movement of the second molecular element with respect to the first molecular element. While this joint cannot turn in the same direction indefinitely without winding up, it is still sufficiently flexible to allow the arm to reach any angle on the plate. This design is preferred over other potential designs for two reasons. First, this design allows us to use a one pot folding approach for the first molecular element and second molecular element, particularly the platform with the integrated 6HB arm, which confers the benefit of fast preparation and short experimental iteration periods. Second, a joint created by a double scaffold crossover provides higher resistance against external mechanical strain. For comparison, a single staple crossover would allow rotation around a single covalent bond, but the connection to the arm would always be oriented in a duplex unzipping geometry for one specific orientation of the arm during rotation. In this configuration, the connection to the first molecular element could potentially be unzipped, leading to the dissociation of the arm. By contrast, utilization of the scaffold strand (as in this work) to create the joint ensures a stable covalent connection between base plate and arm. With a circular scaffold strand, this strategy necessarily results in two single-stranded connections between arm and plate. For angles in which one strand is exposed to forces in unzipping geometry, the second strand is oppositely oriented in shear geometry and may therefore act as a strain relief. A linearized scaffold would allow for a covalent connection with only a single connecting strand, but would still be prone to unzipping when exposed to forces antiparallel to the direction of the scaffold strand in the plate next to its crossover to the arm structure. Particularly for experiments in which the length of the lever arm is exploited to create forces on the base plate (e.g. in the 20 bp unzipping experiment,
The second molecular element is preferably adapted to transport inorganic nanoparticles. Therefore, fast operations of biohybrid plasmonic systems are enabled.
A specific embodiment will be described together with the attached drawings:
Platform 4 and positioning arm 5 are constructed with the DNA origami method. The DNA origami method is well-known in the art and is for example described in prior art references 17 to 18. The square platform 4 consists of two layers of DNA double helices. In all figures, each double helix is represented by a cylinder. The positioning arm 5 is a six helix bundle. The linking element 7 comprises two DNA strands and connects the positioning arm 5 to the platform 4. Transmission electron microscopy micrographs can show the structure and quality of these objects.
The platform 4 and the positioning arm 5 can be built from different molecules e.g. RNA, proteins, artificial charged supramolecular structures. The positioning arm 5 might be elongated by coupling to further structures. An example for such elongation is described with respect to
DNA molecules and thus also DNA origami structures are heavily charged biomolecules that can be electrically or electrophoretically manipulated. This fact can be exploited to achieve control and movement of molecular mechanisms.
Electric fields can be created in a simple electrophoretic or micro-electrophoretic setup. In the embodiment, a control part 3 is employed, which is shown in
As shown in
Electric control is achieved by applying voltages to the electrodes. For that purpose, low control voltages as output channels of a DAQ board (data acquisition board) are amplified to adequate voltages by an operational amplifier. In the embodiments, the electrical device 7 applies voltages of up to 200 V.
Two-dimensional movement of the positioning arm 5 can be realized with a crossed channel geometry. This is shown in
In order to ensure that only the positioning arm 5 rotates while the platform 4 remains still, the platform 4 is fixed to at least one of the fluidic channels 9, 10 of the control part 3. In this way, the platform is fixed relative to the control part 3 which means that no movement of the platform 4 is possible in response to the electrical field.
In an alternative setup, lithographically designed microelectrodes can be used, which require much smaller voltages for manipulation. In principle, this enables the miniaturization of the whole setup and the integration e.g. on a USB-Stick.
The electrically charged positioning arm 5 aligns to the electrical fields generated via the first electrical device 7 and the second electrical device 8. In this way, an exact positioning of the positioning arm 5 can be reached. Particularly, the positioning arm 5 can be moved with a tolerance of at most 1 nm.
Proof of Functionality
Evidence for the electro-controlled movement of positioning arms 5 can be provided in several ways.
The movement of the positioning arm can be characterized by means of single molecule fluorescence resonance energy transfer (smFRET), which demonstrates the system's positioning precision on the nanometer scale. As the blue donor dye 15, Alexa Fluor 488 is employed, as the green first acceptor dye 16, ATTO 565 is employed, and as the red second acceptor dye 17, ATTO 647N is employed. The blue donor dye 15 can excite the first acceptor dye 16 and second acceptor dye 17 via FRET if donor and acceptor are in closer proximity than the Foerster radius (˜6 nm).
As shown in
An alternative way of proof of movement of the positioning arm 5 is shown in
Industrial Application Perspectives
The key capability to position molecules precisely, fast and electrically controlled as well as the possibility to locally exert directed forces trough molecular mechanisms on the nanoscale enables a wide variety of application opportunities in nanotechnology. Below, three possible areas of application will be briefly discussed.
Single Molecule Sensing and Force Spectroscopy
Highly specific molecular interactions are responsible for a wide range of biological processes and are also the mechanism of action of pharmacological substances. For this reason, biological research has been focused on the precise biochemical and biophysical characterization of these interactions for quite some time. In biophysical research, the strength of interactions is often analyzed in single molecule experiments. Here special instruments are used to exert forces on the binding partners. This includes experiments with atomic force microscopes, optical tweezers and magnetic tweezers.
The movement part 2 of platform 4 and positioning arm 5 according to the described embodiment of the invention make it possible to apply forces to molecules in situ. That is to say, in the case of the invention, the force applying lever itself is a molecular structure. Contrary to the other methods mentioned, it is relatively simple to conjugate the molecules and binding partners that are to be characterized to the platform 4 and the positioning arm 5. The experimental setup used to create electric forces is much simpler. This enables highly parallelizable execution of force measurements of molecular interaction partners since a vast number of measuring platforms 4 can be actuated at the same time. The sensor principle can also be used for screening of molecule libraries by “barcoding” (cf. prior art reference 19) of single platforms 4.
DNA Templated Synthesis
In the past 15 years, DNA templated synthesis was established as a novel method to increase the efficiency of chemical reactions and for the sequence based production of molecule libraries. This approach exploits the highly increased local concentration of molecules that were conjugated to a DNA strand and are thereby colocalized by sequence specific base pairing on the template (cf. prior art references 20 and 21).
This principle can be transferred to reactions with electrically driven molecular mechanisms. Electrically addressable moving molecular mechanisms can bring molecules into close proximity to induce their reaction. In this way for example, the same reaction can be repeated depending on an external clocking signal or sequential reactions can be performed according to a programmable protocol. Contrary to existing “proof of principle” experiments, the possibility of repeated and highly parallelized performance of such reactions enable the production of technologically relevant amounts of substances. The invention, i.e. the development of the electrical switchable molecular machine 1, is therefore an enabling technology for the realization of genuine molecular robotic systems and molecular assembly lines.
Photonics/Plasmonics
The molecular actuators according to the invention can readily be modified with inorganic particles like e.g. metal or semiconductor particles. For instance, a change in position of the molecular mechanisms can vary the particles' orientation with respect to a polarized external field. Accordingly, the occurrence of plasmonic effects (e.g. field enhancement, energy transfer, heating effects) can be switched via electric control.
Summary
With the described invention, nanoscale objects or molecules can be controllably moved and positioned. As an embodiment and for the demonstration of the general working principle a molecular positioning arm 5 from DNA molecules was explained. The nanoscale molecular positioning arm 5 is fixated on a specifically addressable platform 4 with a flexible joint that allows rotation around the pivot point. The positioning arm 5 movement can be precisely controlled by external electric fields. The positioning arm 5 can transport molecules, control chemical processes and exert forces on other molecules “in situ”. The method exploits the intrinsic electric charge of biomolecules and can be generally applied to synthetic as well as naturally occurring biomolecular mechanisms.
Further Aspects
In the molecular machine, sequence-specific switching is deliberately abandoned and electrical fields are used to move the components of a DNA machine with respect to each other. Thus many orders of magnitude in operation speed, almost perfect switching yield and the capability of computer-controlled nanoscale motion and positioning are gained.
The actuator unit of our system is comprised of a 55×55 nm2 DNA origami plate (platform 4) with an integrated, 25 nm long arm (positioning arm 5) defined by a DNA six-helix bundle (6HB), allowing for a high-yield one-pot folding procedure. For the rigid DNA plate, a crossed two-layer scaffold routing is utilized, in which the top layer is rotated with respect to the bottom layer by 90°. The 6HB functioning as the robot arm is connected to the top-layer of the base plate via a flexible joint (linking element 6) created by three and four unpaired bases, respectively. Successful assembly of the structure with ≈90% yield was verified using transmission electron microscopy (TEM) and atomic force microscopy (AFM). Consistent with the design, AFM yields a height of 4 nm for the base plate and an additional 4 nm for the 6HB arm.
First, the diffusive motion of the arm with respect to the base plate is investigated using single-molecule multi-color Förster Resonance Energy Transfer (FRET) experiments. This is illustrated in
To facilitate direct observation of the arm's motion by diffraction-limited fluorescence microscopy, two versions of pointer structures were designed that were multiply labeled with the fluorophore ATTO 655. Version one extended the arm linearly by 411 nm (
In order to realize dynamic external control of the robot arm, electrical fields were applied to the system—a natural choice for the manipulation of charged biomolecules. Electrical fields have been previously used only to stretch or orient substrate-immobilized DNA duplexes but not to dynamically control the conformation of nanomechanical DNA devices. We created a cross-shaped electrophoretic chamber constituted by two perpendicular fluidic channels intersecting at the center of a microscopy cover slip, with two pairs of platinum electrodes inserted into the four buffer reservoirs (
Electrical actuation of the arms results in a movement of the pointers, which were observed with an EMCCD camera using TIRF microscopy. In
Next, the angular positioning precision of the arm that can be achieved in the absence of docking sites by the electrical field alone is assessed. For large applied voltages (≥120 V in our setup) the angular standard deviation is ≈0.1 rad, which translates to a positioning precision of ≈2.5 nm on the plate.
In order to investigate the interaction of the arm with binding sites on the platform during electrical manipulation, “latching experiments” were performed with the same arrangement of docks as in
Next it is tested whether the robotic arm can wrest apart a 20 bp docking duplex, which is a stable structure at room temperature. While the arm is firmly locked in place in the absence of an electrical field, it can be released from the docking site by actuating the arm and rotated as shown in
At the field strengths generated in the sample chamber, field-induced melting of DNA duplexes is not expected as observed, e.g., for DNA structures immobilized on electrode surfaces. Instead, the arm acts as a lever which mechanically transduces the electrical force acting on its large charge to the docking duplex. Force-induced unzipping of DNA duplexes has been previously achieved using single molecule manipulation techniques such as AFM, optical tweezers or within nanopores. These experiments have shown that DNA unzipping requires forces on the order of 10-20 pN, which is consistent with the typical binding free energy of DNA base-pairs and their sub-nanometer spacing. A rough theoretical treatment suggests that forces that can be generated by the robot arm are on this scale. Importantly, the ability to separate stable duplexes by force facilitates the electrically controlled dissociation of the arm from one docking site and its subsequent placement at a different target position, which is then maintained also at zero field.
In order to show controlled movement of a cargo molecule attached to the arm, the three-color FRET system already employed in the stochastic switching experiments was utilized (
To demonstrate transport of inorganic nanoparticles by the robot arm, a gold nanorod (AuNR) was attached to one side of the 6HB arm, and its plasmonic interaction was probed with red (dotted line) and green (dashed line) fluorophores immobilized on the platform (
In summary, an electrical actuation was introduced as a viable strategy for fast, computer-controlled operation of biohybrid nanorobotic systems, which can exert forces at the molecular scale. Compared to nanoscale manipulation methods such as scanning probe techniques, optical or magnetic tweezers, electrical control is contact-free and can be implemented with low-cost instrumentation. The robotic movements achieved are at least 5 orders of magnitude faster than previously reported for the fastest DNA motor systems and comparable to ATPase driven biohybrids. The robot arm system may be scaled up and integrated into larger hybrid systems using a combination of lithographic and self-assembly techniques. For instance, the platforms can be easily connected to form long filaments with multiple DNA robot arms or to create extended lattices. Utilization of algorithmic self-assembly will enable the creation of structures with different types of robot platforms with dedicated tasks. Lithographic patterning of the substrate will further allow the fabrication of robot arm arrays with defined platform orientations. Using nanostructured control electrodes, single robot arms could even be addressed individually and their positioning state could act as a molecular mechanical memory. Combined with appropriate pick-up and release mechanisms, it is conceivable that this technology can be also applied to DNA-templated synthesis. Electrically clocked synthesis of molecules with a large number of robot arms in parallel could then be the first step towards the realization of a genuine nanorobotic production factory.
Short Description of Materials and Methods:
In the following, the materials and methods used in the above explained embodiments are shortly described.
Buffer Solution Summary
The scaffold strand for DNA origami folding was provided as a 100 nM solution in ddH2O. All basic staple strands were added in a 2-fold excess over the scaffold strand. Staple strands with special functions, i.e., staples with additional extended sequences for site-specific binding or chemical modifications (fluorophores/biotin) were supplied in 5-fold excess. The solution was adjusted to contain 1×TAE and 20 mM MgCl2. The structures were annealed in a Thermocycler (Bio-Rad Tetrad, Hercules, Calif., USA) that controls a temperature ramp from 70° C. to 20° C. over 12 h and successively holds the temperature at 40° C. for at least 3 hours. The unpurified samples were stored at room temperature until further use. A complete list of all oligonucleotide sequences is attached.
Structure Purification
All DNA origami samples were separated from excess strands by PEG precipitation. The detailed protocol can be found in the following paragraph. Fluorescent dyes for smFRET experiments were directly folded into the origami structure as covalent modifications of staple strands. All other dyes were attached by means of an adapter strand that hybridizes to an extended staple sequence. Adapter strands were added in 2-fold excess over each binding site and incubated for 1 h, followed by an additional step of PEG precipitation.
PEG Precipitation Protocol
The sample was mixed thoroughly in a 1:1 ratio with precipitation buffer (1×TAE, 1 M NaCl, 11% w/v PEG8k), and centrifuged at 20° C. with 20,000 rcf for 20 minutes. Afterwards the supernatant was carefully removed and the pellet resuspended in assembly buffer (1×TAE+1 M NaCl). Magnesium was replaced by sodium to avoid potential unspecific binding. This process is repeated a second time followed by determination of the concentration with a nanophotometer (NanoPhotometer Pearl, Implen GmbH, München, Germany).
Pointer Attachment
Pointer extensions were attached to the short 6HB arm of the robotic platform through incubation of 20 nM platform structure with 25 nM of the extension structure for at least 1 h at 37° C. while shaking.
AFM Imaging
AFM data was acquired with an Asylum Research Cypher ES (Oxford Instruments, Abingdon, UK) using Olympus BL-AC40TS-C2 (Olympus, Japan) cantilevers in AC mode. Structures were deposited on freshly cleaved mica and imaged in 1×TAE containing 12.5 mM MgCl2.
TEM Imaging
TEM images were acquired with a Philips CM100 kV TEM and an AMT 4×4 Megapixel CCD camera. For negative staining, 25 μl NaOH was added to a 2% uranyl formate solution. The staining solution was centrifuged for 5 min at 20,000 rcf to avoid stain crystals. 5 μl of Nanostructure samples were incubated on glow discharged formvar coated carbon Cu400 TEM grids provided by Science Services (München, Germany) and incubated for 30 s. Subsequently, the grid was washed with 5 μl of staining solution, incubated for 40 s with 15 μl staining solution and dried with filter paper.
Biotin-PEG Slide Preparation
25×25 mm #1.5 cover slips (Menzel-Gläser, Braunschweig, Germany) were used. Biotin-PEG-silane MW 3,400 was acquired from Laysan Bio, Inc., Arab, USA and stored under an argon atmosphere. The procedure for PEG modification of cover slips was adapted from a protocol that was kindly provided by Matthias Schickinger (Dietz lab, TUM).
Cleaning:
Flow chambers were assembled from three elements: a biotin-PEG functionalized cover slip, a PMMA chip and a layer of double-sided tape. The double-sided tape acts as a spacer between the coverslip and PMMA chip and defines the channel height (about 50 μm). The double-sided tape 3M 467MP (3M Company, Maplewood, Minn., USA) was cut with a laser cutter (Trotec Speedy 100, Trotec Laser, Marchtrenk, Austria) to achieve precise and reproducible channel geometries. The double-sided tape was attached to the center of the PMMA chip and covered with the cover slip. The cover slip was pressed onto the slide with office clamps for at least 30 minutes.
5 mm thick PMMA plates were laser-cut into rectangular pieces of 75×25 mm with reservoirs that can hold 150-200 μl buffer volume each. Small indentations on the outside edge are used to fix a custom-made plug carrying 4 platinum electrodes. The electrodes are deliberately placed in large buffer reservoirs distant from the sample area to minimize detrimental effects of electrochemical processes occurring at the electrodes on the sample. The fully assembled sample during the experiment is shown in
Sample Preparation for Electric Field Alignment Experiments
Cutting of PMMA and tape as well as PEG functionalization was performed in advance at a larger scale (in batches of 20-30 pieces) and the components could then be stored over several weeks. Before each measurement, the fully assembled sample chambers were prepared for the experiment and discarded afterwards. Each chamber was flushed with 400 μl ddH2O, then flushed with 20 μl NeutrAvidin (ThermoFisher Scientific, Waltham, Mass., USA) solution (0.5 mg/ml in ddH2O) and incubated for 30 seconds. Afterwards, the channels were rinsed thoroughly with 600 μl ddH2O followed by 400 μl assembly buffer (1×TAE, 1 M NaCl). 20 μl origami solution (500 μM structure concentration) was supplied to the flow chamber and incubated for 10 seconds. Afterwards, the channels were thoroughly flushed with 600 μl assembly buffer followed by 600 μl electrophoresis buffer (0.5×TBE, 6 mM MgCl2). The remaining buffer was removed from all edges of the reservoirs and 400 μl of the intended imaging buffer for the specific experiment was added. All electrophoretic switching experiments except the smFRET experiments were conducted in electrophoresis buffer. For increased lifetimes in smFRET electric switching experiments, the buffer was amended by an oxygen scavenging system (0.5×TBE, 6 mM MgCl2, 2 mM Trolox UV activated for >15 min, 50 nM Protocatechuate 3,4-Dioxygenase (PCD)+2.5 mM Protocatechuic acid (PCA)+10 mM L-Ascorbic acid (AA), adjusted from Aitken et al. (41)). PCD, PCA, AA and Trolox were acquired from Sigma-Aldrich, St. Louis, Mo., USA.
Voltage Control
A custom written LabView program was used to generate control voltages between +3.85 V and −3.85 V on two independent output cannels of a NI PCI-6036E DAQ Board (National Instruments Corporation, Austin, Tex., USA). The control voltages were amplified linearly to ±200 V by a home built DC amplifier containing an Apex PA443 high voltage operational amplifier (Apex Microtechnology, Tucson, Ariz., USA). The current setup controls the direction and strength of the electric field on a millisecond time scale, mainly limited by the loop time of the LabView program. A faster electrical response could be realized when necessary.
Alignment Strength Measurements
For each measurement, the structures were first rotated clockwise and counter clockwise with 1 Hz and 120 V for several turns and then aligned in one static direction with the target voltage for at least 1000 acquisition frames. The resulting videos were analyzed with the ThunderSTORM ImageJ plugin (45). Each point spread function was localized with a 2D Gaussian fit. The whole dataset was drift corrected and spot localizations with a fit accuracy of 50 nm or worse were discarded. Well-formed particles, which were sufficiently far from any other particle for reliable localization, were picked and the event list was further processed with MATLAB. For each individual particle, the localizations obtained during the first rotations were used to fit a circle. Subsequently the angular distribution of the localizations was measured in the presence of an electric field applied at a fixed angle. For each voltage, 38-150 particles were analyzed and the mean of each dataset was plotted.
AuNR Modification Protocol
AuNRs were purchased from Sigma-Aldrich (München, Germany). 50 μl thiolated DNA (100 μM) was incubated with 10 mM Tris(carboxyethyl) phosphine hydrochloride (TCEP) for at least 30 min. The DNA, 50 μl sodium dodecyl sulfate (SDS), and 10×TAE buffer were added to 1 ml AuNRs (1 nM). The pH was adjusted to 3 with HCl and incubated for 1 hour on a shaker. Subsequently, 0.5 M NaCl was added and the solution was again incubated for 3 h. Excess oligonucleotides were removed by centrifugation at 6,000 rcf for 20 min. The supernatant was removed and the pellet was dissolved in 2 ml 0.5×TAE containing 0.03% SDS. The centrifugation procedure was repeated 4 times. DNA functionalized AuNRs were added in 5-fold excess to the DNA nanostructures and incubated over night. Unbound AuNRs were removed from the origami sample by agarose gel electrophoresis purification.
Polymerization into Filaments
Polymerization of base plates was performed using a one-pot folding protocol. Two different scaffold lengths were used, which resulted in a statistical distribution of base plates with integrated robot arms and base plates that did not carry an arm. For baseplates without an arm, a p7249 scaffold was used. For base plates with an arm structure, we used a p7704 scaffold. The two folding solutions were pipetted separately and mixed in a 1:20 ratio of arm-less (p7249) and arm-forming (p7704) solution before folding. Polymerization was achieved by replacing the staples used for passivation of the edges of the bottom layer of the base plate by a set of staples that connects these two edges.
Fluorescence Microscopy
a) TIRF Microscopy Setup for Stochastic Switching Kinetics
Single-molecule multi-color FRET experiments were performed on a home built multi-color prism-type TIRF (total internal reflection fluorescence) setup based on an inverted microscope (TE 2000-U, Nikon, Japan) with four continuous-wave diode-pumped solid state lasers (Cobolt, Solna, Sweden) for excitation: 491 nm (Cobolt Calypso, 75 mW), 532 nm (Cobolt Samba, 100 mW), 561 nm (Cobolt Jive, 75 mW) and 647 nm (Cobolt MLD, 120 mW). The laser beams were aligned through an acousto-optical tunable filter (AOTFnC.400-650-PV-TN, Pegasus Optik, Wallenhorst, Germany) and coupled into a single-mode fiber to allow for intensity regulation and switching between the laser lines for alternating laser excitation (ALEX (24), see also below). The sample chambers were formed by sandwiching a nesco film channel cut-out between coverslip and a surface-functionalized quartz prism with holes to insert the sample. The quartz prisms were prepared as described earlier in Schluesche et al. (47). Briefly, the prism surface was silanized (3-aminopropyl-triethoxysilane, Sigma-Aldrich, St. Louis, Mo., USA) and then incubated with a solution of 45% polyethylene glycol (mPEG-SVA, MW 5000) and 3% biotin-PEG (biotin-PEG-SVA, MW 5000, Laysan Bio Inc., Arab, Ala., USA) in 100 mM sodium bicarbonate (pH 9.0) to achieve surface passivation.
Fluorescence from the sample was collected by a water immersion objective (CFI Plan Apo IR 60× NA 1.27 WI objective, Nikon) and separated by the dichroic mirrors 630 DCXR and 560 DCXR (AHF Analysentechnik AG, Tübingen, Germany). After selecting the different spectral regions with the respective emission filters HQ 525/50, HQ 595/50 and HQ 715/150, the fluorescence of the donor (Alexa Fluor 488) and two acceptor (ATTO 565 and ATTO 647N) fluorophores was detected on individual EMCCD cameras (Andor iXon 3, Andor Technologies, Belfast, UK).
b) Experimental Procedure for Stochastic Switching Kinetics Experiments Without Pointer Extension
The prisms were initially incubated with a streptavidin (Sigma-Aldrich, St. Louis, Mo., USA) solution (0.3 mg/ml in PBS) for 20 minutes and washed with stochastic switching buffer (StSwB: 1×TE+12.5 mM MgCl2). The samples were diluted to 100 μM in StSwB, added to the sample chamber and immobilize on the prism surface through biotin-streptavidin-biotin linkage. Untethered structures were removed by flushing with StSwB after 2-3 min. The prism was then flushed twice with stochastic switching buffer-based photo-cocktail (StSwBPC). Finally, the prism was filled completely with StSwBPC and the holes were sealed to facilitate oxygen removal. In the case of continuous donor excitation, the videos were recorded with 11 mW 491 nm excitation and simultaneous detection on the three EMCCD cameras at 30 ms exposure for 3000 frames. For the alternating laser excitation (ALEX) experiments, the laser excitation wavelength was synchronized with the camera frame rate using the AOTF and was switched frame by frame in the sequence red-green-blue (647 nm:3 mW, 561 nm:5 mW and 491 nm:11 mW). ALEX videos were recorded for 3000 frames at 30 ms exposure and simultaneous detection. The videos were analyzed with a custom-written MATLAB program (Mathworks, Mass., USA). Each fluorescent spot in a movie is presumed to represent a single structure. Spots belonging to the same structure were identified on the videos of the three fluorescence detection channels and fluorescence intensity traces were extracted from them.
c) Hidden Markov Model (HMM) Analysis of the Traces
Intensity traces for each color were individually subjected to a three-state HMM analysis. Two of the states correspond to the arm bound to either of the docking sites and are characterized by low donor fluorescence due to quenching by FRET to the acceptor at the docking site. The third state corresponds to the freely diffusing arm (unbound), characterized by high donor fluorescence in the absence of quenching by FRET.
Similarly, every trace of each of the two acceptors was individually subjected to a two-state HMM analysis, where one state corresponds to the arm bound to a particular docking site, characterized by high acceptor fluorescence due to FRET from the donor. The other state corresponds to the arm either docked to the other site or diffusing freely and is characterized by low acceptor fluorescence due to the absence of FRET. From the HMM analysis, the Viterbi path—the most likely sequence of states—was obtained for each fluorophore and for each trace. As an example, the trace from
Subsequently, the dwell times of the high fluorescence states of the fluorophores were determined from the Viterbi paths. The dwell time for a high acceptor fluorescence state corresponds to the time spent by the arm in the bound state (bound to a particular docking site). The dwell time for a high donor fluorescence signal corresponds to the time spent by the arm in the unbound state, where it can diffuse between the docking sites.
d) Stochastic Switching Without Pointer Extension: Control Experiments
Control experiments without docking: A control experiment for the stochastic switching experiments was performed by measuring samples where the arm lacks the extended staple strand for docking to the docking site with donor excitation. The resulting traces display an almost constant high donor fluorescence signal with hardly any switching of the fluorescence signals of the acceptors. Only a residual signal is observed in the acceptor channels, which can be accounted for by the direct-excitation of the acceptors upon donor excitation (491 nm) and crosstalk from the donor channel. This shows that, in the absence of the extended staple strand, docking of the arm does not occur. Hence, no stochastic switching of the acceptor signal is observed as the arm's rotational diffusion is much faster than the acquisition rate of the EMCCD cameras used in the setup (˜30 fps).
ALEX experiments with docking: For samples with an extended staple strand on the arm for docking (docking duplex lengths 8-10 bp), videos were recorded with alternating laser excitation (ALEX), where the lasers were alternated every frame (frame time ˜33 ms) in the sequence red-green-blue (647 nm laser-561 nm laser-491 nm laser) and with simultaneous detection on all three EMCCD cameras. An exemplary trace of an ALEX experiment with a 9 bp docking duplex arm structure shows that initially all fluorophores were present and active. At t≈275 s, the donor Alexa Fluor 488 bleaches. This was accompanied by a drop in total intensity (grey) to zero implying that the signal in the acceptor channels was solely due to FRET from the donor. Furthermore, upon 561 nm excitation (direct excitation of ATTO 565), there is clearly no FRET between the two acceptors. This is expected since the distance between the acceptors (˜43 nm) is beyond the working range of FRET. The residual signal in the ATTO 647N channel after 561 nm excitation is attributed to the spectral crosstalk from ATTO 565 and a small amount of direct excitation of ATTO 647N by the 561 nm laser. Upon excitation with the 647 nm laser, only fluorescence from ATTO 647N is observed. The trace in figure S3B bottom panel shows that the ATTO 647N fluorophore is active throughout the experiment and does not bleach for the entire duration of the ˜300 s long movie. The ALEX experiment thus demonstrates that the stochastic switching of the signals of the three fluorophores is only seen upon donor excitation, with all intensities dropping to zero when the donor bleaches. Since direct excitation of the acceptors shows that they were active for the entire duration of the experiment, a contribution of fluorophore photophysics to the stochastic switching of the signals can be ruled out.
e) TIRF Microscopy of Structures with Pointer Extension
All experiments involving electric field alignment were performed on a home built, objective type TIRF microscope based on an Olympus IX71 (Olympus, Japan). Three laser light sources with wavelengths 642 nm (Toptica iBeam smart, diode laser, 150 mW, Gräfelfing, Germany), 532 nm (Oxxius 532-50, diode-pumped solid state laser, 50 mW, Lannion, France), and 488 nm (Toptica iPulse, diode laser, 20 mW) are aligned in parallel, widened by a factor of 8.3 and focused on the back focal plane of a 100× oil immersion objective (UAPON 100×O TIRF objective, NA 1.49 oil, Olympus, Japan). The filter cube was configured with a ZT532/640RPC dichroic mirror and a ZET532/640 (Chroma Technology, Olching, Germany) emission filter. Except for the high-speed imaging experiments, the detected image is split into two emission channels, which are projected on two separate halves of the CCD chip of an Andor iXon 897 EMCCD camera (Andor Technologies, Belfast, UK). For this purpose, a Hamamatsu W-viewer (Hamamatsu Photonics, Japan) with the two filters (BrightLine HC 582/75 and ET Bandpass 700/75) and two dichroic mirrors (Beam splitter 630 DCXR and
Beam Splitter Q 630 SPXR) was mounted on the left IX71 camera port (all from AHF analysentechnik AG, Tübingen, Germany). Structures with a multiply labeled extension were observed with 642 nm excitation and a laser power of 1-4 mW, depending on the desired observation time and SNR. For electric switching of the FRET signal, 7 mW of 488 nm excitation was used. Structures functionalized with AuNRs were excited with 1 mW at 642 nm and 1.7 mW at 532 nm. High-speed videos were recorded with an Andor Neo sCMOS camera (Andor Technologies, Belfast, UK) mounted to the right camera port of the Olympus IX71 body. In these measurements, the sample was excited with 50 mW at 642 nm.
Cadnano Designs
DNA origami structures were designed using cadnano. For the creation of 3D graphics, a set of MATLAB tools was used to convert the JSON file generated in cadnano into a PDB file that can be further used in UCSF Chimera. JSON files are available upon request from the authors.
Supplementary Text
Comparison of the Two Pointer Designs
In this work, two different approaches were utilized to create pointer extension structures for the central 6HB arm integrated with the platform. These extensions serve two purposes. First, they facilitate the observation of the robot arm's motion with diffraction limited light microscopy methods. Second, they act as highly charged levers that allow the application of larger forces to the central arm unit.
Stability: The linear pointer extension is attached to the tip of the arm. While this rather straightforward approach allows an extension by over 400 nm using the common p7249 scaffold, the low number of possible staple connections between the two origami structures did not seem to withstand the high bending forces that are associated with the transmission of torque to the arm. By contrast, the shape complementary pointer with its more bulky connector structure has a roughly 100 nm shorter range but connects to the arm with a larger number of staples, which are also spread over a larger area. This design appeared to be more stable against torque induced breakage.
Interactions with the plate/substrate: The two pointer designs significantly differed in their unspecific interactions with the origami base plate. While the linear extension showed relatively little interactions, the shape complementary pointer displayed two pronounced bias angles during rotational diffusion, or when actuated with low field strength. These undesired bias angles complicate the analysis of the movements.
Super-resolution imaging and defective devices: To compare the two pointer designs in terms of free rotational diffusion, a combination of localization microscopy and DNA-PAINT super-resolution microscopy was used. Three corners of the base plate were labeled with transient binding sites for DNA PAINT. For each image, videos were recorded with 1-2 mW at 642 nm excitation and 25 ms exposure. About 1000 frames with 25 ms exposure time were analyzed (spot detection, localization via Gaussian fitting, drift correction) with the ThunderSTORM ImageJ plugin. To reduce potential, unspecific sticking effects promoted by divalent ions, assembly buffer for imaging was used (1×TAE, 1 M NaCl). Subsequently, PAINT imaging buffer (1×TAE, 1 M NaCl, 0.05% TWEEN20, 5 nM imager strands) was added and a DNA-PAINT video was recorded (7000 frames, 250 ms exposure, 50 mW 642 nm excitation). The linear pointer has a slight bias to point in one direction perpendicular to the helix axis of the top layer of the origami plate, whereas the shape complementary pointer has two much stronger bias points on opposite sides of the plate along this direction.
Apart from a large fraction of correctly assembled structures, super-resolution images showed mainly two types of apparently damaged or misassembled structures. For type 1, the particle shows localizations also within a filled circle, instead of a ring-like pattern. This localization pattern suggests that the tip of the pointer is not restricted to the X-Y plane as designed but moves in the entire hemisphere above the base plate. It is assumed that the entire structure is misfolded or the connection between arm and pointer extension is defective. Type 2 is characterized by a ring without bias angles. Most of these structures also show a circular dot in the DNA-PAINT overlay rather than three distinct points indicating the labeled corners of the DNA base plate. A possible explanation for Type 2 defects is structures that are bound with only one biotin anchor, which could rotate along a single biotinylated staple strand. Movement would then still be restricted to the X-Y plane combined with a round, spot-like appearance of the base plate in the DNA-PAINT reconstruction.
Origami Staple List for Base Plate
6HB Arm StSw
6HB Arm Linear Extension
6HB Arm High Torque Extension
6HB Arm High Torque Extension AuNR
Linear Extension
High Torque Extension
Additional Staple Strands
Additional Strands
Fixation of Platform
Optional orientation control of the platform 4 during sample preparation is shown in
Number | Date | Country | Kind |
---|---|---|---|
17165250 | Apr 2017 | EP | regional |
18152321 | Jan 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/058876 | 4/6/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/185295 | 10/11/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9044808 | Chien | Jun 2015 | B2 |
20160266088 | Sauder | Sep 2016 | A1 |
20170250625 | Fan | Aug 2017 | A1 |
20180037456 | Drexler | Feb 2018 | A1 |
Entry |
---|
Chan et al. (“Utilization and control of bio-actuators across multiple length scales,” Lap on Chip, Critical Review, 14, pp. 653-670, 2014) (Year: 2014). |
Hess et al., “Powering Nanodevices with Biomolecular Motors,” Chemistry (2004), vol. 10, pp. 2110-2116. |
Van den Heuvel et al., “Motor Proteins at Work for Nanotechnology,” Science (July 2007), vol. 317, pp. 333-336. |
Fischer et al., “A smart dust biosensor powered by kinesin motors,” Nature Nanotechnology (Mar. 2009), vol. 4, pp. 162-166. |
Van den Heuvel et al., “Molecular Sorting by Electrical Steering of Microtubules in Kinesin-Coated Channels,” Science (May 2006), vol. 312, pp. 910-914. |
Krishnan et al., “Nucleic Acid Based Molecular Devices.,”Angewandte Chemie Int'l. Edition, (2011), vol. 50, pp. 3124-3156. |
Kopperger et al., “Diffusive Transport of Molecular Cargo Tethered to a DNA Origami Platform,” Nano Letters (Mar. 2015), vol. 15, pp. 2693-2699. |
Marras et al., “Programmable motion of DNA origami mechanisms,” PNAS, (Jan. 2015), vol. 112, pp. 713-718. |
Ketterer et al., “Nanoscale rotary apparatus formed from tight-fitting 3D DNA components,” Science Advances (Feb. 2016), 2:e1501209, pp. 1-8. |
List et al., “Long-range movement of large mechanically interlocked DNA nanostructures,” Nature Communications (Aug. 2016), vol. 7:12414, pp. 1-7. |
Omabegho et al., “A Bipedal DNA Brownian Motor with Coordinated Legs,” Science (Apr. 2009), vol. 324. pp. 67-71. |
Green et al., “Coordinated Chemomechanical Cycles: A Mechanism for Autonomous Molecular Motion,” Physical Review Letters (Dec. 2008), vol. 101, art. No. 238101, pp. 1-4. |
Liber et al., “A Bipedal DNA Motor That Travels Back and Forth between Two DNA Origami Tiles,” Small (2015), vol. 11, No. 5, pp. 568-575. |
Wickham et al., Direct observation of stepwise movement of a synthetic molecular transporter. Natury Nanotechnology (Mar. 2011), vol. 6, pp. 166-169. |
Asanuma et al., “Photocontrol of DNA Duplex Formation by Using Azobenzene-Bearing Oligonucleotides,” Chembiochem (2001), vol. 2, pp. 39-44. |
Kang et al., “Single-DNA Molecule Nanomotor Regulated by Photons,” Nano Letters (2009), vol. 9, No. 7, pp. 2690-2696. |
Suzuki et al., “Dynamic Assembly/Disassembly Processes of Photoresponsive DNA Origami Nanostructures Directly Visualized on a Lipid Membrane Surface,” Journal of the American Chemical Society (2014), vol. 136, pp. 1714-1717. |
Rothemund, Paul W. K., “Folding DNA to create nanoscale shapes and patterns,” Nature (Mar. 2006), vol. 440, pp. 297-302. |
Douglas et al., “Self-assembly of DNA into nanoscale three-dimensional shapes,” Nature (May 2009), vol. 459, pp. 414-418. |
Lin et al., “Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA,” Nature Chemistry (Oct. 2012), vol. 4, pp. 832-839. |
Li et al., “DNA-Templated Organic Synthesis: Nature's Strategy for Controlling Chemical Reactivity Applied to Synthetic Molecules,” Angwandte Chemie (2004), vol. 43, pp. 4848-4870. |
He et al., “Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker,” Nature Nanotechnology (Nov. 2010), vol. 5, pp. 778-782. |
Rant et al., “Detection and Size Analysis of Proteins with Switchable DNA Layers,” Nano Letters (2009), vol. 9, No. 4, pp. 1290-1295. |
Yang et al., “A Photoregulated DNA-Based Rotary System and Direct Observation of its Rotational Movement,” Chemistry (2007), vol. 23, pp. 3979-3985. |
Campos el al., “Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG,” ChemComm (2015), vol. 51, pp. 14111-14114. |
Number | Date | Country | |
---|---|---|---|
20200031663 A1 | Jan 2020 | US |