MOLECULAR SUBTYPING, PROGNOSIS AND TREATMENT OF PROSTATE CANCER

Information

  • Patent Application
  • 20190204322
  • Publication Number
    20190204322
  • Date Filed
    September 09, 2016
    8 years ago
  • Date Published
    July 04, 2019
    5 years ago
Abstract
The present invention relates to methods, systems and kits for the diagnosis, prognosis and the determination of cancer progression of cancer in a subject. The invention also provides biomarkers that define subgroups of prostate cancer, clinically useful classifiers for distinguishing prostate cancer subtypes, bioinformatic methods for determining clinically useful classifiers, and methods of use of each of the foregoing. The methods, systems and kits can provide expression-based analysis of biomarkers for purposes of subtyping prostate cancer in a subject. Further disclosed herein, in certain instances, are probe sets for use in subtyping prostate cancer in a subject. Classifiers for subtyping a prostate cancer are provided. Methods of treating cancer based on molecular subtyping are also provided.
Description
FIELD OF THE INVENTION

The present invention relates to methods, systems and kits for the diagnosis, prognosis and the determination of cancer progression of cancer in a subject. The invention also provides biomarkers that define subgroups of prostate cancer, clinically useful classifiers for distinguishing prostate cancer subtypes, bioinformatic methods for determining clinically useful classifiers, and methods of use of each of the foregoing. The methods, systems and kits can provide expression-based analysis of biomarkers for purposes of subtyping prostate cancer in a subject. Further disclosed herein, in certain instances, are probe sets for use in subtyping prostate cancer in a subject. Classifiers for subtyping a prostate cancer are provided. Methods of treating cancer based on molecular subtyping are also provided.


BACKGROUND OF THE INVENTION

Cancer is the uncontrolled growth of abnormal cells anywhere in a body. The abnormal cells are termed cancer cells, malignant cells, or tumor cells. Many cancers and the abnormal cells that compose the cancer tissue are further identified by the name of the tissue that the abnormal cells originated from (for example, prostate cancer). Cancer cells can proliferate uncontrollably and form a mass of cancer cells. Cancer cells can break away from this original mass of cells, travel through the blood and lymph systems, and lodge in other organs where they can again repeat the uncontrolled growth cycle. This process of cancer cells leaving an area and growing in another body area is often termed metastatic spread or metastatic disease. For example, if prostate cancer cells spread to a bone (or anywhere else), it can mean that the individual has metastatic prostate cancer.


Standard clinical parameters such as tumor size, grade, lymph node involvement and tumor-node-metastasis (TNM) staging (American Joint Committee on Cancer http://www.cancerstaging.org) may correlate with outcome and serve to stratify patients with respect to (neo)adjuvant chemotherapy, immunotherapy, antibody therapy and/or radiotherapy regimens. Incorporation of molecular markers in clinical practice may define tumor subtypes that are more likely to respond to targeted therapy. However, stage-matched tumors grouped by histological or molecular subtypes may respond differently to the same treatment regimen. Additional key genetic and epigenetic alterations may exist with important etiological contributions. A more detailed understanding of the molecular mechanisms and regulatory pathways at work in cancer cells and the tumor microenvironment (TME) could dramatically improve the design of novel anti-tumor drugs and inform the selection of optimal therapeutic strategies. The development and implementation of diagnostic, prognostic and therapeutic biomarkers to characterize the biology of each tumor may assist clinicians in making important decisions with regard to individual patient care and treatment. Thus, provided herein are methods, systems and kits for the diagnosis, prognosis and the determination of cancer progression of cancer in a subject. The invention also provides biomarkers that define subgroups of prostate cancer, clinically useful classifiers for distinguishing prostate cancer subtypes, bioinformatic methods for determining clinically useful classifiers, and methods of use of each of the foregoing. The methods, systems and kits can provide expression-based analysis of biomarkers for purposes of subtyping prostate cancer in a subject. Further disclosed herein, in certain instances, are probe sets for use in subtyping prostate cancer in a subject. Classifiers for subtyping a prostate cancer are provided. Methods of treating cancer based on molecular subtyping are also provided.


This background information is provided for the purpose of making known information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.


SUMMARY OF THE INVENTION

The present invention relates to methods, systems and kits for the diagnosis, prognosis and the determination of cancer progression of cancer in a subject. The invention also provides biomarkers that define subgroups of prostate cancer, clinically useful classifiers for distinguishing prostate cancer subtypes, bioinformatic methods for determining clinically useful classifiers, and methods of use of each of the foregoing. The methods, systems and kits can provide expression-based analysis of biomarkers for purposes of subtyping prostate cancer in a subject. Further disclosed herein, in certain instances, are probe sets for use in subtyping prostate cancer in a subject. Classifiers for subtyping a prostate cancer are provided. Methods of treating cancer based on molecular subtyping are also provided.


In some embodiments, the present invention provides a method comprising: providing a biological sample from a prostate cancer subject; detecting the presence or expression level of at least one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and administering a treatment to the subject, wherein the treatment is selected from the group consisting of surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, hormonal therapy, and photodynamic therapy. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a method comprising: providing a biological sample from a prostate cancer subject; detecting the presence or expression level of at least one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a method of subtyping prostate cancer in a subject, comprising: providing a biological sample comprising prostate cancer cells from the subject, and determining the level of expression or amplification of at least one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348 using at least one reagent that specifically binds to said targets; wherein the alteration of said expression level provides an indication of the prostate cancer subtype. In some embodiments, the alteration in the expression level of said target is reduced expression of said target. In other embodiments, the alteration in the expression level of said target is increased expression of said target. In yet other embodiments, the level of expression of said target is determined by using a method selected from the group consisting of in situ hybridization, a PCR-based method, an array-based method, an immunohistochemical method, an RNA assay method and an immunoassay method. In other embodiments, the reagent is selected from the group consisting of a nucleic acid probe, one or more nucleic acid primers, and an antibody. In still other embodiments, the target comprises a nucleic acid sequence. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments the present invention provides methods of determining whether a subject has an ERG, ETS, SPINK1 positive prostate cancer or a triple negative cancer, comprising detecting the presence or expression level of at least one or more targets selected from TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, GPR116, GRM7 and FKBP10, wherein an increase in TDRD1, CACNA1D, NCALD, GPR116, GRM7 and/or HLA-DM is indicative of ERG positive prostate cancer, an increase in FAM65B, AMACR, SLC61A1 and/or FKBP10 is indicative of ETS positive prostate cancer, an increase in HPGD, FAM3B, MIPEP, NCAPD3, INPP4B and/or ANPEP is indicative of SPINK-1 positive prostate cancer and an increase in TFF3, ALOX15B and/or MON1B is indicative of triple negative prostate cancer.


In some embodiments, the present invention also provides a method of diagnosing, prognosing, assessing the risk of recurrence or predicting benefit from therapy in a subject with prostate cancer, comprising: providing a biological sample comprising prostate cancer cells from the subject; assaying an expression level in the biological sample from the subject for a plurality of targets using at least one reagent that specifically binds to said targets, wherein the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and diagnosing, prognosing, assessing the risk of recurrence or predicting benefit from therapy in the subject based on the expression levels of the plurality of targets. In some embodiments, the expression level of the target is reduced expression of the target. In other embodiments, the expression level of said target is increased expression of said target. In yet other embodiments, the level of expression of said target is determined by using a method selected from the group consisting of in situ hybridization, a PCR-based method, an array-based method, an immunohistochemical method, an RNA assay method and an immunoassay method. In other embodiments, the reagent is selected from the group consisting of a nucleic acid probe, one or more nucleic acid primers, and an antibody. In other embodiments, the target comprises a nucleic acid sequence. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a system for analyzing a cancer, comprising, a probe set comprising a plurality of target sequences, wherein the plurality of target sequences hybridizes to one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; or the plurality of target sequences comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and a computer model or algorithm for analyzing an expression level and/or expression profile of the target hybridized to the probe in a sample from a subject suffering from prostate cancer. In some embodiments, the method further comprises a label that specifically binds to the target, the probe, or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a method comprising: (a) providing a biological sample from a subject with prostate cancer; (b) detecting the presence or expression level in the biological sample for a plurality of targets, wherein the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; (c) subtyping the prostate cancer in the subject based on the presence or expression levels of the plurality of targets; and (d) administering a treatment to the subject, wherein the treatment is selected from the group consisting of surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, hormonal therapy, and photodynamic therapy. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a method comprising: (a) providing a biological sample from a subject with prostate cancer; (b) detecting the presence or expression level in the biological sample for a plurality of targets, wherein the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and (c) subtyping the prostate cancer in the subject based on the presence or expression levels of the plurality of targets. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a method of treating a subject with prostate cancer, comprising: providing a biological sample comprising prostate cancer cells from the subject; determining the level of expression or amplification of at least one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348 using at least one reagent that specifically binds to said targets; subtyping the prostate cancer based on the level of expression or amplification of the at least one or more targets; and prescribing a treatment regimen based on the prostate cancer subtype. In some embodiments, the prostate cancer subtype is selected from the group consisting of ERG+, ETS+, SPINK1+, and Triple-Negative. In other embodiments the prostate cancer subtype is selected from the group consisting of MME+, Hetero, VGLL3+ or NOD. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof.


In some embodiments, the present invention provides a kit for analyzing a prostate cancer, comprising, a probe set comprising a plurality of target sequences, wherein the plurality of target sequences comprises at least one target sequence listed in Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and a computer model or algorithm for analyzing an expression level and/or expression profile of the target sequences in a sample. In certain embodiments, the at least one or more targets is selected from the group consisting of ERG, ETV1, ETV4, ETV5, FLI1, SPINK1 or a combination thereof. In some embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10 or a combination thereof. In other embodiments, the at least one or more targets is selected from the group consisting of TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, MON1B or a combination thereof. In yet other embodiments, the at least one or more targets is selected from the group consisting of MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, GPR116 or a combination thereof. In another embodiment, the at least one or more targets is selected from the group consisting of SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, RP11-403B2 or a combination thereof. In certain embodiments, the at least one or more targets is selected from the group consisting of GPR116, GRM7 or a combination thereof. In some embodiments, the method further comprises a computer model or algorithm for correlating the expression level or expression profile with disease state or outcome. In other embodiments, the method further comprises a computer model or algorithm for designating a treatment modality for the individual. In yet other embodiments, the method further comprises a computer model or algorithm for normalizing expression level or expression profile of the target sequences. In some embodiments, the method further comprises sequencing the plurality of targets. In some embodiments, the method further comprises hybridizing the plurality of targets to a solid support. In some embodiments, the solid support is a bead or array. In some embodiments, assaying the expression level of a plurality of targets may comprise the use of a probe set. In some embodiments, assaying the expression level may comprise the use of a classifier. The classifier may comprise a probe selection region (PSR). In some embodiments, the classifier may comprise the use of an algorithm. The algorithm may comprise a machine learning algorithm. In some embodiments, assaying the expression level may also comprise sequencing the plurality of targets.


Further disclosed herein methods for molecular subtyping of prostate cancer, wherein the subtypes have an AUC value of at least about 0.40 to predict patient outcomes. In some embodiments, patient outcomes are selected from the group consisting of biochemical recurrence (BCR), metastasis (MET) and prostate cancer death (PCSM) after radical prostatectomy. The AUC of the subtype may be at least about 0.40, 0.45, 0.50, 0.55, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70 or more.


Further disclosed herein is a method for subtyping a prostate cancer, comprising determining the level of expression or amplification of at least one or more targets of the present invention, wherein the significance of the expression level of the one or more targets is based on one or more metrics selected from the group comprising T-test, P-value, KS (Kolmogorov Smirnov) P-value, accuracy, accuracy P-value, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Kaplan Meier P-value (KM P-value), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Univariable Analysis Hazard Ratio P-value (uvaHRPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The significance of the expression level of the one or more targets may be based on two or more metrics selected from the group comprising AUC, AUC P-value (Auc.pvalue), Wilcoxon Test P-value, Median Fold Difference (MFD), Kaplan Meier (KM) curves, survival AUC (survAUC), Univariable Analysis Odds Ratio P-value (uvaORPval), multivariable analysis Odds Ratio P-value (mvaORPval), Kaplan Meier P-value (KM P-value), Univariable Analysis Hazard Ratio P-value (uvaHRPval) and Multivariable Analysis Hazard Ratio P-value (mvaHRPval). The molecular subtypes of the present invention are useful for predicting clinical characteristics of subjects with prostate cancer. In some embodiments, the clinical characteristics are selected from the group consisting of seminal vesical invasion (SVI), lymph node invasion (LNI), prostate-specific antigen (PSA), and gleason score (GS).


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference in their entireties to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 sets forth data showing microarray expression data for molecular subtyping.



FIG. 2 sets forth data showing probe set expression across the ERG locus.



FIG. 3 sets forth data showing m-ERG scores plotted with stratification by F-ERG status.



FIG. 4 sets forth data showing m-ERG model scores in normal and tumor tissue.



FIG. 5 sets forth data showing m-ERG scores and technical replicates from 30 cohort samples.



FIGS. 6A-D set forth gene expression data for various molecular subtypes.



FIG. 7 sets forth data showing Beeswarm plots for core-level expression of ETV1, ETV4, ETV5, FLI1 and SPINK1.



FIG. 8 sets forth data showing m-ERG+ and TripleNeg expression centroids.



FIG. 9 sets forth data showing microarray expression data useful for molecular subtyping.



FIG. 10 sets forth data showing performance of a multigene PCa prognostic predictor (Decipher) is similar across molecular subtypes.



FIGS. 11A-C set forth data showing performance assessment of multiple prognostic signatures from genome-wide expression profiling data stratified by molecular subtypes.



FIGS. 12A-C show Kaplan Meier analysis that demonstrates similar PCa outcome measures across molecular subtypes.



FIG. 13 sets forth data showing Beeswarm plots for core-level expression of MME, BANK1, LEPREL1, VGLL3, NPR3, TTN, OR4K6P, OR4K7P, POTEB2, RP11.403 B1, FABP5P7 and GPR116 in prostate cancer samples.



FIGS. 14A-B set forth data showing molecular characterization of the heterogeneity of PCa.



FIG. 15 shows Kaplan Meier analysis with prognosis of various molecular subtypes.



FIGS. 16A-B set forth data showing use of outliers to subtype the four subtypes (ERG, ETS, SPINK, TripleNeg).



FIGS. 17A-C show Kaplan Meier analysis of subtypes in TripleNeg/SPINK subgroup.



FIG. 18 shows Kaplan Meier analysis of GPR116 in ERG+.



FIGS. 19 A-D show Kaplan Meier analysis of GPR116 in ERG+ patients.



FIGS. 20A-B set forth data showing that GPR116 is a predictive biomarker of ADT resistance in ERG+ patients



FIGS. 21A-C set forth data showing core-level expression of GPR116 and GRM7 in prostate cancer samples.





DETAILED DESCRIPTION OF THE INVENTION

The present invention discloses systems and methods for diagnosing, predicting, and/or monitoring the status or outcome of a prostate cancer in a subject using expression-based analysis of a plurality of targets. Generally, the method comprises (a) optionally providing a sample from a subject; (b) assaying the expression level for a plurality of targets in the sample; and (c) diagnosing, predicting and/or monitoring the status or outcome of a prostate cancer based on the expression level of the plurality of targets.


Assaying the expression level for a plurality of targets in the sample may comprise applying the sample to a microarray. In some instances, assaying the expression level may comprise the use of an algorithm. The algorithm may be used to produce a classifier. Alternatively, the classifier may comprise a probe selection region. In some instances, assaying the expression level for a plurality of targets comprises detecting and/or quantifying the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises sequencing the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises amplifying the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises quantifying the plurality of targets. In some embodiments, assaying the expression level for a plurality of targets comprises conducting a multiplexed reaction on the plurality of targets.


In some instances, the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the one or more targets is selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


Further disclosed herein are methods for subtyping prostate cancer. Generally, the method comprises: (a) providing a sample comprising prostate cancer cells from a subject; (b) assaying the expression level for a plurality of targets in the sample; and (c) subtyping the cancer based on the expression level of the plurality of targets. In some instances, the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the one or more targets is selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


In some instances, subtyping the prostate cancer comprises determining whether the cancer would respond to an anti-cancer therapy. Alternatively, subtyping the prostate cancer comprises identifying the cancer as non-responsive to an anti-cancer therapy. Optionally, subtyping the prostate cancer comprises identifying the cancer as responsive to an anti-cancer therapy.


Before the present invention is described in further detail, it is to be understood that this invention is not limited to the particular methodology, compositions, articles or machines described, as such methods, compositions, articles or machines can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention.


Targets

The methods disclosed herein often comprise assaying the expression level of a plurality of targets. The plurality of targets may comprise coding targets and/or non-coding targets of a protein-coding gene or a non protein-coding gene. A protein-coding gene structure may comprise an exon and an intron. The exon may further comprise a coding sequence (CDS) and an untranslated region (UTR). The protein-coding gene may be transcribed to produce a pre-mRNA and the pre-mRNA may be processed to produce a mature mRNA. The mature mRNA may be translated to produce a protein.


A non protein-coding gene structure may comprise an exon and intron. Usually, the exon region of a non protein-coding gene primarily contains a UTR. The non protein-coding gene may be transcribed to produce a pre-mRNA and the pre-mRNA may be processed to produce a non-coding RNA (ncRNA).


A coding target may comprise a coding sequence of an exon. A non-coding target may comprise a UTR sequence of an exon, intron sequence, intergenic sequence, promoter sequence, non-coding transcript, CDS antisense, intronic antisense, UTR antisense, or non-coding transcript antisense. A non-coding transcript may comprise a non-coding RNA (ncRNA).


In some instances, the plurality of targets may be differentially expressed. In some instances, a plurality of probe selection regions (PSRs) is differentially expressed.


In some instances, the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In some instances, the plurality of targets comprises at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the plurality targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


In some instances, the plurality of targets comprises a coding target, non-coding target, or any combination thereof. In some instances, the coding target comprises an exonic sequence. In other instances, the non-coding target comprises a non-exonic or exonic sequence. Alternatively, a non-coding target comprises a UTR sequence, an intronic sequence, antisense, or a non-coding RNA transcript. In some instances, a non-coding target comprises sequences which partially overlap with a UTR sequence or an intronic sequence. A non-coding target also includes non-exonic and/or exonic transcripts. Exonic sequences may comprise regions on a protein-coding gene, such as an exon, UTR, or a portion thereof. Non-exonic sequences may comprise regions on a protein-coding, non protein-coding gene, or a portion thereof. For example, non-exonic sequences may comprise intronic regions, promoter regions, intergenic regions, a non-coding transcript, an exon anti-sense region, an intronic anti-sense region, UTR anti-sense region, non-coding transcript anti-sense region, or a portion thereof. In other instances, the plurality of targets comprises a non-coding RNA transcript.


The plurality of targets may comprise one or more targets selected from a classifier disclosed herein. The classifier may be generated from one or more models or algorithms. The one or more models or algorithms may be Naïve Bayes (NB), recursive Partitioning (Rpart), random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), high dimensional discriminate analysis (HDDA), or a combination thereof. The classifier may have an AUC of equal to or greater than 0.60. The classifier may have an AUC of equal to or greater than 0.61. The classifier may have an AUC of equal to or greater than 0.62. The classifier may have an AUC of equal to or greater than 0.63. The classifier may have an AUC of equal to or greater than 0.64. The classifier may have an AUC of equal to or greater than 0.65. The classifier may have an AUC of equal to or greater than 0.66. The classifier may have an AUC of equal to or greater than 0.67. The classifier may have an AUC of equal to or greater than 0.68. The classifier may have an AUC of equal to or greater than 0.69. The classifier may have an AUC of equal to or greater than 0.70. The classifier may have an AUC of equal to or greater than 0.75. The classifier may have an AUC of equal to or greater than 0.77. The classifier may have an AUC of equal to or greater than 0.78. The classifier may have an AUC of equal to or greater than 0.79. The classifier may have an AUC of equal to or greater than 0.80. The AUC may be clinically significant based on its 95% confidence interval (CI). The accuracy of the classifier may be at least about 70%. The accuracy of the classifier may be at least about 73%. The accuracy of the classifier may be at least about 75%. The accuracy of the classifier may be at least about 77%. The accuracy of the classifier may be at least about 80%. The accuracy of the classifier may be at least about 83%. The accuracy of the classifier may be at least about 84%. The accuracy of the classifier may be at least about 86%. The accuracy of the classifier may be at least about 88%. The accuracy of the classifier may be at least about 90%. The p-value of the classifier may be less than or equal to 0.05. The p-value of the classifier may be less than or equal to 0.04. The p-value of the classifier may be less than or equal to 0.03. The p-value of the classifier may be less than or equal to 0.02. The p-value of the classifier may be less than or equal to 0.01. The p-value of the classifier may be less than or equal to 0.008. The p-value of the classifier may be less than or equal to 0.006. The p-value of the classifier may be less than or equal to 0.004. The p-value of the classifier may be less than or equal to 0.002. The p-value of the classifier may be less than or equal to 0.001.


The plurality of targets may comprise one or more targets selected from a Random Forest (RF) classifier. The plurality of targets may comprise two or more targets selected from a Random Forest (RF) classifier. The plurality of targets may comprise three or more targets selected from a Random Forest (RF) classifier. The plurality of targets may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more targets selected from a Random Forest (RF) classifier. The RF classifier may be an RF2, and RF3, or an RF4 classifier. The RF classifier may be an RF15 classifier (e.g., a Random Forest classifier with 15 targets).


A RF classifier of the present invention may comprise two or more targets comprising two or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the two or more targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The plurality of targets may comprise one or more targets selected from an SVM classifier. The plurality of targets may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more targets selected from an SVM classifier. The plurality of targets may comprise 12, 13, 14, 15, 17, 20, 22, 25, 27, 30 or more targets selected from an SVM classifier. The plurality of targets may comprise 32, 35, 37, 40, 43, 45, 47, 50, 53, 55, 57, 60 or more targets selected from an SVM classifier. The SVM classifier may be an SVM2 classifier.


A SVM classifier of the present invention may comprise two or more targets comprising two or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the two or more targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The plurality of targets may comprise one or more targets selected from a KNN classifier. The plurality of targets may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more targets selected from a KNN classifier. The plurality of targets may comprise 12, 13, 14, 15, 17, 20, 22, 25, 27, 30 or more targets selected from a KNN classifier. The plurality of targets may comprise 32, 35, 37, 40, 43, 45, 47, 50, 53, 55, 57, 60 or more targets selected from a KNN classifier. The plurality of targets may comprise 65, 70, 75, 80, 85, 90, 95, 100 or more targets selected from a KNN classifier.


The KNN classifier may be a KNN2 classifier. A KNN classifier of the present invention may comprise two or more targets comprising two or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the two or more targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The plurality of targets may comprise one or more targets selected from a Naïve Bayes (NB) classifier. The plurality of targets may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more targets selected from an NB classifier. The plurality of targets may comprise 12, 13, 14, 15, 17, 20, 22, 25, 27, 30 or more targets selected from an NB classifier. The plurality of targets may comprise 32, 35, 37, 40, 43, 45, 47, 50, 53, 55, 57, 60 or more targets selected from a NB classifier. The plurality of targets may comprise 65, 70, 75, 80, 85, 90, 95, 100 or more targets selected from a NB classifier.


The NB classifier may be a NB2 classifier. An NB classifier of the present invention may comprise two or more targets comprising two or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the two or more targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The plurality of targets may comprise one or more targets selected from a recursive Partitioning (Rpart) classifier. The plurality of targets may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more targets selected from an Rpart classifier. The plurality of targets may comprise 12, 13, 14, 15, 17, 20, 22, 25, 27, 30 or more targets selected from an Rpart classifier. The plurality of targets may comprise 32, 35, 37, 40, 43, 45, 47, 50, 53, 55, 57, 60 or more targets selected from an Rpart classifier. The plurality of targets may comprise 65, 70, 75, 80, 85, 90, 95, 100 or more targets selected from an Rpart classifier.


The Rpart classifier may be an Rpart2 classifier. An Rpart classifier of the present invention may comprise two or more targets comprising two or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the two or more targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The plurality of targets may comprise one or more targets selected from a high dimensional discriminate analysis (HDDA) classifier. The plurality of targets may comprise two or more targets selected from a high dimensional discriminate analysis (HDDA) classifier. The plurality of targets may comprise three or more targets selected from a high dimensional discriminate analysis (HDDA) classifier. The plurality of targets may comprise 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more targets selected from a high dimensional discriminate analysis (HDDA) classifier.


Probes/Primers

The present invention provides for a probe set for diagnosing, monitoring and/or predicting a status or outcome of a prostate cancer in a subject comprising a plurality of probes, wherein (i) the probes in the set are capable of detecting an expression level of at least one target selected from; and (ii) the expression level determines the cancer status of the subject with at least about 40% specificity.


The probe set may comprise one or more polynucleotide probes. Individual polynucleotide probes comprise a nucleotide sequence derived from the nucleotide sequence of the target sequences or complementary sequences thereof. The nucleotide sequence of the polynucleotide probe is designed such that it corresponds to, or is complementary to the target sequences. The polynucleotide probe can specifically hybridize under either stringent or lowered stringency hybridization conditions to a region of the target sequences, to the complement thereof, or to a nucleic acid sequence (such as a cDNA) derived therefrom.


The selection of the polynucleotide probe sequences and determination of their uniqueness may be carried out in silico using techniques known in the art, for example, based on a BLASTN search of the polynucleotide sequence in question against gene sequence databases, such as the Human Genome Sequence, UniGene, dbEST or the non-redundant database at NCBI. In one embodiment of the invention, the polynucleotide probe is complementary to a region of a target mRNA derived from a target sequence in the probe set. Computer programs can also be employed to select probe sequences that may not cross hybridize or may not hybridize non-specifically.


In some instances, microarray hybridization of RNA, extracted from prostate cancer tissue samples and amplified, may yield a dataset that is then summarized and normalized by the fRMA technique. After removal (or filtration) of cross-hybridizing PSRs, and PSRs containing less than 4 probes, the remaining PSRs can be used in further analysis. Following fRMA and filtration, the data can be decomposed into its principal components and an analysis of variance model is used to determine the extent to which a batch effect remains present in the first 10 principal components.


These remaining PSRs can then be subjected to filtration by a T-test between CR (clinical recurrence) and non-CR samples. Using a p-value cut-off of 0.01, the remaining features (e.g., PSRs) can be further refined. Feature selection can be performed by regularized logistic regression using the elastic-net penalty. The regularized regression may be bootstrapped over 1000 times using all training data; with each iteration of bootstrapping, features that have non-zero co-efficient following 3-fold cross validation can be tabulated. In some instances, features that were selected in at least 25% of the total runs were used for model building.


The polynucleotide probes of the present invention may range in length from about 15 nucleotides to the full length of the coding target or non-coding target. In one embodiment of the invention, the polynucleotide probes are at least about 15 nucleotides in length. In another embodiment, the polynucleotide probes are at least about 20 nucleotides in length. In a further embodiment, the polynucleotide probes are at least about 25 nucleotides in length. In another embodiment, the polynucleotide probes are between about 15 nucleotides and about 500 nucleotides in length. In other embodiments, the polynucleotide probes are between about 15 nucleotides and about 450 nucleotides, about 15 nucleotides and about 400 nucleotides, about 15 nucleotides and about 350 nucleotides, about 15 nucleotides and about 300 nucleotides, about 15 nucleotides and about 250 nucleotides, about 15 nucleotides and about 200 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 15 nucleotides in length. In some embodiments, the probes are at least 20 nucleotides, at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150 nucleotides, at least 200 nucleotides, at least 225 nucleotides, at least 250 nucleotides, at least 275 nucleotides, at least 300 nucleotides, at least 325 nucleotides, at least 350 nucleotides, at least 375 nucleotides in length.


The polynucleotide probes of a probe set can comprise RNA, DNA, RNA or DNA mimetics, or combinations thereof, and can be single-stranded or double-stranded. Thus the polynucleotide probes can be composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as polynucleotide probes having non-naturally-occurring portions which function similarly. Such modified or substituted polynucleotide probes may provide desirable properties such as, for example, enhanced affinity for a target gene and increased stability. The probe set may comprise a coding target and/or a non-coding target. Preferably, the probe set comprises a combination of a coding target and non-coding target.


In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 5 coding targets and/or non-coding targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. Alternatively, the probe set comprise a plurality of target sequences that hybridize to at least about 10 coding targets and/or non-coding targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 15 coding targets and/or non-coding targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 20 coding targets and/or non-coding targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In some embodiments, the probe set comprise a plurality of target sequences that hybridize to at least about 30 coding targets and/or non-coding targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348. In certain instances, the plurality of targets are selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The system of the present invention further provides for primers and primer pairs capable of amplifying target sequences defined by the probe set, or fragments or subsequences or complements thereof. The nucleotide sequences of the probe set may be provided in computer-readable media for in silico applications and as a basis for the design of appropriate primers for amplification of one or more target sequences of the probe set.


Primers based on the nucleotide sequences of target sequences can be designed for use in amplification of the target sequences. For use in amplification reactions such as PCR, a pair of primers can be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers may hybridize to specific sequences of the probe set under stringent conditions, particularly under conditions of high stringency, as known in the art. The pairs of primers are usually chosen so as to generate an amplification product of at least about 50 nucleotides, more usually at least about 100 nucleotides. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. These primers may be used in standard quantitative or qualitative PCR-based assays to assess transcript expression levels of RNAs defined by the probe set. Alternatively, these primers may be used in combination with probes, such as molecular beacons in amplifications using real-time PCR.


In one embodiment, the primers or primer pairs, when used in an amplification reaction, specifically amplify at least a portion of a nucleic acid sequence of a target selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348 (or subgroups thereof as set forth herein), an RNA form thereof, or a complement to either thereof. In certain instances, the nucleic acid sequence is selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


A label can optionally be attached to or incorporated into a probe or primer polynucleotide to allow detection and/or quantitation of a target polynucleotide representing the target sequence of interest. The target polynucleotide may be the expressed target sequence RNA itself, a cDNA copy thereof, or an amplification product derived therefrom, and may be the positive or negative strand, so long as it can be specifically detected in the assay being used. Similarly, an antibody may be labeled.


In certain multiplex formats, labels used for detecting different targets may be distinguishable. The label can be attached directly (e.g., via covalent linkage) or indirectly, e.g., via a bridging molecule or series of molecules (e.g., a molecule or complex that can bind to an assay component, or via members of a binding pair that can be incorporated into assay components, e.g. biotin-avidin or streptavidin). Many labels are commercially available in activated forms which can readily be used for such conjugation (for example through amine acylation), or labels may be attached through known or determinable conjugation schemes, many of which are known in the art.


Labels useful in the invention described herein include any substance which can be detected when bound to or incorporated into the biomolecule of interest. Any effective detection method can be used, including optical, spectroscopic, electrical, piezoelectrical, magnetic, Raman scattering, surface plasmon resonance, colorimetric, calorimetric, etc. A label is typically selected from a chromophore, a lumiphore, a fluorophore, one member of a quenching system, a chromogen, a hapten, an antigen, a magnetic particle, a material exhibiting nonlinear optics, a semiconductor nanocrystal, a metal nanoparticle, an enzyme, an antibody or binding portion or equivalent thereof, an aptamer, and one member of a binding pair, and combinations thereof. Quenching schemes may be used, wherein a quencher and a fluorophore as members of a quenching pair may be used on a probe, such that a change in optical parameters occurs upon binding to the target introduce or quench the signal from the fluorophore. One example of such a system is a molecular beacon. Suitable quencher/fluorophore systems are known in the art. The label may be bound through a variety of intermediate linkages. For example, a polynucleotide may comprise a biotin-binding species, and an optically detectable label may be conjugated to biotin and then bound to the labeled polynucleotide. Similarly, a polynucleotide sensor may comprise an immunological species such as an antibody or fragment, and a secondary antibody containing an optically detectable label may be added.


Chromophores useful in the methods described herein include any substance which can absorb energy and emit light. For multiplexed assays, a plurality of different signaling chromophores can be used with detectably different emission spectra. The chromophore can be a lumophore or a fluorophore. Typical fluorophores include fluorescent dyes, semiconductor nanocrystals, lanthanide chelates, polynucleotide-specific dyes and green fluorescent protein.


In some embodiments, polynucleotides of the invention comprise at least 20 consecutive bases of the nucleic acid sequence of a target selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348 or a complement thereto. The polynucleotides may comprise at least 21, 22, 23, 24, 25, 27, 30, 32, 35 or more consecutive bases of the nucleic acids sequence of a target selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348, as applicable. In certain instances, the target is selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The polynucleotides may be provided in a variety of formats, including as solids, in solution, or in an array. The polynucleotides may optionally comprise one or more labels, which may be chemically and/or enzymatically incorporated into the polynucleotide.


In some embodiments, one or more polynucleotides provided herein can be provided on a substrate. The substrate can comprise a wide range of material, either biological, nonbiological, organic, inorganic, or a combination of any of these. For example, the substrate may be a polymerized Langmuir Blodgett film, functionalized glass, Si, Ge, GaAs, GaP, SiO2, SiN4, modified silicon, or any one of a wide variety of gels or polymers such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, cross-linked polystyrene, polyacrylic, polylactic acid, polyglycolic acid, poly(lactide coglycolide), polyanhydrides, poly(methyl methacrylate), poly(ethylene-co-vinyl acetate), polysiloxanes, polymeric silica, latexes, dextran polymers, epoxies, polycarbonates, or combinations thereof. Conducting polymers and photoconductive materials can be used.


The substrate can take the form of an array, a photodiode, an optoelectronic sensor such as an optoelectronic semiconductor chip or optoelectronic thin-film semiconductor, or a biochip. The location(s) of probe(s) on the substrate can be addressable; this can be done in highly dense formats, and the location(s) can be microaddressable or nanoaddressable.


Diagnostic Samples

Diagnostic samples for use with the systems and in the methods of the present invention comprise nucleic acids suitable for providing RNAs expression information. In principle, the biological sample from which the expressed RNA is obtained and analyzed for target sequence expression can be any material suspected of comprising prostate cancer tissue or cells. The diagnostic sample can be a biological sample used directly in a method of the invention. Alternatively, the diagnostic sample can be a sample prepared from a biological sample.


In one embodiment, the sample or portion of the sample comprising or suspected of comprising cancer tissue or cells can be any source of biological material, including cells, tissue or fluid, including bodily fluids. Non-limiting examples of the source of the sample include an aspirate, a needle biopsy, a cytology pellet, a bulk tissue preparation or a section thereof obtained for example by surgery or autopsy, lymph fluid, blood, plasma, serum, tumors, and organs. In some embodiments, the sample is from urine. Alternatively, the sample is from blood, plasma or serum. In some embodiments, the sample is from saliva.


The samples may be archival samples, having a known and documented medical outcome, or may be samples from current patients whose ultimate medical outcome is not yet known.


In some embodiments, the sample may be dissected prior to molecular analysis. The sample may be prepared via macrodissection of a bulk tumor specimen or portion thereof, or may be treated via microdissection, for example via Laser Capture Microdissection (LCM).


The sample may initially be provided in a variety of states, as fresh tissue, fresh frozen tissue, fine needle aspirates, and may be fixed or unfixed. Frequently, medical laboratories routinely prepare medical samples in a fixed state, which facilitates tissue storage. A variety of fixatives can be used to fix tissue to stabilize the morphology of cells, and may be used alone or in combination with other agents. Exemplary fixatives include crosslinking agents, alcohols, acetone, Bouin's solution, Zenker solution, Helv solution, osmic acid solution and Carnoy solution.


Crosslinking fixatives can comprise any agent suitable for forming two or more covalent bonds, for example an aldehyde. Sources of aldehydes typically used for fixation include formaldehyde, paraformaldehyde, glutaraldehyde or formalin. Preferably, the crosslinking agent comprises formaldehyde, which may be included in its native form or in the form of paraformaldehyde or formalin. One of skill in the art would appreciate that for samples in which crosslinking fixatives have been used special preparatory steps may be necessary including for example heating steps and proteinase-k digestion; see methods.


One or more alcohols may be used to fix tissue, alone or in combination with other fixatives. Exemplary alcohols used for fixation include methanol, ethanol and isopropanol.


Formalin fixation is frequently used in medical laboratories. Formalin comprises both an alcohol, typically methanol, and formaldehyde, both of which can act to fix a biological sample.


Whether fixed or unfixed, the biological sample may optionally be embedded in an embedding medium. Exemplary embedding media used in histology including paraffin, Tissue-Tek® V.I.P.™, Paramat, Paramat Extra, Paraplast, Paraplast X-tra, Paraplast Plus, Peel Away Paraffin Embedding Wax, Polyester Wax, Carbowax Polyethylene Glycol, Polyfin™, Tissue Freezing Medium TFMFM, Cryo-Gef™, and OCT Compound (Electron Microscopy Sciences, Hatfield, Pa.). Prior to molecular analysis, the embedding material may be removed via any suitable techniques, as known in the art. For example, where the sample is embedded in wax, the embedding material may be removed by extraction with organic solvent(s), for example xylenes. Kits are commercially available for removing embedding media from tissues. Samples or sections thereof may be subjected to further processing steps as needed, for example serial hydration or dehydration steps.


In some embodiments, the sample is a fixed, wax-embedded biological sample. Frequently, samples from medical laboratories are provided as fixed, wax-embedded samples, most commonly as formalin-fixed, paraffin embedded (FFPE) tissues.


Whatever the source of the biological sample, the target polynucleotide that is ultimately assayed can be prepared synthetically (in the case of control sequences), but typically is purified from the biological source and subjected to one or more preparative steps. The RNA may be purified to remove or diminish one or more undesired components from the biological sample or to concentrate it. Conversely, where the RNA is too concentrated for the particular assay, it may be diluted.


RNA Extraction

RNA can be extracted and purified from biological samples using any suitable technique. A number of techniques are known in the art, and several are commercially available (e.g., FormaPure nucleic acid extraction kit, Agencourt Biosciences, Beverly Mass., High Pure FFPE RNA Micro Kit, Roche Applied Science, Indianapolis, Ind.). RNA can be extracted from frozen tissue sections using TRIzol (Invitrogen, Carlsbad, Calif.) and purified using RNeasy Protect kit (Qiagen, Valencia, Calif.). RNA can be further purified using DNAse I treatment (Ambion, Austin, Tex.) to eliminate any contaminating DNA. RNA concentrations can be made using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Rockland, Del.). RNA can be further purified to eliminate contaminants that interfere with cDNA synthesis by cold sodium acetate precipitation. RNA integrity can be evaluated by running electropherograms, and RNA integrity number (RIN, a correlative measure that indicates intactness of mRNA) can be determined using the RNA 6000 PicoAssay for the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, Calif.).


Kits

Kits for performing the desired method(s) are also provided, and comprise a container or housing for holding the components of the kit, one or more vessels containing one or more nucleic acid(s), and optionally one or more vessels containing one or more reagents. The reagents include those described in the composition of matter section above, and those reagents useful for performing the methods described, including amplification reagents, and may include one or more probes, primers or primer pairs, enzymes (including polymerases and ligases), intercalating dyes, labeled probes, and labels that can be incorporated into amplification products.


In some embodiments, the kit comprises primers or primer pairs specific for those subsets and combinations of target sequences described herein. The primers or pairs of primers suitable for selectively amplifying the target sequences. The kit may comprise at least two, three, four or five primers or pairs of primers suitable for selectively amplifying one or more targets. The kit may comprise at least 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more primers or pairs of primers suitable for selectively amplifying one or more targets.


In some embodiments, the primers or primer pairs of the kit, when used in an amplification reaction, specifically amplify a non-coding target, coding target, exonic, or non-exonic target described herein, a nucleic acid sequence corresponding to a target selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348, an RNA form thereof, or a complement to either thereof. The kit may include a plurality of such primers or primer pairs which can specifically amplify a corresponding plurality of different amplify a non-coding target, coding target, exonic, or non-exonic transcript described herein, a nucleic acid sequence corresponding to a target selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348, RNA forms thereof, or complements thereto. At least two, three, four or five primers or pairs of primers suitable for selectively amplifying the one or more targets can be provided in kit form. In some embodiments, the kit comprises from five to fifty primers or pairs of primers suitable for amplifying the one or more targets. In certain instances, the target is selected from ERG, ETV1, ETV4, ETV5, FLI1, and/or SPINK1; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, and/or FKBP10; TDRD1, CACNA1D, NCALD, HLA-DMB, FAM65B, AMACR, SLC61A1, FKBP10, HPGD, FAM3B, MIPEP, NCAPD3, INPP4B, ANPEP, TFF3, ALOX15B, and/or MON1B; MME, BANK1, LEPREL1, VGLL3, NPR3, OR4K7P, OR4K6P, POTEB2, RP11, TTN, FAP5, and/or GPR116; SPINK1, BANK1, LEPREL1, TTN, POTEB2, OR4K7P, OR4K6P, FAB5P7, NPR1, and/or RP11-403B2; GPR116, GRM7; or a combination thereof.


The reagents may independently be in liquid or solid form. The reagents may be provided in mixtures. Control samples and/or nucleic acids may optionally be provided in the kit. Control samples may include tissue and/or nucleic acids obtained from or representative of tumor samples from patients showing no evidence of disease, as well as tissue and/or nucleic acids obtained from or representative of tumor samples from patients that develop systemic cancer.


The nucleic acids may be provided in an array format, and thus an array or microarray may be included in the kit. The kit optionally may be certified by a government agency for use in prognosing the disease outcome of cancer patients and/or for designating a treatment modality.


Instructions for using the kit to perform one or more methods of the invention can be provided with the container, and can be provided in any fixed medium. The instructions may be located inside or outside the container or housing, and/or may be printed on the interior or exterior of any surface thereof. A kit may be in multiplex form for concurrently detecting and/or quantitating one or more different target polynucleotides representing the expressed target sequences.


Amplification and Hybridization

Following sample collection and nucleic acid extraction, the nucleic acid portion of the sample comprising RNA that is or can be used to prepare the target polynucleotide(s) of interest can be subjected to one or more preparative reactions. These preparative reactions can include in vitro transcription (IVT), labeling, fragmentation, amplification and other reactions. mRNA can first be treated with reverse transcriptase and a primer to create cDNA prior to detection, quantitation and/or amplification; this can be done in vitro with purified mRNA or in situ, e.g., in cells or tissues affixed to a slide.


By “amplification” is meant any process of producing at least one copy of a nucleic acid, in this case an expressed RNA, and in many cases produces multiple copies. An amplification product can be RNA or DNA, and may include a complementary strand to the expressed target sequence. DNA amplification products can be produced initially through reverse translation and then optionally from further amplification reactions. The amplification product may include all or a portion of a target sequence, and may optionally be labeled. A variety of amplification methods are suitable for use, including polymerase-based methods and ligation-based methods. Exemplary amplification techniques include the polymerase chain reaction method (PCR), the lipase chain reaction (LCR), ribozyme-based methods, self-sustained sequence replication (3 SR), nucleic acid sequence-based amplification (NASBA), the use of Q Beta replicase, reverse transcription, nick translation, and the like.


Asymmetric amplification reactions may be used to preferentially amplify one strand representing the target sequence that is used for detection as the target polynucleotide. In some cases, the presence and/or amount of the amplification product itself may be used to determine the expression level of a given target sequence. In other instances, the amplification product may be used to hybridize to an array or other substrate comprising sensor polynucleotides which are used to detect and/or quantitate target sequence expression.


The first cycle of amplification in polymerase-based methods typically forms a primer extension product complementary to the template strand. If the template is single-stranded RNA, a polymerase with reverse transcriptase activity is used in the first amplification to reverse transcribe the RNA to DNA, and additional amplification cycles can be performed to copy the primer extension products. The primers for a PCR must, of course, be designed to hybridize to regions in their corresponding template that can produce an amplifiable segment; thus, each primer must hybridize so that its 3′ nucleotide is paired to a nucleotide in its complementary template strand that is located 3′ from the 3′ nucleotide of the primer used to replicate that complementary template strand in the PCR.


The target polynucleotide can be amplified by contacting one or more strands of the target polynucleotide with a primer and a polymerase having suitable activity to extend the primer and copy the target polynucleotide to produce a full-length complementary polynucleotide or a smaller portion thereof. Any enzyme having a polymerase activity that can copy the target polynucleotide can be used, including DNA polymerases, RNA polymerases, reverse transcriptases, enzymes having more than one type of polymerase or enzyme activity. The enzyme can be thermolabile or thermostable. Mixtures of enzymes can also be used. Exemplary enzymes include: DNA polymerases such as DNA Polymerase I (“Pol I”), the Klenow fragment of Pol I, T4, T7, Sequenase® T7, Sequenase® Version 2.0 T7, Tub, Taq, Tth, Pfic, Pfu, Tsp, Tfl, Tli and Pyrococcus sp GB-D DNA polymerases; RNA polymerases such as E. coli, SP6, T3 and T7 RNA polymerases; and reverse transcriptases such as AMV, M-MuLV, MMLV, RNAse H MMLV (SuperScript®), SuperScript® II, ThermoScript®, HIV-1, and RAV2 reverse transcriptases. All of these enzymes are commercially available. Exemplary polymerases with multiple specificities include RAV2 and Tli (exo-) polymerases. Exemplary thermostable polymerases include Tub, Taq, Tth, Pfic, Pfu, Tsp, Tfl, Tli and Pyrococcus sp. GB-D DNA polymerases.


Suitable reaction conditions are chosen to permit amplification of the target polynucleotide, including pH, buffer, ionic strength, presence and concentration of one or more salts, presence and concentration of reactants and cofactors such as nucleotides and magnesium and/or other metal ions (e.g., manganese), optional cosolvents, temperature, thermal cycling profile for amplification schemes comprising a polymerase chain reaction, and may depend in part on the polymerase being used as well as the nature of the sample. Cosolvents include formamide (typically at from about 2 to about 10%), glycerol (typically at from about 5 to about 10%), and DMSO (typically at from about 0.9 to about 10%). Techniques may be used in the amplification scheme in order to minimize the production of false positives or artifacts produced during amplification. These include “touchdown” PCR, hot-start techniques, use of nested primers, or designing PCR primers so that they form stem-loop structures in the event of primer-dimer formation and thus are not amplified. Techniques to accelerate PCR can be used, for example centrifugal PCR, which allows for greater convection within the sample, and comprising infrared heating steps for rapid heating and cooling of the sample. One or more cycles of amplification can be performed. An excess of one primer can be used to produce an excess of one primer extension product during PCR; preferably, the primer extension product produced in excess is the amplification product to be detected. A plurality of different primers may be used to amplify different target polynucleotides or different regions of a particular target polynucleotide within the sample.


An amplification reaction can be performed under conditions which allow an optionally labeled sensor polynucleotide to hybridize to the amplification product during at least part of an amplification cycle. When the assay is performed in this manner, real-time detection of this hybridization event can take place by monitoring for light emission or fluorescence during amplification, as known in the art.


Where the amplification product is to be used for hybridization to an array or microarray, a number of suitable commercially available amplification products are available. These include amplification kits available from NuGEN, Inc. (San Carlos, Calif.), including the WT-Ovation™ System, WT-Ovation™ System v2, WT-Ovation™ Pico System, WT-Ovation™ FFPE Exon Module, WT-Ovation™ FFPE Exon Module RiboAmp and RiboAmpPlus RNA Amplification Kits (MDS Analytical Technologies (formerly Arcturus) (Mountain View, Calif.), Genisphere, Inc. (Hatfield, Pa.), including the RampUp Plus™ and SenseAmp™ RNA Amplification kits, alone or in combination. Amplified nucleic acids may be subjected to one or more purification reactions after amplification and labeling, for example using magnetic beads (e.g., RNAClean magnetic beads, Agencourt Biosciences).


Multiple RNA biomarkers can be analyzed using real-time quantitative multiplex RT-PCR platforms and other multiplexing technologies such as GenomeLab GeXP Genetic Analysis System (Beckman Coulter, Foster City, Calif.), SmartCycler® 9600 or GeneXpert® Systems (Cepheid, Sunnyvale, Calif.), ABI 7900 HT Fast Real Time PCR system (Applied Biosystems, Foster City, Calif.), LightCycler® 480 System (Roche Molecular Systems, Pleasanton, Calif.), xMAP 100 System (Luminex, Austin, Tex.) Solexa Genome Analysis System (Illumina, Hayward, Calif.), OpenArray Real Time qPCR (BioTrove, Woburn, Mass.) and BeadXpress System (Illumina, Hayward, Calif.).


Detection and/or Quantification of Target Sequences


Any method of detecting and/or quantitating the expression of the encoded target sequences can in principle be used in the invention. The expressed target sequences can be directly detected and/or quantitated, or may be copied and/or amplified to allow detection of amplified copies of the expressed target sequences or its complement.


Methods for detecting and/or quantifying a target can include Northern blotting, sequencing, array or microarray hybridization, by enzymatic cleavage of specific structures (e.g., an Invader® assay, Third Wave Technologies, e.g. as described in U.S. Pat. Nos. 5,846,717, 6,090,543; 6,001,567; 5,985,557; and 5,994,069) and amplification methods, e.g. RT-PCR, including in a TaqMan® assay (PE Biosystems, Foster City, Calif., e.g. as described in U.S. Pat. Nos. 5,962,233 and 5,538,848), and may be quantitative or semi-quantitative, and may vary depending on the origin, amount and condition of the available biological sample. Combinations of these methods may also be used. For example, nucleic acids may be amplified, labeled and subjected to microarray analysis.


In some instances, target sequences may be detected by sequencing. Sequencing methods may comprise whole genome sequencing or exome sequencing. Sequencing methods such as Maxim-Gilbert, chain-termination, or high-throughput systems may also be used. Additional, suitable sequencing techniques include classic dideoxy sequencing reactions (Sanger method) using labeled terminators or primers and gel separation in slab or capillary, sequencing by synthesis using reversibly terminated labeled nucleotides, pyrosequencing, 454 sequencing, allele specific hybridization to a library of labeled oligonucleotide probes, sequencing by synthesis using allele specific hybridization to a library of labeled clones that is followed by ligation, real time monitoring of the incorporation of labeled nucleotides during a polymerization step, and SOLiD sequencing.


Additional methods for detecting and/or quantifying a target include single-molecule sequencing (e.g., Helicos, PacBio), sequencing by synthesis (e.g., Illumina, Ion Torrent), sequencing by ligation (e.g., ABI SOLID), sequencing by hybridization (e.g., Complete Genomics), in situ hybridization, bead-array technologies (e.g., Luminex xMAP, Illumina BeadChips), branched DNA technology (e.g., Panomics, Genisphere). Sequencing methods may use fluorescent (e.g., Illumina) or electronic (e.g., Ion Torrent, Oxford Nanopore) methods of detecting nucleotides.


Reverse Transcription for QRT-PCR Analysis

Reverse transcription can be performed by any method known in the art. For example, reverse transcription may be performed using the Omniscript kit (Qiagen, Valencia, Calif.), Superscript III kit (Invitrogen, Carlsbad, Calif.), for RT-PCR. Target-specific priming can be performed in order to increase the sensitivity of detection of target sequences and generate target-specific cDNA.


TaqMan® Gene Expression Analysis

TaqMan® RT-PCR can be performed using Applied Biosystems Prism (ABI) 7900 HT instruments in a 5 1.11 volume with target sequence-specific cDNA equivalent to 1 ng total RNA.


Primers and probes concentrations for TaqMan analysis are added to amplify fluorescent amplicons using PCR cycling conditions such as 95° C. for 10 minutes for one cycle, 95° C. for 20 seconds, and 60° C. for 45 seconds for 40 cycles. A reference sample can be assayed to ensure reagent and process stability. Negative controls (e.g., no template) should be assayed to monitor any exogenous nucleic acid contamination.


Classification Arrays

The present invention contemplates that a probe set or probes derived therefrom may be provided in an array format. In the context of the present invention, an “array” is a spatially or logically organized collection of polynucleotide probes. An array comprising probes specific for a coding target, non-coding target, or a combination thereof may be used. Alternatively, an array comprising probes specific for two or more of transcripts of a target selected from Table 1, Table 2, Table 6, Table 7, or Table 15 or a product derived thereof can be used. Desirably, an array may be specific for 5, 10, 15, 20, 25, 30 or more of transcripts of a target selected from Table 1, Table 2, Table 6, Table 7, or Table 15. Expression of these sequences may be detected alone or in combination with other transcripts. In some embodiments, an array is used which comprises a wide range of sensor probes for prostate-specific expression products, along with appropriate control sequences. In some instances, the array may comprise the Human Exon 1.0 ST Array (HuEx 1.0 ST, Affymetrix, Inc., Santa Clara, Calif.).


Typically the polynucleotide probes are attached to a solid substrate and are ordered so that the location (on the substrate) and the identity of each are known. The polynucleotide probes can be attached to one of a variety of solid substrates capable of withstanding the reagents and conditions necessary for use of the array. Examples include, but are not limited to, polymers, such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, polypropylene and polystyrene; ceramic; silicon; silicon dioxide; modified silicon; (fused) silica, quartz or glass; functionalized glass; paper, such as filter paper; diazotized cellulose; nitrocellulose filter; nylon membrane; and polyacrylamide gel pad. Substrates that are transparent to light are useful for arrays that may be used in an assay that involves optical detection.


Examples of array formats include membrane or filter arrays (for example, nitrocellulose, nylon arrays), plate arrays (for example, multiwell, such as a 24-, 96-, 256-, 384-, 864- or 1536-well, microtitre plate arrays), pin arrays, and bead arrays (for example, in a liquid “slurry”). Arrays on substrates such as glass or ceramic slides are often referred to as chip arrays or “chips.” Such arrays are well known in the art. In one embodiment of the present invention, the Cancer Prognosticarray is a chip.


Data Analysis

In some embodiments, one or more pattern recognition methods can be used in analyzing the expression level of target sequences. The pattern recognition method can comprise a linear combination of expression levels, or a nonlinear combination of expression levels. In some embodiments, expression measurements for RNA transcripts or combinations of RNA transcript levels are formulated into linear or non-linear models or algorithms (e.g., an ‘expression signature’) and converted into a likelihood score. This likelihood score indicates the probability that a biological sample is from a patient who may exhibit no evidence of disease, who may exhibit systemic cancer, or who may exhibit biochemical recurrence. The likelihood score can be used to distinguish these disease states. The models and/or algorithms can be provided in machine readable format, and may be used to correlate expression levels or an expression profile with a disease state, and/or to designate a treatment modality for a patient or class of patients.


Assaying the expression level for a plurality of targets may comprise the use of an algorithm or classifier. Array data can be managed, classified, and analyzed using techniques known in the art. Assaying the expression level for a plurality of targets may comprise probe set modeling and data pre-processing. Probe set modeling and data pre-processing can be derived using the Robust Multi-Array (RMA) algorithm or variants GC-RMA, JRMA, Probe Logarithmic Intensity Error (PLIER) algorithm or variant iterPLIER. Variance or intensity filters can be applied to pre-process data using the RMA algorithm, for example by removing target sequences with a standard deviation of <10 or a mean intensity of <100 intensity units of a normalized data range, respectively.


Alternatively, assaying the expression level for a plurality of targets may comprise the use of a machine learning algorithm. The machine learning algorithm may comprise a supervised learning algorithm. Examples of supervised learning algorithms may include Average One-Dependence Estimators (AODE), Artificial neural network (e.g., Backpropagation), Bayesian statistics (e.g., Naive Bayes classifier, Bayesian network, Bayesian knowledge base), Case-based reasoning, Decision trees, Inductive logic programming, Gaussian process regression, Group method of data handling (GMDH), Learning Automata, Learning Vector Quantization, Minimum message length (decision trees, decision graphs, etc.), Lazy learning, Instance-based learning Nearest Neighbor Algorithm, Analogical modeling, Probably approximately correct learning (PAC) learning, Ripple down rules, a knowledge acquisition methodology, Symbolic machine learning algorithms, Subsymbolic machine learning algorithms, Support vector machines, Random Forests, Ensembles of classifiers, Bootstrap aggregating (bagging), and Boosting. Supervised learning may comprise ordinal classification such as regression analysis and Information fuzzy networks (IFN). Alternatively, supervised learning methods may comprise statistical classification, such as AODE, Linear classifiers (e.g., Fisher's linear discriminant, Logistic regression, Naive Bayes classifier, Perceptron, and Support vector machine), quadratic classifiers, k-nearest neighbor, Boosting, Decision trees (e.g., C4.5, Random forests), Bayesian networks, and Hidden Markov models.


The machine learning algorithms may also comprise an unsupervised learning algorithm. Examples of unsupervised learning algorithms may include artificial neural network, Data clustering, Expectation-maximization algorithm, Self-organizing map, Radial basis function network, Vector Quantization, Generative topographic map, Information bottleneck method, and IBSEAD. Unsupervised learning may also comprise association rule learning algorithms such as Apriori algorithm, Eclat algorithm and FP-growth algorithm. Hierarchical clustering, such as Single-linkage clustering and Conceptual clustering, may also be used. Alternatively, unsupervised learning may comprise partitional clustering such as K-means algorithm and Fuzzy clustering.


In some instances, the machine learning algorithms comprise a reinforcement learning algorithm. Examples of reinforcement learning algorithms include, but are not limited to, temporal difference learning, Q-learning and Learning Automata. Alternatively, the machine learning algorithm may comprise Data Pre-processing.


Preferably, the machine learning algorithms may include, but are not limited to, Average One-Dependence Estimators (AODE), Fisher's linear discriminant, Logistic regression, Perceptron, Multilayer Perceptron, Artificial Neural Networks, Support vector machines, Quadratic classifiers, Boosting, Decision trees, C4.5, Bayesian networks, Hidden Markov models, High-Dimensional Discriminant Analysis, and Gaussian Mixture Models. The machine learning algorithm may comprise support vector machines, Naïve Bayes classifier, k-nearest neighbor, high-dimensional discriminant analysis, or Gaussian mixture models. In some instances, the machine learning algorithm comprises Random Forests.


Cancer

The systems, compositions and methods disclosed herein may be used to diagnosis, monitor and/or predict the status or outcome of a cancer. Generally, a cancer is characterized by the uncontrolled growth of abnormal cells anywhere in a body. The abnormal cells may be termed cancer cells, malignant cells, or tumor cells. Cancer is not confined to humans; animals and other living organisms can get cancer.


In some instances, the cancer may be malignant. Alternatively, the cancer may be benign. The cancer may be a recurrent and/or refractory cancer. Most cancers can be classified as a carcinoma, sarcoma, leukemia, lymphoma, myeloma, or a central nervous system cancer.


The cancer may be a sarcoma. Sarcomas are cancers of the bone, cartilage, fat, muscle, blood vessels, or other connective or supportive tissue. Sarcomas include, but are not limited to, bone cancer, fibrosarcoma, chondrosarcoma, Ewing's sarcoma, malignant hemangioendothelioma, malignant schwannoma, bilateral vestibular schwannoma, osteosarcoma, soft tissue sarcomas (e.g. alveolar soft part sarcoma, angiosarcoma, cystosarcoma phylloides, dermatofibrosarcoma, desmoid tumor, epithelioid sarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, and synovial sarcoma).


Alternatively, the cancer may be a carcinoma. Carcinomas are cancers that begin in the epithelial cells, which are cells that cover the surface of the body, produce hormones, and make up glands. By way of non-limiting example, carcinomas include breast cancer, pancreatic cancer, lung cancer, colon cancer, colorectal cancer, rectal cancer, kidney cancer, bladder cancer, stomach cancer, prostate cancer, liver cancer, ovarian cancer, brain cancer, vaginal cancer, vulvar cancer, uterine cancer, oral cancer, penic cancer, testicular cancer, esophageal cancer, skin cancer, cancer of the fallopian tubes, head and neck cancer, gastrointestinal stromal cancer, adenocarcinoma, cutaneous or intraocular melanoma, cancer of the anal region, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, cancer of the urethra, cancer of the renal pelvis, cancer of the ureter, cancer of the endometrium, cancer of the cervix, cancer of the pituitary gland, neoplasms of the central nervous system (CNS), primary CNS lymphoma, brain stem glioma, and spinal axis tumors. In some instances, the cancer is a skin cancer, such as a basal cell carcinoma, squamous, melanoma, nonmelanoma, or actinic (solar) keratosis. Preferably, the cancer is a prostate cancer. Alternatively, the cancer may be a thyroid cancer, bladder cancer, or pancreatic cancer.


In some instances, the cancer is a lung cancer. Lung cancer can start in the airways that branch off the trachea to supply the lungs (bronchi) or the small air sacs of the lung (the alveoli). Lung cancers include non-small cell lung carcinoma (NSCLC), small cell lung carcinoma, and mesotheliomia. Examples of NSCLC include squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. The mesothelioma may be a cancerous tumor of the lining of the lung and chest cavity (pleura) or lining of the abdomen (peritoneum). The mesothelioma may be due to asbestos exposure. The cancer may be a brain cancer, such as a glioblastoma.


Alternatively, the cancer may be a central nervous system (CNS) tumor. CNS tumors may be classified as gliomas or nongliomas. The glioma may be malignant glioma, high grade glioma, diffuse intrinsic pontine glioma. Examples of gliomas include astrocytomas, oligodendrogliomas (or mixtures of oligodendroglioma and astocytoma elements), and ependymomas. Astrocytomas include, but are not limited to, low-grade astrocytomas, anaplastic astrocytomas, glioblastoma multiforme, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and subependymal giant cell astrocytoma. Oligodendrogliomas include low-grade oligodendrogliomas (or oligoastrocytomas) and anaplastic oligodendriogliomas. Nongliomas include meningiomas, pituitary adenomas, primary CNS lymphomas, and medulloblastomas. In some instances, the cancer is a meningioma.


The cancer may be a leukemia. The leukemia may be an acute lymphocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia, or chronic myelocytic leukemia. Additional types of leukemias include hairy cell leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic-leukemia.


In some instances, the cancer is a lymphoma. Lymphomas are cancers of the lymphocytes and may develop from either B or T lymphocytes. The two major types of lymphoma are Hodgkin's lymphoma, previously known as Hodgkin's disease, and non-Hodgkin's lymphoma. Hodgkin's lymphoma is marked by the presence of the Reed-Sternberg cell. Non-Hodgkin's lymphomas are all lymphomas which are not Hodgkin's lymphoma. Non-Hodgkin lymphomas may be indolent lymphomas and aggressive lymphomas. Non-Hodgkin's lymphomas include, but are not limited to, diffuse large B cell lymphoma, follicular lymphoma, mucosa-associated lymphatic tissue lymphoma (MALT), small cell lymphocytic lymphoma, mantle cell lymphoma, Burkitt's lymphoma, mediastinal large B cell lymphoma, Waldenström macroglobulinemia, nodal marginal zone B cell lymphoma (NMZL), splenic marginal zone lymphoma (SMZL), extranodal marginal zone B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, and lymphomatoid granulomatosis.


Cancer Staging

Diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise determining the stage of the cancer. Generally, the stage of a cancer is a description (usually numbers I to IV with IV having more progression) of the extent the cancer has spread. The stage often takes into account the size of a tumor, how deeply it has penetrated, whether it has invaded adjacent organs, how many lymph nodes it has metastasized to (if any), and whether it has spread to distant organs. Staging of cancer can be used as a predictor of survival, and cancer treatment may be determined by staging. Determining the stage of the cancer may occur before, during, or after treatment. The stage of the cancer may also be determined at the time of diagnosis.


Cancer staging can be divided into a clinical stage and a pathologic stage. Cancer staging may comprise the TNM classification. Generally, the TNM Classification of Malignant Tumours (TNM) is a cancer staging system that describes the extent of cancer in a patient's body. T may describe the size of the tumor and whether it has invaded nearby tissue, N may describe regional lymph nodes that are involved, and M may describe distant metastasis (spread of cancer from one body part to another). In the TNM (Tumor, Node, Metastasis) system, clinical stage and pathologic stage are denoted by a small “c” or “p” before the stage (e.g., cT3N1M0 or pT2N0).


Often, clinical stage and pathologic stage may differ. Clinical stage may be based on all of the available information obtained before a surgery to remove the tumor. Thus, it may include information about the tumor obtained by physical examination, radiologic examination, and endoscopy. Pathologic stage can add additional information gained by examination of the tumor microscopically by a pathologist. Pathologic staging can allow direct examination of the tumor and its spread, contrasted with clinical staging which may be limited by the fact that the information is obtained by making indirect observations at a tumor which is still in the body. The TNM staging system can be used for most forms of cancer.


Alternatively, staging may comprise Ann Arbor staging. Generally, Ann Arbor staging is the staging system for lymphomas, both in Hodgkin's lymphoma (previously called Hodgkin's disease) and Non-Hodgkin lymphoma (abbreviated NHL). The stage may depend on both the place where the malignant tissue is located (as located with biopsy, CT scanning and increasingly positron emission tomography) and on systemic symptoms due to the lymphoma (“B symptoms”: night sweats, weight loss of >10% or fevers). The principal stage may be determined by location of the tumor. Stage I may indicate that the cancer is located in a single region, usually one lymph node and the surrounding area. Stage I often may not have outward symptoms. Stage II can indicate that the cancer is located in two separate regions, an affected lymph node or organ and a second affected area, and that both affected areas are confined to one side of the diaphragm—that is, both are above the diaphragm, or both are below the diaphragm. Stage III often indicates that the cancer has spread to both sides of the diaphragm, including one organ or area near the lymph nodes or the spleen. Stage IV may indicate diffuse or disseminated involvement of one or more extralymphatic organs, including any involvement of the liver, bone marrow, or nodular involvement of the lungs.


Modifiers may also be appended to some stages. For example, the letters A, B, E, X, or S can be appended to some stages. Generally, A or B may indicate the absence of constitutional (B-type) symptoms is denoted by adding an “A” to the stage; the presence is denoted by adding a “B” to the stage. E can be used if the disease is “extranodal” (not in the lymph nodes) or has spread from lymph nodes to adjacent tissue. X is often used if the largest deposit is >10 cm large (“bulky disease”), or whether the mediastinum is wider than ⅓ of the chest on a chest X-ray. S may be used if the disease has spread to the spleen.


The nature of the staging may be expressed with CS or PS. CS may denote that the clinical stage as obtained by doctor's examinations and tests. PS may denote that the pathological stage as obtained by exploratory laparotomy (surgery performed through an abdominal incision) with splenectomy (surgical removal of the spleen).


Therapeutic Regimens

Diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise treating a cancer or preventing a cancer progression. In addition, diagnosing, predicting, or monitoring a status or outcome of a cancer may comprise identifying or predicting responders to an anti-cancer therapy. In some instances, diagnosing, predicting, or monitoring may comprise determining a therapeutic regimen. Determining a therapeutic regimen may comprise administering an anti-cancer therapy. Alternatively, determining a therapeutic regimen may comprise modifying, recommending, continuing or discontinuing an anti-cancer regimen. In some instances, if the sample expression patterns are consistent with the expression pattern for a known disease or disease outcome, the expression patterns can be used to designate one or more treatment modalities (e.g., therapeutic regimens, anti-cancer regimen). An anti-cancer regimen may comprise one or more anti-cancer therapies. Examples of anti-cancer therapies include surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, photodynamic therapy.


Surgical oncology uses surgical methods to diagnose, stage, and treat cancer, and to relieve certain cancer-related symptoms. Surgery may be used to remove the tumor (e.g., excisions, resections, debulking surgery), reconstruct a part of the body (e.g., restorative surgery), and/or to relieve symptoms such as pain (e.g., palliative surgery). Surgery may also include cryosurgery. Cryosurgery (also called cryotherapy) may use extreme cold produced by liquid nitrogen (or argon gas) to destroy abnormal tissue. Cryosurgery can be used to treat external tumors, such as those on the skin. For external tumors, liquid nitrogen can be applied directly to the cancer cells with a cotton swab or spraying device. Cryosurgery may also be used to treat tumors inside the body (internal tumors and tumors in the bone). For internal tumors, liquid nitrogen or argon gas may be circulated through a hollow instrument called a cryoprobe, which is placed in contact with the tumor. An ultrasound or Mill may be used to guide the cryoprobe and monitor the freezing of the cells, thus limiting damage to nearby healthy tissue. A ball of ice crystals may form around the probe, freezing nearby cells. Sometimes more than one probe is used to deliver the liquid nitrogen to various parts of the tumor. The probes may be put into the tumor during surgery or through the skin (percutaneously). After cryosurgery, the frozen tissue thaws and may be naturally absorbed by the body (for internal tumors), or may dissolve and form a scab (for external tumors).


Chemotherapeutic agents may also be used for the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents, anti-metabolites, plant alkaloids and terpenoids, vinca alkaloids, podophyllotoxin, taxanes, topoisomerase inhibitors, and cytotoxic antibiotics. Cisplatin, carboplatin, and oxaliplatin are examples of alkylating agents. Other alkylating agents include mechlorethamine, cyclophosphamide, chlorambucil, ifosfamide. Alkylating agents may impair cell function by forming covalent bonds with the amino, carboxyl, sulfhydryl, and phosphate groups in biologically important molecules. Alternatively, alkylating agents may chemically modify a cell's DNA.


Anti-metabolites are another example of chemotherapeutic agents. Anti-metabolites may masquerade as purines or pyrimidines and may prevent purines and pyrimidines from becoming incorporated in to DNA during the “S” phase (of the cell cycle), thereby stopping normal development and division. Antimetabolites may also affect RNA synthesis. Examples of metabolites include azathioprine and mercaptopurine.


Alkaloids may be derived from plants and block cell division may also be used for the treatment of cancer. Alkyloids may prevent microtubule function. Examples of alkaloids are vinca alkaloids and taxanes. Vinca alkaloids may bind to specific sites on tubulin and inhibit the assembly of tubulin into microtubules (M phase of the cell cycle). The vinca alkaloids may be derived from the Madagascar periwinkle, Catharanthus roseus (formerly known as Vinca rosea). Examples of vinca alkaloids include, but are not limited to, vincristine, vinblastine, vinorelbine, or vindesine. Taxanes are diterpenes produced by the plants of the genus Taxus (yews). Taxanes may be derived from natural sources or synthesized artificially. Taxanes include paclitaxel (Taxol) and docetaxel (Taxotere). Taxanes may disrupt microtubule function. Microtubules are essential to cell division, and taxanes may stabilize GDP-bound tubulin in the microtubule, thereby inhibiting the process of cell division. Thus, in essence, taxanes may be mitotic inhibitors. Taxanes may also be radiosensitizing and often contain numerous chiral centers.


Alternative chemotherapeutic agents include podophyllotoxin. Podophyllotoxin is a plant-derived compound that may help with digestion and may be used to produce cytostatic drugs such as etoposide and teniposide. They may prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S phase).


Topoisomerases are essential enzymes that maintain the topology of DNA. Inhibition of type I or type II topoisomerases may interfere with both transcription and replication of DNA by upsetting proper DNA supercoiling. Some chemotherapeutic agents may inhibit topoisomerases. For example, some type I topoisomerase inhibitors include camptothecins: irinotecan and topotecan. Examples of type II inhibitors include amsacrine, etoposide, etoposide phosphate, and teniposide.


Another example of chemotherapeutic agents is cytotoxic antibiotics. Cytotoxic antibiotics are a group of antibiotics that are used for the treatment of cancer because they may interfere with DNA replication and/or protein synthesis. Cytotoxic antiobiotics include, but are not limited to, actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin, and mitomycin.


In some instances, the anti-cancer treatment may comprise radiation therapy. Radiation can come from a machine outside the body (external-beam radiation therapy) or from radioactive material placed in the body near cancer cells (internal radiation therapy, more commonly called brachytherapy). Systemic radiation therapy uses a radioactive substance, given by mouth or into a vein that travels in the blood to tissues throughout the body.


External-beam radiation therapy may be delivered in the form of photon beams (either x-rays or gamma rays). A photon is the basic unit of light and other forms of electromagnetic radiation. An example of external-beam radiation therapy is called 3-dimensional conformal radiation therapy (3D-CRT). 3D-CRT may use computer software and advanced treatment machines to deliver radiation to very precisely shaped target areas. Many other methods of external-beam radiation therapy are currently being tested and used in cancer treatment. These methods include, but are not limited to, intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Stereotactic radiosurgery (SRS), Stereotactic body radiation therapy (SBRT), and proton therapy.


Intensity-modulated radiation therapy (IMRT) is an example of external-beam radiation and may use hundreds of tiny radiation beam-shaping devices, called collimators, to deliver a single dose of radiation. The collimators can be stationary or can move during treatment, allowing the intensity of the radiation beams to change during treatment sessions. This kind of dose modulation allows different areas of a tumor or nearby tissues to receive different doses of radiation. IMRT is planned in reverse (called inverse treatment planning). In inverse treatment planning, the radiation doses to different areas of the tumor and surrounding tissue are planned in advance, and then a high-powered computer program calculates the required number of beams and angles of the radiation treatment. In contrast, during traditional (forward) treatment planning, the number and angles of the radiation beams are chosen in advance and computers calculate how much dose may be delivered from each of the planned beams. The goal of IMRT is to increase the radiation dose to the areas that need it and reduce radiation exposure to specific sensitive areas of surrounding normal tissue.


Another example of external-beam radiation is image-guided radiation therapy (IGRT). In IGRT, repeated imaging scans (CT, MRI, or PET) may be performed during treatment. These imaging scans may be processed by computers to identify changes in a tumor's size and location due to treatment and to allow the position of the patient or the planned radiation dose to be adjusted during treatment as needed. Repeated imaging can increase the accuracy of radiation treatment and may allow reductions in the planned volume of tissue to be treated, thereby decreasing the total radiation dose to normal tissue.


Tomotherapy is a type of image-guided IMRT. A tomotherapy machine is a hybrid between a CT imaging scanner and an external-beam radiation therapy machine. The part of the tomotherapy machine that delivers radiation for both imaging and treatment can rotate completely around the patient in the same manner as a normal CT scanner. Tomotherapy machines can capture CT images of the patient's tumor immediately before treatment sessions, to allow for very precise tumor targeting and sparing of normal tissue.


Stereotactic radiosurgery (SRS) can deliver one or more high doses of radiation to a small tumor. SRS uses extremely accurate image-guided tumor targeting and patient positioning. Therefore, a high dose of radiation can be given without excess damage to normal tissue. SRS can be used to treat small tumors with well-defined edges. It is most commonly used in the treatment of brain or spinal tumors and brain metastases from other cancer types. For the treatment of some brain metastases, patients may receive radiation therapy to the entire brain (called whole-brain radiation therapy) in addition to SRS. SRS requires the use of a head frame or other device to immobilize the patient during treatment to ensure that the high dose of radiation is delivered accurately.


Stereotactic body radiation therapy (SBRT) delivers radiation therapy in fewer sessions, using smaller radiation fields and higher doses than 3D-CRT in most cases. SBRT may treat tumors that lie outside the brain and spinal cord. Because these tumors are more likely to move with the normal motion of the body, and therefore cannot be targeted as accurately as tumors within the brain or spine, SBRT is usually given in more than one dose. SBRT can be used to treat small, isolated tumors, including cancers in the lung and liver. SBRT systems may be known by their brand names, such as the CyberKnife®.


In proton therapy, external-beam radiation therapy may be delivered by proton. Protons are a type of charged particle. Proton beams differ from photon beams mainly in the way they deposit energy in living tissue. Whereas photons deposit energy in small packets all along their path through tissue, protons deposit much of their energy at the end of their path (called the Bragg peak) and deposit less energy along the way. Use of protons may reduce the exposure of normal tissue to radiation, possibly allowing the delivery of higher doses of radiation to a tumor.


Other charged particle beams such as electron beams may be used to irradiate superficial tumors, such as skin cancer or tumors near the surface of the body, but they cannot travel very far through tissue.


Internal radiation therapy (brachytherapy) is radiation delivered from radiation sources (radioactive materials) placed inside or on the body. Several brachytherapy techniques are used in cancer treatment. Interstitial brachytherapy may use a radiation source placed within tumor tissue, such as within a prostate tumor. Intracavitary brachytherapy may use a source placed within a surgical cavity or a body cavity, such as the chest cavity, near a tumor. Episcleral brachytherapy, which may be used to treat melanoma inside the eye, may use a source that is attached to the eye. In brachytherapy, radioactive isotopes can be sealed in tiny pellets or “seeds.” These seeds may be placed in patients using delivery devices, such as needles, catheters, or some other type of carrier. As the isotopes decay naturally, they give off radiation that may damage nearby cancer cells. Brachytherapy may be able to deliver higher doses of radiation to some cancers than external-beam radiation therapy while causing less damage to normal tissue.


Brachytherapy can be given as a low-dose-rate or a high-dose-rate treatment. In low-dose-rate treatment, cancer cells receive continuous low-dose radiation from the source over a period of several days. In high-dose-rate treatment, a robotic machine attached to delivery tubes placed inside the body may guide one or more radioactive sources into or near a tumor, and then removes the sources at the end of each treatment session. High-dose-rate treatment can be given in one or more treatment sessions. An example of a high-dose-rate treatment is the MammoSite® system. Bracytherapy may be used to treat patients with breast cancer who have undergone breast-conserving surgery.


The placement of brachytherapy sources can be temporary or permanent. For permanent brachytherapy, the sources may be surgically sealed within the body and left there, even after all of the radiation has been given off. In some instances, the remaining material (in which the radioactive isotopes were sealed) does not cause any discomfort or harm to the patient. Permanent brachytherapy is a type of low-dose-rate brachytherapy. For temporary brachytherapy, tubes (catheters) or other carriers are used to deliver the radiation sources, and both the carriers and the radiation sources are removed after treatment. Temporary brachytherapy can be either low-dose-rate or high-dose-rate treatment. Brachytherapy may be used alone or in addition to external-beam radiation therapy to provide a “boost” of radiation to a tumor while sparing surrounding normal tissue.


In systemic radiation therapy, a patient may swallow or receive an injection of a radioactive substance, such as radioactive iodine or a radioactive substance bound to a monoclonal antibody. Radioactive iodine (131I) is a type of systemic radiation therapy commonly used to help treat cancer, such as thyroid cancer. Thyroid cells naturally take up radioactive iodine. For systemic radiation therapy for some other types of cancer, a monoclonal antibody may help target the radioactive substance to the right place. The antibody joined to the radioactive substance travels through the blood, locating and killing tumor cells. For example, the drug ibritumomab tiuxetan (Zevalin®) may be used for the treatment of certain types of B-cell non-Hodgkin lymphoma (NHL). The antibody part of this drug recognizes and binds to a protein found on the surface of B lymphocytes. The combination drug regimen of tositumomab and iodine I 131 tositumomab (Bexxar®) may be used for the treatment of certain types of cancer, such as NHL. In this regimen, nonradioactive tositumomab antibodies may be given to patients first, followed by treatment with tositumomab antibodies that have 131I attached. Tositumomab may recognize and bind to the same protein on B lymphocytes as ibritumomab. The nonradioactive form of the antibody may help protect normal B lymphocytes from being damaged by radiation from 131I.


Some systemic radiation therapy drugs relieve pain from cancer that has spread to the bone (bone metastases). This is a type of palliative radiation therapy. The radioactive drugs samarium-153-lexidronam (Quadramet®) and strontium-89 chloride (Metastron®) are examples of radiopharmaceuticals may be used to treat pain from bone metastases.


Biological therapy (sometimes called immunotherapy, biotherapy, or biological response modifier (BRM) therapy) uses the body's immune system, either directly or indirectly, to fight cancer or to lessen the side effects that may be caused by some cancer treatments. Biological therapies include interferons, interleukins, colony-stimulating factors, monoclonal antibodies, vaccines, gene therapy, and nonspecific immunomodulating agents.


Interferons (IFNs) are types of cytokines that occur naturally in the body. Interferon alpha, interferon beta, and interferon gamma are examples of interferons that may be used in cancer treatment.


Like interferons, interleukins (ILs) are cytokines that occur naturally in the body and can be made in the laboratory. Many interleukins have been identified for the treatment of cancer. For example, interleukin-2 (IL-2 or aldesleukin), interleukin 7, and interleukin 12 have may be used as an anti-cancer treatment. IL-2 may stimulate the growth and activity of many immune cells, such as lymphocytes, that can destroy cancer cells. Interleukins may be used to treat a number of cancers, including leukemia, lymphoma, and brain, colorectal, ovarian, breast, kidney and prostate cancers.


Colony-stimulating factors (CSFs) (sometimes called hematopoietic growth factors) may also be used for the treatment of cancer. Some examples of CSFs include, but are not limited to, G-CSF (filgrastim) and GM-CSF (sargramostim). CSFs may promote the division of bone marrow stem cells and their development into white blood cells, platelets, and red blood cells. Bone marrow is critical to the body's immune system because it is the source of all blood cells. Because anticancer drugs can damage the body's ability to make white blood cells, red blood cells, and platelets, stimulation of the immune system by CSFs may benefit patients undergoing other anti-cancer treatment, thus CSFs may be combined with other anti-cancer therapies, such as chemotherapy. CSFs may be used to treat a large variety of cancers, including lymphoma, leukemia, multiple myeloma, melanoma, and cancers of the brain, lung, esophagus, breast, uterus, ovary, prostate, kidney, colon, and rectum.


Another type of biological therapy includes monoclonal antibodies (MOABs or MoABs). These antibodies may be produced by a single type of cell and may be specific for a particular antigen. To create MOABs, a human cancer cells may be injected into mice. In response, the mouse immune system can make antibodies against these cancer cells. The mouse plasma cells that produce antibodies may be isolated and fused with laboratory-grown cells to create “hybrid” cells called hybridomas. Hybridomas can indefinitely produce large quantities of these pure antibodies, or MOABs. MOABs may be used in cancer treatment in a number of ways. For instance, MOABs that react with specific types of cancer may enhance a patient's immune response to the cancer. MOABs can be programmed to act against cell growth factors, thus interfering with the growth of cancer cells.


MOABs may be linked to other anti-cancer therapies such as chemotherapeutics, radioisotopes (radioactive substances), other biological therapies, or other toxins. When the antibodies latch onto cancer cells, they deliver these anti-cancer therapies directly to the tumor, helping to destroy it. MOABs carrying radioisotopes may also prove useful in diagnosing certain cancers, such as colorectal, ovarian, and prostate.


Rituxan® (rituximab) and Herceptin® (trastuzumab) are examples of MOABs that may be used as a biological therapy. Rituxan may be used for the treatment of non-Hodgkin lymphoma. Herceptin can be used to treat metastatic breast cancer in patients with tumors that produce excess amounts of a protein called HER2. Alternatively, MOABs may be used to treat lymphoma, leukemia, melanoma, and cancers of the brain, breast, lung, kidney, colon, rectum, ovary, prostate, and other areas.


Cancer vaccines are another form of biological therapy. Cancer vaccines may be designed to encourage the patient's immune system to recognize cancer cells. Cancer vaccines may be designed to treat existing cancers (therapeutic vaccines) or to prevent the development of cancer (prophylactic vaccines). Therapeutic vaccines may be injected in a person after cancer is diagnosed. These vaccines may stop the growth of existing tumors, prevent cancer from recurring, or eliminate cancer cells not killed by prior treatments. Cancer vaccines given when the tumor is small may be able to eradicate the cancer. On the other hand, prophylactic vaccines are given to healthy individuals before cancer develops. These vaccines are designed to stimulate the immune system to attack viruses that can cause cancer. By targeting these cancer-causing viruses, development of certain cancers may be prevented. For example, cervarix and gardasil are vaccines to treat human papilloma virus and may prevent cervical cancer. Therapeutic vaccines may be used to treat melanoma, lymphoma, leukemia, and cancers of the brain, breast, lung, kidney, ovary, prostate, pancreas, colon, and rectum. Cancer vaccines can be used in combination with other anti-cancer therapies.


Gene therapy is another example of a biological therapy. Gene therapy may involve introducing genetic material into a person's cells to fight disease. Gene therapy methods may improve a patient's immune response to cancer. For example, a gene may be inserted into an immune cell to enhance its ability to recognize and attack cancer cells. In another approach, cancer cells may be injected with genes that cause the cancer cells to produce cytokines and stimulate the immune system.


In some instances, biological therapy includes nonspecific immunomodulating agents. Nonspecific immunomodulating agents are substances that stimulate or indirectly augment the immune system. Often, these agents target key immune system cells and may cause secondary responses such as increased production of cytokines and immunoglobulins. Two nonspecific immunomodulating agents used in cancer treatment are bacillus Calmette-Guerin (BCG) and levamisole. BCG may be used in the treatment of superficial bladder cancer following surgery. BCG may work by stimulating an inflammatory, and possibly an immune, response. A solution of BCG may be instilled in the bladder. Levamisole is sometimes used along with fluorouracil (5-FU) chemotherapy in the treatment of stage III (Dukes' C) colon cancer following surgery. Levamisole may act to restore depressed immune function.


Photodynamic therapy (PDT) is an anti-cancer treatment that may use a drug, called a photosensitizer or photosensitizing agent, and a particular type of light. When photosensitizers are exposed to a specific wavelength of light, they may produce a form of oxygen that kills nearby cells. A photosensitizer may be activated by light of a specific wavelength. This wavelength determines how far the light can travel into the body. Thus, photosensitizers and wavelengths of light may be used to treat different areas of the body with PDT.


In the first step of PDT for cancer treatment, a photosensitizing agent may be injected into the bloodstream. The agent may be absorbed by cells all over the body but may stay in cancer cells longer than it does in normal cells. Approximately 24 to 72 hours after injection, when most of the agent has left normal cells but remains in cancer cells, the tumor can be exposed to light. The photosensitizer in the tumor can absorb the light and produces an active form of oxygen that destroys nearby cancer cells. In addition to directly killing cancer cells, PDT may shrink or destroy tumors in two other ways. The photosensitizer can damage blood vessels in the tumor, thereby preventing the cancer from receiving necessary nutrients. PDT may also activate the immune system to attack the tumor cells.


The light used for PDT can come from a laser or other sources. Laser light can be directed through fiber optic cables (thin fibers that transmit light) to deliver light to areas inside the body. For example, a fiber optic cable can be inserted through an endoscope (a thin, lighted tube used to look at tissues inside the body) into the lungs or esophagus to treat cancer in these organs. Other light sources include light-emitting diodes (LEDs), which may be used for surface tumors, such as skin cancer. PDT is usually performed as an outpatient procedure. PDT may also be repeated and may be used with other therapies, such as surgery, radiation, or chemotherapy.


Extracorporeal photopheresis (ECP) is a type of PDT in which a machine may be used to collect the patient's blood cells. The patient's blood cells may be treated outside the body with a photosensitizing agent, exposed to light, and then returned to the patient. ECP may be used to help lessen the severity of skin symptoms of cutaneous T-cell lymphoma that has not responded to other therapies. ECP may be used to treat other blood cancers, and may also help reduce rejection after transplants.


Additionally, photosensitizing agent, such as porfimer sodium or Photofrin®, may be used in PDT to treat or relieve the symptoms of esophageal cancer and non-small cell lung cancer. Porfimer sodium may relieve symptoms of esophageal cancer when the cancer obstructs the esophagus or when the cancer cannot be satisfactorily treated with laser therapy alone. Porfimer sodium may be used to treat non-small cell lung cancer in patients for whom the usual treatments are not appropriate, and to relieve symptoms in patients with non-small cell lung cancer that obstructs the airways. Porfimer sodium may also be used for the treatment of precancerous lesions in patients with Barrett esophagus, a condition that can lead to esophageal cancer.


Laser therapy may use high-intensity light to treat cancer and other illnesses. Lasers can be used to shrink or destroy tumors or precancerous growths. Lasers are most commonly used to treat superficial cancers (cancers on the surface of the body or the lining of internal organs) such as basal cell skin cancer and the very early stages of some cancers, such as cervical, penile, vaginal, vulvar, and non-small cell lung cancer.


Lasers may also be used to relieve certain symptoms of cancer, such as bleeding or obstruction. For example, lasers can be used to shrink or destroy a tumor that is blocking a patient's trachea (windpipe) or esophagus. Lasers also can be used to remove colon polyps or tumors that are blocking the colon or stomach.


Laser therapy is often given through a flexible endoscope (a thin, lighted tube used to look at tissues inside the body). The endoscope is fitted with optical fibers (thin fibers that transmit light). It is inserted through an opening in the body, such as the mouth, nose, anus, or vagina. Laser light is then precisely aimed to cut or destroy a tumor.


Laser-induced interstitial thermotherapy (LITT), or interstitial laser photocoagulation, also uses lasers to treat some cancers. LITT is similar to a cancer treatment called hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. During LITT, an optical fiber is inserted into a tumor. Laser light at the tip of the fiber raises the temperature of the tumor cells and damages or destroys them. LITT is sometimes used to shrink tumors in the liver.


Laser therapy can be used alone, but most often it is combined with other treatments, such as surgery, chemotherapy, or radiation therapy. In addition, lasers can seal nerve endings to reduce pain after surgery and seal lymph vessels to reduce swelling and limit the spread of tumor cells.


Lasers used to treat cancer may include carbon dioxide (CO2) lasers, argon lasers, and neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers. Each of these can shrink or destroy tumors and can be used with endoscopes. CO2 and argon lasers can cut the skin's surface without going into deeper layers. Thus, they can be used to remove superficial cancers, such as skin cancer. In contrast, the Nd:YAG laser is more commonly applied through an endoscope to treat internal organs, such as the uterus, esophagus, and colon. Nd:YAG laser light can also travel through optical fibers into specific areas of the body during LITT. Argon lasers are often used to activate the drugs used in PDT.


For patients with high test scores consistent with systemic disease outcome after prostatectomy, additional treatment modalities such as adjuvant chemotherapy (e.g., docetaxel, mitoxantrone and prednisone), systemic radiation therapy (e.g., samarium or strontium) and/or anti-androgen therapy (e.g., surgical castration, finasteride, dutasteride) can be designated. Such patients would likely be treated immediately with anti-androgen therapy alone or in combination with radiation therapy in order to eliminate presumed micro-metastatic disease, which cannot be detected clinically but can be revealed by the target sequence expression signature.


Such patients can also be more closely monitored for signs of disease progression. For patients with intermediate test scores consistent with biochemical recurrence only (BCR-only or elevated PSA that does not rapidly become manifested as systemic disease only localized adjuvant therapy (e.g., radiation therapy of the prostate bed) or short course of anti-androgen therapy would likely be administered. For patients with low scores or scores consistent with no evidence of disease (NED) adjuvant therapy would not likely be recommended by their physicians in order to avoid treatment-related side effects such as metabolic syndrome (e.g., hypertension, diabetes and/or weight gain), osteoporosis, proctitis, incontinence or impotence. Patients with samples consistent with NED could be designated for watchful waiting, or for no treatment. Patients with test scores that do not correlate with systemic disease but who have successive PSA increases could be designated for watchful waiting, increased monitoring, or lower dose or shorter duration anti-androgen therapy.


Target sequences can be grouped so that information obtained about the set of target sequences in the group can be used to make or assist in making a clinically relevant judgment such as a diagnosis, prognosis, or treatment choice.


A patient report is also provided comprising a representation of measured expression levels of a plurality of target sequences in a biological sample from the patient, wherein the representation comprises expression levels of target sequences corresponding to any one, two, three, four, five, six, eight, ten, twenty, thirty or more of the target sequences corresponding to a target selected from Table 1, Table 2, Table 6, Table 7, or Table 15, the subsets described herein, or a combination thereof. In some embodiments, the representation of the measured expression level(s) may take the form of a linear or nonlinear combination of expression levels of the target sequences of interest. The patient report may be provided in a machine (e.g., a computer) readable format and/or in a hard (paper) copy. The report can also include standard measurements of expression levels of said plurality of target sequences from one or more sets of patients with known disease status and/or outcome. The report can be used to inform the patient and/or treating physician of the expression levels of the expressed target sequences, the likely medical diagnosis and/or implications, and optionally may recommend a treatment modality for the patient.


Also provided are representations of the gene expression profiles useful for treating, diagnosing, prognosticating, and otherwise assessing disease. In some embodiments, these profile representations are reduced to a medium that can be automatically read by a machine such as computer readable media (magnetic, optical, and the like). The articles can also include instructions for assessing the gene expression profiles in such media. For example, the articles may comprise a readable storage form having computer instructions for comparing gene expression profiles of the portfolios of genes described above. The articles may also have gene expression profiles digitally recorded therein so that they may be compared with gene expression data from patient samples. Alternatively, the profiles can be recorded in different representational format. A graphical recordation is one such format. Clustering algorithms can assist in the visualization of such data.


Subtyping

The inventors of the present invention discovered multiple subtypes of prostate cancer, including, for example, ERG+; ETS+; SPINK1+; and triple-negative. Additional subtypes of prostate cancer that are useful in the methods of the present invention, include, ERG+GPR116+, ERG+GRM7+, ERG+GRM7+GPR116+, ERG+GPR116-, ETS+, MME+, VGLL3+, hetero, and NOD. Molecular subtyping is a method of classifying prostate cancers into one of multiple genetically-distinct categories, or subtypes. Each subtype responds differently to different kinds of treatments, and some subtypes indicate a higher risk of recurrence. As described herein, each subtype has a unique molecular and clinical fingerprint.


Differential expression analysis one or more of the targets listed in Table 1, Table 2, Table 6, Table 7, or Table 15 allow for the identification of the molecular subtype of a prostate cancer.


In some instances, the molecular subtyping methods of the present invention are used in combination with other biomarkers, like tumor grade and hormone levels, for analyzing the prostate cancer.


Clinical Associations and Patient Outcomes

Molecular subtypes of the present invention have distinct clinical associations. Clinical associations that correlate to molecular subtypes include, for example, preoperative serum PSA, Gleason score (GS), extraprostatic extension (EPE), surgical margin status (SM), lymph node involvement (LNI), and seminal vesicle invasion (SVI).


In some embodiments, molecular subtypes of the present invention are used to predict patient outcomes such as biochemical recurrence (BCR), metastasis (MET) and prostate cancer death (PCSM) after radical prostatectomy.


Treatment Response Prediction

In some embodiment, the molecular subtypes of the present invention are useful for predicting response to Androgen Deprivation Therapy (ADT) following radical prostatectomy.


In other embodiments, the molecular subtypes of the present invention are useful for predicting response to Radiation Therapy (RT) following radical prostatectomy.


EXAMPLES
Example 1: Development and Validation of a Genomic Classifier to Predict ERG Status in Prostate Cancer Tissue

A genomic classifier to predict ERG status in prostate cancer tissue was developed as follows. Prostate tumor tissue specimens were obtained from 252 patients who underwent radical prostatectomy for prostate cancer (252 training samples). Total RNA was extracted from the prostate cancer tissue samples. The extracted RNA was amplified, labeled and hybridized to Human Exon 1.0 ST microarrays (Affymetrix, Santa Clara, Calif.) covering 1.4 million probesets that were summarized to ˜22,000 core-level gene expression profiles. The SCAN algorithm was used for individual patient profile pre-processing and normalization.


A Random Forrest (RF) supervised model (m-ERG) to predict ERG rearrangement status as assessed by fluorescence in situ hybridization (FISH-ERG) was developed using the gene expression profiles obtained above. The m-ERG model generated scores ranging from 0 to 1, with higher scores indicating increased likelihood of ERG rearrangement presence. Based on cut-off optimization methods, a m-ERG score above 0.6 was used to define m-ERG+ profiles.


Informative probesets on the microarray for the m-ERG predictor were identified through a multi-step procedure. As shown in FIG. 1, clustering analysis of expression the 132 probesets mapping to the ERG locus demonstrated that they are highly informative of FISH-ERG status and probesets were highly correlated (see FIG. 2). These 132 probesets were filtered by removing redundant and non-informative features (e.g., not expressed above background) and then used to train a random forests (RF) classifier for predicting FISH-ERG status. The final model used the expression values of 3 ERG locus and 2 low expressing probesets predicting ERG rearrangement and predicted FISH-ERG status with an AUC of 0.98 in the training set.


These results showed that a genomic classifier of the present invention could be utilized to predict ERG status in prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having prostate cancer.


Another series of experiments were performed to validate the ERG status genomic classifier developed above. Total RNA was extracted from 155 prostate cancer tissue samples with known FISH-ERG information (155 validation samples) and gene expression profiles were obtained as described above. In the validation samples (n=155 profiles, not used for training m-ERG), the m-ERG model had an AUC of 0.94 and an overall accuracy of 95% (FIG. 3).


Next, the m-ERG genomic classifier was tested in another cohort where matched prostate cancer (PCa) and non-neoplastic radical prostatectomy (RP) specimen profiles were available for 48 patients. This analysis demonstrated the specificity of the m-ERG for PCa, with none of the non-neoplastic specimens being classified as m-ERG+(see FIG. 4). Technical replicates from 30 patients from a different cohort demonstrated near perfect correlation (R2=0.99), demonstrating the reproducibility of the model (FIG. 5).


The m-ERG genomic classifier was also evaluated in replicate assays from a panel of four commonly used prostate cancer cell lines profiled in the MSKCC study. VCAP cells, which endogenously over-express ERG due to TMPRSS2:ERG fusion, were classified as m-ERG+, while PC3, LNCaP and DU145 cells (known ERG rearrangement negative cells) were classified as m-ERG− (data not shown).


These results showed that a genomic classifier of the present invention could be utilized to predict ERG status in prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having prostate cancer.


Example 2: Development of ETV1, ETV4, ETV5, FLI1 and SPINK1 Microarray-Based Classification Models in Prostate Cancer Patients

Microarray-based genomic classifiers for ETV1, ETV4, ETV5, FLI1 and SPINK1 status for prostate cancer tissue was developed as follows. To classify patient samples using the microarray-based expression of ETV1, ETV4, ETV5, FLI1 and SPINK1 genes, unsupervised gene outlier analysis method was applied to the core probesets expression for each gene. The outlier analysis method was applied on the entire discovery cohort in Example 1 to define expression threshold to classify each sample as an outlier (or not) for each gene, and then use the defined threshold to classify the remaining samples from the evaluation cohorts. Patients with outlier profiles were annotated as m-ETS+(m-ETV1+, m-ETV4+, m-ETV5+ or m-FLI1+) or m-SPINK1+.


Heatmaps of ETV1 (FIG. 6A), ETV4 (FIG. 6B), ETV5 (FIG. 6C) and SPINK1 (FIG. 6D) exon/intron expression showed that a subset of patients have overexpression of some exons from each gene. Outlier analysis was first performed for a single cohort (Discovery samples) to define outlier thresholds or cut-point expression level for each gene, which was then applied to classify the patients in the remaining evaluation cohorts (FIG. 7). As shown in Table 1 below, for the Discovery samples, microarray outlier analysis classified 5% (n=31), 1.7% (n=10), 0.5% (n=3), 1% (n=5) and 7.7% (n=45) as m-ETV1+, m-ETV4+, m-ETV5+, m-FLI+ and m-SP1NK1+.









TABLE 1







Distribution of assigned molecular PCa subtype across the discovery


(n = 580) and evaluation (N = 997) samples.










Discovery
Evaluation



(n samples)
(n samples)















Subtype





m-ERG+
268
430



m-ETS+
49
99



m-ETV1+
31
71



m-ETV4+
10
7



m-ETV5+
3
20



m-FLI1+
5
1



m-SPINK1+
45
74



TripleNeg
214
361



Conflict cases



m-ERG+/m-ETV1+
4
21



m-ERG+/m-ETV4+
1
1



m-ERG+/m-ETV5+
0
5



m-ERG+/m-FLI1+
0
4



m-ERG+/m-SPINK1+
3
7










These results showed that a genomic classifier of the present invention could be utilized to predict ERGm ETV1, ETV4, ETV5, FLI1 and SPINK1 status in prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 3: Molecular Subtyping of Prostate Cancer Patients Using Genomic Classifiers

The microarray-based classifiers for ERG, ETS (ETV1, ETV4, ETV5 and FLI1) and SPINK1 were used to subtype 1,577 prostate cancer patients as follows. Tumor profiles with high m-ERG score (m-ERG+) and m-ETV1−, m-ETV4−, m-ETV5−, m-FLI1− and m-SPINK1− were classified as m-ERG+ subtype. Profiles that were m-ETV1+, m-ETV4+, m-ETV5+ or m-FLI1+ and m-ERG− were classified as m-ETS+ subtype, and those that were m-SPINK1+ and m-ERG− were classified as m-SPINK1+ subtype. Finally, patient profiles that are m-ERG−, m-ETV1−, m-ETV4−, m-ETV5−, m-FLI1− and m-SPINK1− were classified as the ‘triple negative’ subtype. The four subtypes from this step were used to characterize the clinical and molecular characteristics of each subtype.


Overall, microarray outlier analysis classified 46% (n=738), 8% (n=102), 1% (n=17), 1.6% (n=23), 0.6% (n=6) and 8.4% (n=119) as m-ERG+, m-ETV1+, m-ETV4+, m-ETV5+, m-FLI+ and m-SPINK1+, respectively; 36.5% (n=575) lacked any outlier expression and were considered TripleNeg. Additionally, 3% (n=46) of patient profiles had outlier expression for two or more markers, which were defined as conflict cases. To focus on cases with clearly defined subtypes, the conflict cases were removed and the four ETS family members were collapsed into one group, generating four molecular subtypes with an overall prevalence of 45%, 9%, 8% and 38% for m-ERG+, m-ETS+, m-SPINK1+ and TripleNeg, respectively.


These results showed that a genomic classifier of the present invention could be utilized to predict ERG, ETV1, ETV4, ETV5, FLI1 and SPINK1 status in prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 4: Clustering of Prostate Cancer Molecular Subtypes

The following study was carried out to determine if m-ETS+ and m-SPINK1+ subtypes represent distinct molecular entities or are best classified as m-ERG+ and TripleNeg. Transcriptome-wide differential expression analysis was performed to identify 360 probesets with AUC>0.7 for discriminating m-ERG+ and TripleNeg. Using these 360 probesets to cluster all the patients (n=1531 excluding conflict cases) using fuzzy c-means clustering technique, with a c value=2 (number of clusters), all the m-SPINK1+ samples clustered with TripleNeg, whereas m-ETS+ samples clustered with both m-ERG+ and TripleNeg. When the number of clusters was varied from c=3-5, m-SPINK1+ tumors consistently clustered with TripleNeg tumors. In contrast, m-ETS+ tumors were distributed across clusters that had both m-ERG+ and TripleNeg tumors. To quantify how similar or different m-SPINK1+ and m-ETS+ subtypes are to m-ERG+ and TripleNeg, the distance between each m-SPINK1+ or m-ETS+ sample and the centroids of m-ERG+ and TripleNeg subtypes were calculated (based on the expression profile of the 360 top discriminatory probesets). These results showed that 98% (117/119) of m-SPINK1+ tumors had cluster distances closer to the TripleNeg centroid. In contrast, 35% of m-ETS+ tumors (48/139) had cluster distances closer to the m-ERG+ centroid, while 65% of m-ETS+ tumors were closer to the TripleNeg centroid (FIG. 8).


Results revealed that most m-SPINK1+PCa cluster with TripleNeg based on global and supervised gene expression, unlike m-ETS+PCa, which shared molecular overlap with both TripleNeg and m-ERG+ subtypes. These findings highlight important clinical differences between m-ERG+ and other m-ETS+PCa, as well as overall similarity between m-SPINK1+ and TripleNeg PCa. These results suggest at least three general molecular subtypes for prostate cancer: m-ERG+; m-ETS+; and m-SPINK1+/TripleNeg.


The most predictive genes for each subtype were defined based on AUC for discrimination of each subtype from the others. As shown in Table 2 below, 76, 15, 14 and 3 genes had an AUC>0.7 for m-ERG+, m-ETS+, m-SP1NK1+, and TripleNeg, respectively. Heatmap of these discriminatory genes across all samples demonstrated two main dendrogram branches corresponding to m-ERG+ and Triple Negative predictive genes. m-ETS+ tumors shared expression pattern of m-ERG+ predictive genes but also uniquely expressed a subset of genes, while the m-SPINK1+ tumors share a highly similar expression pattern with TripleNeg PCa (FIG. 9).


Further analysis identified TDRD1, CACNA1D, NCALD and HLA-DMB as the most specific m-ERG+ genes (AUCs=0.83-0.90). FAM65B and AMACR are the most predictive genes of m-ETS+ subtype with AUC of 0.76 and 0.74 respectively. Other genes that are specific for m-ETS+ subtype include SLC61A1 and FKBP10.


These results showed that the methods and markers of the present invention are useful for predicting ERG, ETV1, ETV4, ETV5, FLI1 and SPINK1 status in prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.












TABLE 2







m-ERG+
m-ETS+
m-SPINK1+
TripleNeg














Gene
AUC
Gene
AUC
Gene
AUC
Gene
AUC

















TDRD1
0.91
FAM65B
0.76
HPGD
0.83
TFF3
0.71


CACNA1D
0.89
AMACR
0.75
FAM3B
0.76
ALOX15B
0.70


NCALD
0.84
ZNF385B
0.74
MIPEP
0.73
MON1B
0.70


HLA-DMB
0.83
CDK19
0.73
NCAPD3
0.73


KCNH8
0.82
ARHGAP18
0.73
INPP4B
0.73


PDE3B
0.81
IL5RA
0.73
ANPEP
0.73


PLA2G7
0.79
SLC16A1
0.73
TFF3
0.71


CSGALNACT1
0.79
CNTLN
0.72
IL31RA
0.71


PART1
0.78
FKBP10
0.72
EHHADH
0.71


HES1
0.78
SLC45A2
0.71
RP11-45B20.2
0.71


F3
0.78
CLIP1
0.70
CCDC141
0.71


GPR110
0.77
HEXB
0.70
RLN1
0.71


SH3RF1
0.77
NEFH
0.70
ABHD2
0.70


PDE8B
0.77
ODZ1
0.70
SCIN
0.70


SEPT9
0.76
SS18L2
0.70


CRISP3
0.76


AMD1
0.76


KCNG3
0.76


PLA1A
0.76


MYO6
0.76


FRK
0.76


GPR110
0.76


SH3YL1
0.76


ACER3
0.75


C8orf4
0.75


GHR
0.75


ITPR1
0.74


KHDRBS3
0.74


NPY
0.74


GUCY1A3
0.74


ARHGDIB
0.74


LAMC2
0.73


VWA2
0.73


ZNF432
0.73


MORN1
0.73


CYorf15B
0.73


AMPD3
0.72


QDPR
0.72


HDAC1
0.72


KIF16B
0.72


GJB1
0.72


ITPR3
0.72


ZNF615
0.72


ANKRD6
0.72


APOD
0.72


STEAP4
0.72


RGS17
0.72


MAP7
0.72


C22orf36
0.72


NKAIN1
0.71


CHN2
0.71


LRRFIP1
0.71


SERGEF
0.71


ATP8A2
0.71


NDRG1
0.71


CDC42SE1
0.71


LUZP2
0.71


HNF1B
0.71


TFAP2A
0.71


ANKRD34B
0.71


SLC12A2
0.71


PRAC
0.71


SLC5A4
0.71


ACSL3
0.71


CD24P4
0.71


DNASE2B
0.71


SLC22A3
0.71


ODC1
0.71


SMOC2
0.71


UGDH
0.70


DSC2
0.70


WNK2
0.70


RAB3B
0.70


FAM198B
0.70


KCNC2
0.70


SNAP91
0.70









Example 5: Clinical Associations of Prostate Cancer Molecular Subtypes

Clinical associations of prostate cancer molecular subtypes of the present invention were determined. On univariable analysis, race, preoperative PSA, Gleason score (GS), extraprostatic extension (EPE) and seminal vesicle invasion (SVI) status were non-uniformly distributed across microarray defined subtypes (Table 3). Multinomial multivariable analysis was used to compare subtypes to each other on the basis of clinical and pathological characteristics (Table 4). Compared to TripleNeg, m-ERG+PCa was associated with lower pre-operative PSA (OR=0.47, p<0.001) and lower Gleason score (OR=0.43, p<0.001), but nearly twice as likely to have EPE (OR=1.80, p<0.001) and nearly five times more likely to occur in men of European ancestry (p<0.001) (Table 4). The m-ETS+ subtype was more likely to have SVI compared to both TripleNeg (OR=2.27, p=0.004) or m-ERG+PCa (OR=1.96, p=0.01) (Table 4). Both TripleNeg and m-SPINK1+ tumors had significantly higher preoperative PSA (OR=2.12, p<0.001 and OR=1.73, p=0.05, respectively) and higher Gleason scores (OR=2.3, p<0.001 and OR=3.0, p<0.001, respectively), and were more common in African American patients (OR=5.44, p=0.002 and OR=16.87, p<0.001, respectively) compared to m-ERG+ tumors. Interestingly, m-SPINK1+ is significantly associated with lack of SMS compared to m-ERG+(OR=0.58, p=0.006). These clinicopathologic associations are consistent with the genomic analysis above that demonstrates that m-SPINK1+ and TripleNeg are highly similar, while m-ERG+ and m-ETS+ share distinct features.


These results showed that the molecular subtypes of the present invention have distinct clinical associations. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.














TABLE 3






m-
m-
m-




Parameter
ERG+
ETS+
SPINK1+
TripleNeg
p-value




















Race







Caucasian
46%
 9%
8%
38%
0.005**


Black/
22%
13%
15% 
50%


African


American


Others
40%
 7%
13% 
40%


Patient age
63[37-79]
62[43-78]
65[47-76]
64[40-78]


(yrs)#


Pre-Op PSA


<10 ng/mL
49%
 8%
8%
36%
0.003*


10-20 ng/mL
46%
10%
9%
35%


>20 ng/mL
34%
10%
8%
49%


Path GS


<=6
47%
 8%
7%
38%
<0.001*


7
51%
 9%
7%
33%


8
34%
11%
10% 
46%


>=9
34%
11%
9%
46%


EPE


positive
49%
10%
6%
35%
<0.001**


negative
39%
 8%
9%
43%


SVI


positive
45%
14%
6%
36%
0.001**


negative
45%
 7%
9%
40%


SM


positive
46%
10%
7%
39%
0.24**


negative
44%
 9%
9%
39%


LNI


positive
43%
13%
6%
37%
0.28**


negative
45%
 9%
8%
39%






#except for median and range for age.



Pre-OP PSA = pre-operative serum PSA; Path GS = pathologic Gleason score at prostatectomy; EPE = extraprostatic extension; SVI = seminal vesicle invasion; SM = surgical margin status; LNI = lymph node involvement.


*Results from Chi-squared text.


**Results from Fisher's exact text.






















TABLE 4










m-ERG+ OR
MVA
m-ETS+ OR
MVA
m-SPINK+ OR
MVA
ANOVA



Variable
Estimate (95% CI)
pvalue
Estimate (95% CI)
pvalue
Estimate (95% CI)
pvalue
p - value






















Reference:
Pre-Op PSA
0.47
(0.33-0.68)
<0.001
0.48
(0.26-0.88)
0.021
0.81
(0.44-1.51)
0.42
<0.001


TripleNeg
Race(Black/
0.18
(0.07-0.52)
0.002
0.21
(0.03-1.6)
0.12
3.10
(1.23-7.82)
0.02
<0.001



African American)



EPE
1.80
(1.34-2.41)
<0.001
1.23
(0.75-2.01)
0.34
0.76
(0.46-1.26)
0.37
<0.001



SVI
1.16
(0.83-1.62)
0.24
2.27
(1.35-3.82)
0.004
0.84
(0.47-1.53)
0.51
0.01



PathGS < 7
0.96
(0.61-1.51)
0.93
0.75
(0.31-1.81)
0.58
0.89
(0.39-2.04)
0.79
<0.001



PathGS > 7
0.43
(0.32-0.6)
<0.001
0.75
(0.45-1.26)
0.46
1.31
(0.78-2.21)
0.39
<0.001



SMS
1.18
(0.89-1.56)
0.29
1.27
(0.79-2.04)
0.53
0.69
(0.42-1.12)
0.13
0.13



Age
1
(0.98-1.02)
0.71
0.97
(0.94-1)
0.045
1.01
(0.97-1.05)
0.62
0.24



LNI
1.27
(0.77-2.11)
0.42
1.6
(0.78-3.27)
0.22
1.16
(0.49-2.76)
0.73
0.60




















m-ETS+ OR
MVA
m-SPINK+ OR
MVA
TripleNeg OR
MVA
ANOVA



Variable
Estimate (95% CI)
pvalue
Estimate (95% CI)
pvalue
Estimate (95% CI)
pvalue
p - value






















Reference:
Pre-Op PSA
1.01
(0.54-1.88)
0.92
1.73
(0.91-3.27)
0.05
2.12
(1.47-3.06)
<0.001
<0.001


m-ERG+
Race(Black/
1.12
(0.13-9.88)
0.61
16.87
(5.13-55.48)
<0.001
5.44
(1.94-15.29)
0.002
<0.001



African American)



EPE
0.68
(0.42-1.11)
0.13
0.42
(0.25-0.7)
0.001
0.56
(0.41-0.75)
<0.001
<0.001



SVI
1.96
(1.18-3.24)
0.01
0.73
(0.4-1.32)
0.37
0.86
(0.62-1.2)
0.24
0.014



PathGS < 7
0.78
(0.33-1.85)
0.5
0.93
(0.41-2.13)
0.96
1.04
(0.66-1.64)
0.93
<0.001



PathGS > 7
1.74
(1.05-2.88)
0.05
3.01
(1.77-5.13)
<0.001
2.30
(1.68-3.15)
<0.001
<0.001



SMS
1.08
(0.68-1.72)
0.91
0.58
(0.36-0.95)
0.006
0.85
(0.64-1.12)
0.29
0.12



Age
0.97
(0.94-1)
0.08
1.01
(0.98-1.05)
0.71
1
(0.98-1.02)
0.71
0.23



LNI
1.25
(0.62-2.53)
0.59
0.91
(0.38-2.17)
0.57
0.78
(0.47-1.3)
0.42
0.60





OR = odds ratio; CI = confidence interval; Pre-OP PSA = pre-operative serum PSA (reference: <20 ng/mL); Race (reference: Caucasian); EPE = extraprostatic extension; SVI = seminal vesicle invasion; PathGS = pathologic Gleason score at prostatectomy (reference: Gleason score 7); SMS = surgical margin status; LNI = lymph node involvement.






Example 6: Impact of Prostate Cancer Molecular Subtyping on Prognosis

To determine the impact of molecular subtyping on prognosis, the ability of the subtypes to predict patient outcomes such as biochemical recurrence (BCR), metastasis (MET) and prostate cancer death (PCSM) after radical prostatectomy was assessed (see Table 5). ROC analysis showed that the subtypes discriminate for survival endpoints (AUC˜0.5). Likewise, the prognostic biomarker panel Decipher shows similar discrimination (as measured by AUC metric) for metastasis in all four subtypes (FIG. 10). Other prognostic signatures such as CCP, GPS and the Penney et al. signature which can be derived from global gene expression data, showed similar discrimination for metastasis in all subtypes except GPS, which was not discriminative in the m-SPINK+ subtype (FIGS. 11A-C). Kaplan-Meier analyses failed to show significant differences in time to events for BCR (FIG. 12A) and metastasis (FIG. 12B) endpoints between the subtypes. However, a trend toward significance was observed with the Triple Negative subtype patients having worse PCSM than the other subtypes (FIG. 12C).


These results showed that the molecular subtypes of the present invention are useful for prognosing prostate cancer and they set up the basis for further subtyping of prostate cancer. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.












TABLE 5





Parameter
AUC for BCR
AUC for MET
AUC for PCSM


















m-ERG+
0.49
0.48
0.46


m-ETS+
0.5
0.5
0.51


m-SPINK1+
0.49
0.5
0.51


TripleNeg
0.5
0.5
0.52


Path GS
0.66
0.73
0.74


Pre-PSA
0.62
0.59
0.58









Example 7: Development of Microarray-Based Classifiers for MME (CD10), BANK1, LEPREL1 (P3112), VGLL3, NPR3, TTN, OR4K7P, OR4K6P, POTEB2, RP11-403B2.10, and FABP5P7 in Prostate Cancer Patients

Microarray-based genomic classifiers for MME (CD10), BANK1, LEPREL1 (P3H2), VGLL3, NPR3, TTN, OR4K7P, OR4K6P, POTEB2, RP11-403B2.10, and FABP5P7 status for prostate cancer tissue was developed as follows. An outlier analysis method was applied on the entire discovery cohort as described in Examples 1 and 2. This allowed for the identification of outlier genes expressed in the TripleNeg or m-SPINK+ subtypes but not expressed in the m-ERG+ or m-ETS+ subtypes. Defined expression thresholds were used to classify each sample as an outlier (or not) for each gene. The defined thresholds were also used to classify the remaining samples from the evaluation cohorts (n=1305 pooled from 7 cohorts). Based on this method, we identified 11 genes with outlier profiles in the TripleNeg or m-SPINK+ subtypes. Beeswarm plots (FIG. 13) show the overexpression of the 11 genes in TripleNeg (green) and m-SPINK1+(cyan) subtype patients. The percentage of the 11 outliers ranged from 6% up to 18% across all patients (see Table 6). Between the TripleNeg and m-SPINK+ subgroups, around 70% were assigned to a subgroup.












TABLE 6







Percent (%) of outliers
Percent (%) of outliers in



in Discovery (n = 545)
Evaluation (n = 1305)




















MME
5.50
11.34



BANK1
6.24
7.20



LEPREL1
6.79
8.74



VGLL3
8.26
21.69



NPR3
6.61
5.36



OR4K7P
5.32
7.13



OR4K6P
8.81
5.52



POTEB2
4.77
15.63



RP11
2.57
11.65



TTN
6.61
10.96



FAP5
7.89
9.27



GPR116
8.81
8.43










Percent of samples with outlier profile for each gene in the discovery and evaluation set.


These results showed that a genomic classifier of the present invention could be utilized to predict MME (CD10), BANK1, LEPREL1 (P3H2), VGLL3, NPR3, TTN, OR4K7P, OR4K6P, POTEB2, RP11-403B2.10, and FABP5P7 status in prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 8: Development of GPR116 Microarray-Based Classifier in Prostate Cancer Patients

A microarray-based genomic classifier for GPR116 status for prostate cancer tissue was developed as follows. The outlier analysis method was applied on the entire discovery cohort as described in Examples 1 and 2. Outlier genes expressed in the m-ERG+ subset were identified. A threshold was defined to classify patients as an outlier (or not) and then the defined threshold was used to classify the remaining samples from the evaluation cohorts (n=1305 pooled from 7 cohorts).


One gene (GPR116) was identified as an outlier profile in the m-ERG+ subgroup. Beeswarm plots (see FIG. 13) showing the overexpression of the GPR116 in m-ERG+(red) patients. Out of the 1,850 prostate cancer patients, 8.5% were GPR116+, making up to 20% of the m-ERG+ subgroup.


These results showed that a genomic classifier of the present invention could be utilized to predict GPR116 status in ERG+ prostate cancer subjects. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 9: Outlier Genes are ERG-Negative Specific and are not Mutually Exclusive

The outlier expression of the 11 genes in Example 7 is nearly mutually exclusive as between ERG and ETS. However, they are not mutually exclusive with each other based on expression data from HuEx array (see FIG. 14A). OR4K7P and OR4K6P were highly correlated and patients with OR4K7P outlier expression were also OR4K6P outlier. Similarly, POTEB2 and RP11-403B2 were highly correlated and are located close to each other on Ch15 q11.


Similar results from RNAseq (see FIG. 14B) data obtained from TCGA data using cbioportal online tools showed that overexpression of MME, BANK1, LEPREL1, VGLL3, NPR3, TTN were mutually exclusive with ERG and ETV1 overexpression supporting that results from the Human exon platform.


These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 10: Prognostic Impact of Individual Gene Outliers

To characterize the clinical utility of the gene outliers, survival analysis using Kaplan-Meiers and logrank test in three case-cohorts (MC II, n=232), (JHMI-RP, n=262) and (JHMI-BCR, n=213) was performed. Table 7 shows logrank p-values of the 12 gene outliers in the three cohorts. MME outliers (overexpression) showed to be associated with worse prognosis of metastasis after radical prostatectomy (RP) in the cohorts. VGLL3 outliers were significantly associated with better prognosis (FIG. 15).













TABLE 7







MC II
JHMI-
JHMI-



(n = 232)
RP(n = 262)
BCR(n = 213)




















TripleNeg
MME
0.00003
0.04
0.0007



BANK1
0.44
0.87
0.04



LEPREL1
0.99
0.74
0.97



VGLL3
0.024
0.011
0.0026



NPR3
0.36
0.016
0.045



OR4K6P
0.16
0.54
0.25



OR4K7P
0.37
0.96
0.033



POTEB2
0.6
0.25
0.54



RP11.403
0.85
0.033
0.82



TTN
0.22
0.37
0.1



FABP5P7
0.86
0.2
0.57


ERG+
GPR116
0.00082
0.047
0.18











    • Prognostic values of the 12 outlier genes across all patients in each cohort.





These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 11: Subgroups Based on Outliers in the SPINK1 and TripleNeg Subtypes

Additional subgroups were identified for the four molecular subtypes identified in Examples 1 and 2 above. FIG. 16A shows subgrouping for m-ERG+ based on GPR116 expression. The m-SPINK1+ and TripleNeg subtypes were sub-grouped into four groups: VGLL3+; MME+; hetero (SPINK1+, BANK1+, LEPREL1+, TTN+, POTEB2+, OR4K7P+, OR4K6P+, FABP5P7+, NPR1+, RP11-403B2+); and NOD (no outlier detected). TripleNeg and m-SPINK+ were combined as they were shown to be molecularly and clinically similar (see Examples 4 and 5). Genes (MME, VGLL3) were used to group the patients into four groups. FIG. 16B shows a flowchart for subgrouping prostate cancer patients into seven clinically distinct subgroups (ERG+GPR116+, ERG+GPR116-, ERG-ETS+, ERG-VGLL3+, ERG-MME+, ERG− hetero, and NOD).


These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 12: VGLL3+ Group is Associated with Favorable Outcome

Based on survival analysis in the TripleNeg/m-SPINK+ subgroups in three case cohorts, VGLL3+ was associated with better outcome whereas NOD and hetero group showed no improvement (FIG. 17). These results suggest that VGLL3+ have a protective role in patients lacking the ERG, ETV1, ETV4 and ETV5 fusions. In univariable analysis, VGLL3+ was shown to be an independent prognostic biomarker of favorable outcome in the TripleNeg/SPINK+ subgroup (OR:0.5, p=0.049) (see Table 8). Additional clinical associations with the VGLL3+ subgroup demonstrated that VGLL3+ is associated with lack of SVI (OR:0.4, p=0.005) with reference to NOD and associated with lower pre-PSA (OR: 0.48, p=0.005) and lower path GS (OR: 0.43, p<0.001) with reference to hetero group (see Table 9).












TABLE 8







95%





Confidence
p-


Variable
Estimate
Interval
value


















hetero (Ref: NOD)
0.825
0.443-1.536
0.543


MME+(Ref: NOD)
2.978
1.123-7.898
0.028


VGLL3+(Ref: NOD)
0.508
0.258-0.998
0.049


LNI
1.592
 0.72-3.523
0.251


SVI
2.242
1.222-4.113
0.009


EPE
1.231
0.706-2.148
0.464


SMS
1.118
0.664-1.883
0.675


Pre-Op PSA (Ref <20)
1.058
0.579-1.936
0.854


PathGS 4 + 3 (Ref: 6 or 3 + 4)
2.22
0.906-5.442
0.081


PathGS >7 (Ref: 6 or 3 + 4)
5.091
2.754-9.411
<0.001









MVA of clinical variables and subtypes in the TripleNeg/SPINK+ subgroup.












TABLE 9









Reference (NOD)
Reference (Hetero)















95% Confidence
p-

95% Confidence
p-


Variable
Estimate
Interval
value
Estimate
Interval
value
















LNI
0.55
0.27-1.14
0.108
0.59
0.29-1.2 
0.142


SVI
0.5
0.31-0.81
0.005
0.66
0.41-1.08
0.101


EPE
0.95
0.64-1.43
0.82
0.85
0.57-1.26
0.406


SMS
0.88
 0.6-1.31
0.537
0.84
0.57-1.23
0.367


Pre-Op PSA (Ref < 20)
1.18
0.68-2.04
0.567
0.48
0.29-0.8 
0.005


PathGS 4 + 3 (Ref: 6 or
1.06
0.62-1.83
0.823
0.78
0.45-1.35
0.371


3 + 4)


PathGS > 7 (Ref: 6 or
1.04
0.65-1.68
0.866
0.43
0.27-0.69
<0.001


3 + 4)


Age
1.01
0.98-1.04
0.446
0.98
0.95-1.01
0.268


Race (Ref: Caucasian)
1.2
 0.7-2.08
0.507
0.62
0.35-1.1 
0.099









UVA of clinical associations with VGLL3+ subgroup with reference to NOD and hetero.


These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 13: MME+ Subgroup is Associated with Unfavorable Outcome

Patients with MME+ were significantly associated with metastasis outcome (FIG. 17). MME+ defined a very aggressive subset of patients lacking the ERG and ETS gene fusions. MME+ was an independent prognostic marker in the TripleNeg/SPINK subset (OR:2.9, p=0.03) (see Table 8) suggesting that incorporating MME+ with ERG-based classifiers would define a very aggressive subtype of patients that require immediate post-operative therapy. UVA of clinical association with MME+ in the TripleNeg/SPINK1 (Table 10) showed that MME+ is associated with high path GS (OR:7.5, p<0.001) with reference to NOD, and associated with SVI (OR:1.9, p=0.04) and lower pre-PSA (OR:0.05, p=0.05), higher path GS (OR:3.15, p=0.003) and SVI (OR:2.5, p=0.003) with reference to hetero. These results suggest that MME+ and VGLL3+ defined subtypes, within the TripleNeg/SPINK subgroups, that are clinically and molecularly distinct.












TABLE 10









Reference (NOD)
Reference (Hetero)















95% Confidence
p-

95% Confidence
p-


Variable
Estimate
Interval
value
Estimate
Interval
value
















LNI
1.15
 0.5-2.65
0.747
1.31
0.57-3.02
0.519


SVI
1.88
1.03-3.43
0.038
2.48
1.36-4.51
0.003


EPE
1.42
0.77-2.6 
0.261
1.17
0.65-2.09
0.598


SMS
0.75
0.42-1.33
0.32
0.72
0.41-1.25
0.241


Pre-Op PSA (Ref < 20)
1.02
0.47-2.22
0.961
0.47
0.22-1  
0.051


PathGS 4 + 3 (Ref: 6 or
1.61
0.56-4.66
0.378
1.16
 0.4-3.31
0.786


3 + 4)


PathGS > 7 (Ref: 6 or
7.52
 3.41-16.63
<0.001
3.15
1.47-6.73
0.003


3 + 4)


Age
0.98
0.94-1.02
0.348
0.95
0.91-0.99
0.028


Race (Ref: Caucasian)
2.31
0.96-5.56
0.063
1.09
0.54-2.2 
0.801










UVA of clinical associations with MME+ subgroup with reference to NOD and hetero.


These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 14: Hetero Group is Associated with Unfavorable Clinical Variables

Based on univariate analysis in the TripleNeg/SPINK1+ subgroup (Table 11), the hetero subgroup was associated with lack of SVI (OR:0.67, p=0.059), higher pre-PSA (OR:2.2, p=0.001) and higher gleason grade (OR:2.16, p=0.001). These results suggest that the hetero group is associated with unfavorable clinical variables confirming that it is clinical distinct from the NOD group.












TABLE 11







95%





Confidence
p-


Variable
Estimate
Interval
value


















LNI
0.97
0.54-1.76
0.923


SVI
0.67
0.44-1.02
0.059


EPE
1.23
0.84-1.8 
0.293


SMS
1.04
0.73-1.5 
0.815


Pre-Op PSA (Ref <20)
2.2
1.37-3.52
0.001


PathGS 4 + 3 (Ref: 6 or 3 + 4)
1.36
0.76-2.42
0.297


PathGS >7 (Ref: 6 or 3 + 4)
2.16
1.39-3.35
0.001


Age
1.02
0.99-1.05
0.232


Race (Ref: Caucasian)
1.79
1.01-3.18
0.046









UVA of clinical associations with hetero subgroup with reference to NOD


These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 15: GPR116 Defines an Aggressive Subset of ERG+ Patients

Patients with high GPR116 are a subset of ERG+ patients. We clinically characterized the association between GPR116 expression and metastasis in ERG+ subgroup. GPR116 positive prostate cancer samples were highly associated with metastasis in MC II (FIG. 18A) and GPR116 status was an independent prognostic biomarker (OR:1.7, p=0.11) (Table 12). UVA of clinical variables associated with GPR116 in ERG+ showed that GPR116+ is associated with EPE (OR:1.8, p=0.008) and higher Gleason Score (GS) (OR:1.57, p=0.05) (Table 13).












TABLE 12







95%





Confidence
p-


Variable
Estimate
Interval
value


















GPR116+ (Ref: GPR116−)
1.742
0.877-3.459
0.113


LNI
2.352
0.987-5.604
0.054


SVI
1.39
0.721-2.681
0.325


EPE
1.056
0.535-2.085
0.875


SMS
0.824
0.444-1.529
0.54


Pre-Op PSA (Ref <20)
1.325
0.546-3.212
0.534


PathGS 4 + 3 (Ref: 6 or 3 + 4)
5.582
 2.335-13.347
<0.001


PathGS >7 (Ref: 6 or 3 + 4)
13.011
 5.907-28.658
<0.001









MVA of GPR116 and clinical variables in ERG+ after adjusting for treatment












TABLE 13







95%





Confidence
p-


Variable
Estimate
Interval
value


















LNI
0.72
0.37-1.41
0.338


SVI
0.83
0.53-1.3 
0.414


EPE
1.79
1.16-2.76
0.008


SMS
0.77
0.53-1.12
0.177


Pre-Op PSA (Ref <20)
0.98
0.54-1.79
0.951


PathGS 4 + 3 (Ref: 6 or 3 + 4)
1.22
0.68-2.18
0.501


PathGS >7 (Ref: 6 or 3 + 4)
1.57
  1-2.47
0.053


Age
0.99
0.97-1.02
0.708


Race (Ref: Caucasian)
0.11
0.02-0.83
0.032











    • UVA of clinical variables associated with GPR116 in the ERG+ subset





Example 16: GPR116 is a Predictive Biomarker of ADT Failure in ERG+ Patients

Evaluation of the prognosis of GPR116+ in ERG+ subset with hormonal (ADT) treatment in MCII dataset showed that patients with GPR116+ developed metastasis unlike GPR116− (see FIG. 19A). However, in patients with ERG+ that did not receive hormonal therapy from the same cohorts, GPR116+ was not associated with metastasis (FIG. 19B). To further confirm this observation, we evaluated the survival analysis of GPR116 in ERG+ in natural history cohorts with no treatment till the time of metastasis and found that GPR116 is not associated with metastasis (JHMI-RP: FIG. 19C & JHMI-BCR: FIG. 19D). Additionally, we found that GPR116+ is an independent prognostic biomarker in ERG+ with hormonal treatment (OR:5.1, p=0.02) (Table 14). When we evaluated the interaction between treatment and GPR116 in ERG+ after adjusting for clinical variables and found that the interaction is very significant (OR: 40, p=0.005) (FIGS. 20A and 20B). These results suggest that GPR116 is a predictive biomarker of ADT failure in the ERG+ subgroup and it adds independent prognostic information for metastasis in the ERG+ patients treated with ADT.












TABLE 14







95%





Confidence
p-


Variable
Estimate
Interval
value


















GPR116+ (Ref: GPR116−)
5.136
 1.285-20.525
0.021


LNI
2.075
0.646-6.66 
0.22


SVI
0.438
0.141-1.361
0.153


EPE
0.649
0.201-2.098
0.47


SMS
0.794
0.236-2.668
0.709


Pre-Op PSA (Ref <20)
1.075
 0.29-3.981
0.914


PathGS 4 + 3 (Ref: 6 or 3 + 4)
1.167
0.201-6.78 
0.863


PathGS >7 (Ref: 6 or 3 + 4)
10.976
 1.926-62.549
0.007









MVA of GPR116 and clinical variables in ERG+ treated with hormonal therapy


Example 17: GPR116 and GRM7 are Overexpressed in ERG+ Prostate Cancers

GPR116 and GRM7 status for subtyping prostate cancer tissue was assessed as follows. The outlier analysis method was applied on a single cohort of 2,293 prostate cancer samples as described in Examples 1 and 2. Outlier genes expressed in the ERG+ subset were identified. A threshold was defined to classify patients as an outlier (or not) and then the defined threshold was used to classify the remaining samples from the cohort (n=2,293).


Two genes (GPR116 and GRM7) were identified as an outlier profile in the ERG+ subgroup (Table 15). Out of the 2,293 prostate cancer patients, 42% were ERG+. Beeswarm plots (FIGS. 21A and 21B) show the overexpression of GPR116 and GRM7 in ERG+ patients. From these, 22% showed high-expression of GPR116+ and 21% showed high expression of GRM7+, and 8% of ERG+ samples showed increased expression of GRM7 and GPR116. GPR116 and GRM7 defined a subgroup of 35% of the ERG+ samples.












TABLE 15







Subtype
Gene









ERG+
GPR116



ERG+
GRM7












    • Two outlier genes in ERG+ subgroup.





These results showed that GPR116 and GRM7 status could be used to identify ERG+ prostate cancer subjects. These results further showed that methods and markers of the present invention could be used to subtype prostate cancer. These results suggested that the methods and markers of the present invention would be useful for diagnosing, prognosing, determining the progression of cancer, or predicting benefit from therapy in a subject having cancer.


Example 18: Listing of Targets

Table 16 is a listing of the sequences for the targets in Table 1, Table 2, Table 6, Table 7 and Table 15 and for targets having a sequence of SEQ ID NOs: 1-3348.












TABLE 16





SEQ ID





NO.
Gene
Probeset
Sequence


















1
BANK1
2737595
CCCTAGGAGTATGTGTAAAACTTGT





2
BANK1
2737595
GTTAACTAGAGTCCTACACCCTAGG





3
BANK1
2737595
CCGTAGTGATGAAGGTTAACTAGAG





4
BANK1
2737595
GAGTCCTACACCCTAGGAGTATGTG





5
BANK1
2737594
TGTTTGGTGAATGAGAACTTAAGAG





6
BANK1
2737594
GTGAATGAGAACTTAAGAGAAGATC





7
BANK1
2737594
ATTGTTTGGTGAATGAGAACTTAAG





8
BANK1
2737594
TCTTAATTGTTTGGTGAATGAGAAC





9
BANK1
2737670
CTTTGACGGGTGTTACTTTTATTCA





10
BANK1
2737670
CCTTTGACGGGTGTTACTTTTATTC





11
BANK1
2737621
GTCCGTTCCCCGAACCCTCGGGCCT





12
BANK1
2737621
GGTCGTCGCGGTCCGTTCCCCGAAC





13
BANK1
2737621
GTCGCGGTCCGTTCCCCGAACCCTC





14
BANK1
2737621
TACGACGGTCGTCGCGGTCCGTTCC





15
BANK1
2737619
ACTCGGGGCCCCGACGCAAAGGACT





16
BANK1
2737619
CTCGGGGCCCCGACGCAAAGGACTC





17
BANK1
2737619
TACTCGGGGCCCCGACGCAAAGGAC





18
BANK1
2737613
GAAAGACGACTAAATCAATGGGTAC





19
BANK1
2737613
AAAGACGACTAAATCAATGGGTACC





20
BANK1
2737613
GTGAAAGACGACTAAATCAATGGGT





21
BANK1
2737613
AGAGACGAATAGGTCGAAGTGAAAG





22
BANK1
2737649
ATACTTCTCCTATAACGGAGTAAAA





23
BANK1
2737649
AATACTTCTCCTATAACGGAGTAAA





24
BANK1
2737649
TACTTCTCCTATAACGGAGTAAAAG





25
BANK1
2737636
ACGAAGTTACAAGTCCTCGTTGGAC





26
BANK1
2737636
TAACGACTTTCCGTACCAGTGTTTC





27
BANK1
2737636
GGGCGTGTATAACGACTTTCCGTAC





28
BANK1
2737636
AGAGGTGACACGTCGTTTTAAACCG





29
BANK1
2737652
GCGGCGCTGGACATCGATTACGGAA





30
BANK1
2737652
CCTTTCTGGAGTGAAGTGGAATGGT





31
BANK1
2737652
GGTCATACTACTGAACATACACAAG





32
BANK1
2737652
ACAAGTAAGGACCACGACTAGGTCT





33
BANK1
2737668
TGAGTGGTAACACGTGGTAGGTCCA





34
BANK1
2737668
TATTTGAGTGGTAACACGTGGTAGG





35
BANK1
2737668
ATTTGAGTGGTAACACGTGGTAGGT





36
BANK1
2737620
AGGTCCATCGCGAGCCGCCCGTCGT





37
BANK1
2737620
AGAGACCGGCCCTCTCAGGTCCATC





38
BANK1
2737620
ACGCGTCCGGGGAGCCGAAGTTGGC





39
BANK1
2737620
TCTTTTAGCGCCCCTCAGAGACCGG





40
BANK1
2737650
TTCTGTATGCCCGTCTCACGTCTAC





41
BANK1
2737650
GTAGTACTTTCGTCCTTCTGTATGC





42
BANK1
2737650
CTTTCGTCCTTCTGTATGCCCGTCT





43
BANK1
2737650
GTCCTTCTGTATGCCCGTCTCACGT





44
BANK1
2737661
TGAGAGTCCCCGACAGATTGACTAC





45
BANK1
2737661
CCCGACAGATTGACTACCAGTCCTT





46
BANK1
2737661
GACAGATTGACTACCAGTCCTTCTT





47
BANK1
2737661
GAGTCCCCGACAGATTGACTACCAG





48
BANK1
2737628
TAATCTTGTGCCGGTCGGGAAACCT





49
BANK1
2737628
ATGTAGTTCATTATTCGCGTAATCT





50
BANK1
2737628
TCTCTACTTCATTAACCACTATGAC





51
BANK1
2737628
CATTATTCGCGTAATCTTGTGCCGG





52
BANK1
2737624
TCTTTAAGTCGGATAAGAAACAAAA





53
BANK1
2737624
AACGACCAAAACGAACGTAGACTAC





54
BANK1
2737624
CGAACGTAGACTACTCATCTTTAAG





55
BANK1
2737624
CCTGATGAACGAACGACCAAAACGA





56
BANK1
2737651
TTTGTGTCGGGTGATCTCCAACCGT





57
BANK1
2737612
GGTCTCGATACCACGTTTTCCGCCC





58
BANK1
2737612
TCGATACCACGTTTTCCGCCCCAGC





59
BANK1
2737612
TTCCGCCCCAGCGATCCCGGTGAGT





60
BANK1
2737612
GAGGGTCTCGATACCACGTTTTCCG





61
BANK1
2737674
GTCTCAAGGTCAGTAATAACAATGT





62
BANK1
2737674
AAATTCATCGACCAAGTAAAAGACT





63
BANK1
2737674
CCCGTGATTGGAGTTGTCTAATAAG





64
BANK1
2737674
GTCTCTTCAATTTACGCCACATCGT





65
BANK1
2737656
GACCCTCAGCCAGAAAGTAATATTT





66
BANK1
2737656
GTACTATAACCGGTTAGACTCATAT





67
BANK1
2737656
ATGAAAACGACTCTAACTACTGTCA





68
BANK1
2737656
CTCCTTTGATGTGGAATGTATCGAG





69
BANK1
2737672
ACTTTGAGTGCTTAGATGCCTGTAA





70
BANK1
2737672
AATATTACTTTGAGTGCTTAGATGC





71
BANK1
2737672
GTGCTTAGATGCCTGTAAAACGAAA





72
BANK1
2737672
GATGCCTGTAAAACGAAAGTCCCAC





73
BANK1
2737675
CATTTAAATATTCTTAATCGGTTAT





74
BANK1
2737675
ATTTAAATATTCTTAATCGGTTATT





75
BANK1
2737675
GGTTATTTTAACGAAGAGCCGGAAA





76
BANK1
2737675
ATCGGTTATTTTAACGAAGAGCCGG





77
BANK1
2737627
AGTTGTAAGGTTGTCTGGATGCTCG





78
BANK1
2737627
ACCACGAAGGGTGACTTTAAGGTAC





79
BANK1
2737627
GCTCGTTTTGTAAGACCCCTTTATT





80
BANK1
2737627
TCTTTGTGGTATGGTGATCGTCACC





81
BANK1
2737655
TCTTCAGTTTTGACCCCAGTAGGAC





82
BANK1
2737655
CCCAGTAGGACCACAATCTGTTCTT





83
BANK1
2737655
CCAGTAGGACCACAATCTGTTCTTT





84
BANK1
2737630
CTACCTTAGCAATTTCGATGTTGGT





85
BANK1
2737630
GTTACAGATGACACTACCTTAGCAA





86
BANK1
2737630
GTTTCCTTACGGATAAGTCTTACCG





87
BANK1
2737630
CGGATAAGTCTTACCGTCTAAGTCC





88
BANK1
2737671
CTTAAACCAAAGACAACGTTCTTTC





89
BANK1
2737671
ACGAGCTGGGGTTCAACTTTTCCTT





90
BANK1
2737671
GGACGAGCTGGGGTTCAACTTTTCC





91
BANK1
2737671
CAAAGACAACGTTCTTTCTAGTAAT





92
BANK1
2737673
TCGCTTAAGTATGATACTGTCGTCT





93
BANK1
2737673
GGACGAAGTATACCCATATAATGAT





94
BANK1
2737673
ACGAGAGAAATTTCGCTTAAGTATG





95
BANK1
2737673
TTCGAACTTAAACCTAACGGACGAG





96
BANK1
2737625
CTACCCTCTAGAGTTGACTTGTCCT





97
BANK1
2737625
CTCAACGACTTGAATTGCAGAATGT





98
BANK1
2737625
GGACAATATAGCGAACCTCTTAAAG





99
BANK1
2737625
GAGAAAAGCCGTAAACCTCAACGAC





100
BANK1
2737634
GAACTACCACAGGAATGTAGGTATA





101
BANK1
2737634
AAGTTTGTACTCTATGGTATAATAC





102
BANK1
2737634
TAATACTCAAGGTCAGAGAAGTTTG





103
BANK1
2737634
CAGGAATGTAGGTATAAGTTTGTAC





104
BANK1
2737658
TACTGTTCAAGACACCAGAAGGATT





105
BANK1
2737658
CTGTCGGTCTTCTGTTAGACTACTA





106
BANK1
2737663
CTTAGTACATCTTAGGGACCGCAAC





107
BANK1
2737663
TATGTGTACACAAATCCACGTCTGG





108
BANK1
2737663
CCGTGGTGACCATCCTCTCTAGACA





109
BANK1
2737663
CCGTCGTCGTTTGGTAGTGATACAT





110
BANK1
2737611
ACACAGGTAGCGAGAGTCTCGTCGA





111
BANK1
2737664
TGTTGATGCTCTGACGTAATAACCC





112
BANK1
2737664
TAATGCTGTTGATGCTCTGACGTAA





113
BANK1
2737664
GATGCTCTGACGTAATAACCCTTTT





114
BANK1
2737664
CTCTTTAATGCTGTTGATGCTCTGA





115
ERG
3931789
TCGACCCCAACAGTAACTCTTTAAG





116
ERG
3931789
ATCAAGTCGTGGACCAGTGTTTAGT





117
ERG
3931789
ACTCTTTAAGATCAAGTCGTGGACC





118
ERG
3931789
TCGGAGGTATAAATACGGACCTTAC





119
ERG
3931794
AAAACGACGGGGTTTGGGTATGACC





120
ERG
3931794
ACGACGGGGTTTGGGTATGACCTTA





121
ERG
3931794
ACGGGGTTTGGGTATGACCTTAAGT





122
ERG
3931794
GGGTTTGGGTATGACCTTAAGTGGT





123
ERG
3931859
GTCTGAAAACTAGAATTACCAGTTC





124
ERG
3931859
GAGTCTGAAAACTAGAATTACCAGT





125
ERG
3931859
TATCTACACTGAAACTGAGTACAAG





126
ERG
3931859
TGAAAACTAGAATTACCAGTTCACG





127
ERG
3931791
GGAAATGTCATAATGGCCCTGATAC





128
ERG
3931791
AAGGCAAACTACCTGTCGACAGTCG





129
ERG
3931791
CTGTGCTCTCTCTGACACCGGGTAG





130
ERG
3931791
ACAGTCGAAAGAGTTTGACACTTCT





131
ERG
3931797
TACTGCCTAGGGCTGCTCCACCGGG





132
ERG
3931797
ACTGCCTAGGGCTGCTCCACCGGGC





133
ERG
3931797
GCCTAGGGCTGCTCCACCGGGCCGC





134
ERG
3931797
GCGGGAGGCAATGATGATACTGTTC





135
ERG
3931785
GGTCAGGTCCAATAATCGTTCAGAA





136
ERG
3931785
TGAACCTATTAGTGAGTCAAGAGAG





137
ERG
3931785
CAAGAGAGAAGTTCTGACAGAGTAC





138
ERG
3931785
ATTGTACTATTATGACTCAAGGAAG





139
ERG
3931832
CTACTTGATGCCGTCGATGTACCTC





140
ERG
3931832
ACCCGTCGGGTCTGTGGCAACCCTA





141
ERG
3931832
GCTCGCGTCTCAATAGCACGGTCGT





142
ERG
3931832
GGTTTGTACTGGTGCTTGCTCGCGT





143
ERG
3931783
GTCCACGTCGTCTCTACCGATGTCG





144
ERG
3931783
TCCACGTCGTCTCTACCGATGTCGA





145
ERG
3931790
AAAGGAAACTCAGCGCTTGCGACAC





146
ERG
3931790
ATGCTCAACTAGAGCCGGTCGGTTT





147
ERG
3931790
TTAGTGCGTCCGTAAAACCCATCCG





148
ERG
3931790
CGAACCGGATCGTACCGTTTAGTCT





149
ERG
3931798
GACCTCGAGGACAGCCTGTCGAGGT





150
ERG
3931798
ACAGCCTGTCGAGGTTGAGGTCGAC





151
ERG
3931798
CAGCCTGTCGAGGTTGAGGTCGACG





152
ERG
3931798
TCGAGGACAGCCTGTCGAGGTTGAG





153
ERG
3931782
AGCACTCCACTGATTAATCTCTTAT





154
ERG
3931782
TTATTTCAGCACTCCACTGATTAAT





155
ERG
3931782
ACGTCGCGGGGTTTCACTGGGTAAC





156
ERG
3931782
TTCGATCAAATAAATCGAAGAGTAA





157
ERG
3931824
ACCGGAAGGTCTGCAGTTGTAGAAC





158
ERG
3931824
AATAAGGTCTTGTAGCTACCCTTCC





159
ERG
3931824
TCATGTCTGGTACACGCCGTCACCG





160
ERG
3931824
CACGTTCTACTGGTTCCTGCTGAAG





161
ERG
3931793
GAAGAGTAGACCCGTGAATGATGAT





162
ERG
3931793
GGAAGAGTAGACCCGTGAATGATGA





163
ERG
3931787
AGATCTCAGTCAAAGGGACCCGTAG





164
ERG
3931787
GGACTACAACGACCGATAGGGAACT





165
ERG
3931787
ACGCTTCCGCGATCGGCTTTGTAGA





166
ERG
3931787
GTCCTCGAGAGTGATCCATCTGTCG





167
ERG
3931812
CTCTAGTCGGACCTGGCCAGTGCCG





168
ERG
3931812
GTGCCGGTGGGGTGCGGGGTCAGCT





169
ERG
3931812
TAGTCGGACCTGGCCAGTGCCGGTG





170
ERG
3931812
AAATGGTATACTCGGGGGGTCCTCT





171
ERG
3931792
TCCCTCAATGACTTCAGAATGATGT





172
ERG
3931792
CTCCGAAAAGGGTAGTCGCACGTAA





173
ERG
3931792
ACCTGTATAGTAGACACCTGACTGG





174
ERG
3931792
GGTAGCGGTGTTTGAGATAGCCTCT





175
ERG
3931819
ACGGGATTCAGTGCACTATGTTTCT





176
ERG
3931819
GACGGAGACAACTAAACCTCTGATT





177
ERG
3931819
ACAGGACGACTCTAGGCACGGGATT





178
ERG
3931819
CTTCGGTCAGGGTCTGTCAGAATAA





179
ERG
3931809
TGTTCATCGGCGGAACGTTTAGGTC





180
ERG
3931809
CTGGTTGTTCATCGGCGGAACGTTT





181
ERG
3931809
TAAGAACCTGGTTGTTCATCGGCGG





182
ERG
3931809
GAATAGTCTAAGAACCTGGTTGTTC





183
ERG
3931796
CAAGCTGAAGGTGCCCTAGCGGGTC





184
ERG
3931796
GATGTTCAAGCTGAAGGTGCCCTAG





185
ERG
3931796
GGTACCCTTCGCGATGCGGATGTTC





186
ERG
3931796
CGATGCGGATGTTCAAGCTGAAGGT





187
ERG
3931786
CACTTCAACGGTTTGGAGACACGAC





188
ERG
3931786
ACGGGCATAGAGGAATCCCTTTTAT





189
ERG
3931786
GAAACTTCAGCCGTCCTGTGCTAAT





190
ERG
3931786
GCCTCGGGTTGGTAGGTAGTAAAAC





191
ERG
3931810
GTTTTGACTTCTGGTCGCAGGAGTC





192
ERG
3931810
ACGGGTTTTGACTTCTGGTCGCAGG





193
ERG
3931810
GGTTTTGACTTCTGGTCGCAGGAGT





194
ERG
3931810
CGGGTTTTGACTTCTGGTCGCAGGA





195
ERG
3931849
AACAAACTCACACGGATGCCTTGCG





196
ERG
3931849
CAAACTCACACGGATGCCTTGCGGT





197
ERG
3931849
AACACTCACTCCTGGTCAGCAACAA





198
ERG
3931849
TCACTCCTGGTCAGCAACAAACTCA





199
ERG
3931850
ATATGTACGATTGATTCCGTCGACG





200
ERG
3931850
GTACGATTGATTCCGTCGACGGATG





201
ERG
3931850
GGATGGAACCGGCCGTCCATCCGTC





202
ERG
3931850
TTGTTAGATATGTACGATTGATTCC





203
ERG
3931820
AAAAGGGTTTATGAAGTCATATAGG





204
ERG
3931820
TGCGTTTCTTAATGTTGATCCGGTC





205
ERG
3931820
GACTTCGATGCGTTTCTTAATGTTG





206
ERG
3931820
TAGGACTTCGATGCGTTTCTTAATG





207
ERG
3931788
CCGTTTATTTCGCAGTACCTATCGA





208
ERG
3931788
ACCGTTTATTTCGCAGTACCTATCG





209
ERG
3931848
GAGTCGTCCTAACCGACAGAGTTGG





210
ERG
3931848
TCTGAAGGTTCTACTCGGGTGCGCA





211
ERG
3931848
AGGAGGTCGCTGATACCTGTCTGAA





212
ERG
3931848
ACCTTACATTGGGATCGGTCCACTT





213
ERG
3931833
TTGAGAGGACTACTTACGTCACACC





214
ERG
3931833
GAGGACTACTTACGTCACACCGGTT





215
ERG
3931833
TACGTCACACCGGTTTCCGCCCTTC





216
ERG
3931833
GACTACTTACGTCACACCGGTTTCC





217
ERG
3931822
AATGTTTTGAGAGGTGCCAATTACG





218
ERG
3931822
GAGAAGGTGTAAACTGAAGTCTACT





219
ERG
3931822
ACTACAACTATTTCGGAATGTTTTG





220
ERG
3931822
GCCAATTACGTACGATCTTTGTGTC





221
ERG
3931784
AGAACCGAACGGGACTACATATGAG





222
ERG
3931784
GAACAGAAGTTAACCGAAAGCCCGG





223
ERG
3931784
AAGCCCGGAACATACACCATTTTAG





224
ERG
3931784
CATGTTAGAATGAGGACGACCGTTC





225
ERG
3931860
CAACTGTTCTTAACGGGGAGGTTCT





226
ERG
3931860
TACGTGTCAACTGTTCTTAACGGGG





227
ERG
3931860
AACGGGGAGGTTCTAGAGTAACGAC





228
ERG
3931860
CTTAACGGGGAGGTTCTAGAGTAAC





229
ERG
3931795
TGTCTTCTACTTGAAACACCGCGGG





230
ERG
3931795
TCTGGAGGGCATGTACCCGAGGATA





231
ERG
3931795
AGGATAGTGCGGGTGGGTGTCTTCT





232
ERG
3931795
CTACTTGAAACACCGCGGGGTGGGA





233
ERG
3931865
TTTTGATGAAAGACCAGTCTCTCTT





234
ERG
3931865
TAGAGTAGGCGAGATTTGTTGGAGT





235
ERG
3931865
AATTGCTAGTTATTTGAACTAGCGT





236
ERG
3931865
ATGAAAGACCAGTCTCTCTTCGTTA





237
ERG
3931877
AGGGCCTGGGTCGTCGAGTATAGTT





238
ERG
3931877
CAGGGCCTGGGTCGTCGAGTATAGT





239
ERG
3931877
TCTGACAGGGCCTGGGTCGTCGAGT





240
ERG
3931877
GACAGGGCCTGGGTCGTCGAGTATA





241
ERG
3931878
CTGGGCTCCTTTCGGCACAACTGGT





242
ERG
3931878
CCTAGAAACCTCTGGGCTCCTTTCG





243
ERG
3931878
TCCTTTCGGCACAACTGGTTTTCGT





244
ERG
3931878
GAAACCTCTGGGCTCCTTTCGGCAC





245
ERG
3931893
TACTCTCTTCTCCTCGCCGCGAGTC





246
ERG
3931894
GCGACGCCCTGTCCAAGGATCTCTA





247
ERG
3931894
TTACCCCTCTCACACGTTCTCTAGC





248
ERG
3931894
GTTCTCTAGCGACGCCCTGTCCAAG





249
ERG
3931894
GATCTCTAGCGAGGCCCTGCCAGCA





250
ETV1
3039189
GGTCCGTCAAAATACTACTGTGGAC





251
ETV1
3039189
ACATACAAACTTTTCCCGGGGTCCG





252
ETV1
3039189
ATACTACTGTGGACACAACAGGGTC





253
ETV1
3039189
ACACAACAGGGTCTTTTTAAGCTAC





254
ETV1
3039191
CGGTGAGGTAAATATACTCCGTTCT





255
ETV1
3039191
GAGGTAAATATACTCCGTTCTTCCG





256
ETV1
3039191
TGAGGTAAATATACTCCGTTCTTCC





257
ETV1
3039191
GGTGAGGTAAATATACTCCGTTCTT





258
ETV1
3039211
GTTCTAGATTCAGTTAATGTCCTTT





259
ETV1
3039211
AGTTCTAGATTCAGTTAATGTCCTT





260
ETV1
3039211
TTCTAGATTCAGTTAATGTCCTTTG





261
ETV1
3039200
TGAGTATGTGGCTTTGGACTGGCCC





262
ETV1
3039200
GACTGGCCCGGAAGGGTCGAGTGGA





263
ETV1
3039200
GGTGTGGTAGGTCGTGCGGTCACAG





264
ETV1
3039200
AGGGAGGTAGCGTCAGGTATGGTCT





265
ETV1
3039217
GTCACTAAACCTATTCCGTATCAAA





266
ETV1
3039217
AGTCACTAAACCTATTCCGTATCAA





267
ETV1
3039217
AAGTCACTAAACCTATTCCGTATCA





268
ETV1
3039222
AACACTTTCTCTGCGCCTCGGTTAC





269
ETV1
3039222
CCGTCGCTAGGTAGTCAAACCTAAC





270
ETV1
3039222
TAACTGTCGGGCTTTAGACTAGAAC





271
ETV1
3039222
CGTCGTTCGGCGGACTAACTGTCGG





272
ETV1
3039213
ACACACTAGACTCCAAATGTAAGAA





273
ETV1
3039213
TAGACTCCAAATGTAAGAAAATTTC





274
ETV1
3039213
CACTAGACTCCAAATGTAAGAAAAT





275
ETV1
3039213
CACACTAGACTCCAAATGTAAGAAA





276
ETV1
3039178
CAGACCATTAGTGTAGTTCGGAAAT





277
ETV1
3039178
GTTAGAGACGAAGGTACCAGTGTAT





278
ETV1
3039178
GATCAAAGGGCATCTACGACATTGG





279
ETV1
3039178
CAATAAGTCTTGTGGCGTGCCTCCT





280
ETV1
3039187
CATATACAGAGAGATGACTGGTATC





281
ETV1
3039187
CTCCATATACAGAGAGATGACTGGT





282
ETV1
3039187
AATTCTCCATATACAGAGAGATGAC





283
ETV1
3039187
TAAAATTCTCCATATACAGAGAGAT





284
ETV1
3039179
AACAATACAGGTACTTTTCACGAAG





285
ETV1
3039179
AGAGTAACTTAACCGATGAGTTTGT





286
ETV1
3039179
ACTACTGTACAATTATGGGTTATCT





287
ETV1
3039179
CGACAAACGACAGAGAACTACTACT





288
ETV1
3039184
TACTATTTGAATCGGCAAGTGAGGC





289
ETV1
3039184
ACCGGGCTGCAACCCCGTAAGTCTT





290
ETV1
3039184
ATAATGATACTCTTTCCTTAATACG





291
ETV1
3039184
AATCGGCAAGTGAGGCGATAATGAT





292
ETV1
3039212
CTTTTAAGTAATTGTCTCTAGACCG





293
ETV1
3039212
TTAAGTAATTGTCTCTAGACCGAGT





294
ETV1
3039212
AGTAATTGTCTCTAGACCGAGTACT





295
ETV1
3039212
ATTGTCTCTAGACCGAGTACTAAGT





296
ETV1
3039182
TGTACCTTGCAGTGTAGTTGCTCCT





297
ETV1
3039182
GGGATGTTGCTTCCGATGCACATAA





298
ETV1
3039182
AGAGGTACCGGAAAGGTCTATTAGT





299
ETV1
3039182
GAAACTACTCTCGTACCGGATGTAC





300
ETV1
3039199
CAGGATACATGGTTGCGGTCTACAG





301
ETV1
3039199
ATTCGTCCTCATGGTGCTGGGTCAC





302
ETV1
3039199
CGGTCGAAAGACTTGGGACATTGAG





303
ETV1
3039199
AGGAGGAAACGGCTGCTACGGTTCC





304
ETV1
3039176
TGTTCACATATATGGCACCGATAAC





305
ETV1
3039176
ACGTATATCTGAGGTCATAATCAAT





306
ETV1
3039176
TCCATCCCAGAAAAAACGTATATCT





307
ETV1
3039176
GTCTCGAGTTGATCATGAAAATCCT





308
ETV1
3039185
TAAATTTGACTAACTCGGACTTCTC





309
ETV1
3039185
CGAGAAGACCTACTGGGAAGTTTAA





310
ETV1
3039185
GACCAGCTCCGTACCTTAAATTTGA





311
ETV1
3039185
ATGGTTGCCGCTCCTAGTGAAGTCG





312
ETV1
3039204
TGTCTTACTCTTTAGATGAGTTACT





313
ETV1
3039204
ACTTCGGACTGAATGTTGTCTTACT





314
ETV1
3039204
TTCGGACTGAATGTTGTCTTACTCT





315
ETV1
3039204
CTTCGGACTGAATGTTGTCTTACTC





316
ETV1
3039223
CGACTCCTGGGTCGCGGATGGCCGG





317
ETV1
3039223
TCCTGGGTCGCGGATGGCCGGCTCG





318
ETV1
3039223
TGGGTCGCGGATGGCCGGCTCGTGG





319
ETV1
3039223
GCGGATGGCCGGCTCGTGGGGGATC





320
ETV1
3039221
TTCACGACCCGATATTAATTACAAA





321
ETV1
3039221
TCTCCGCGAAAGCCGAAGGTTCCCC





322
ETV1
3039221
CCTTCACGACCCGATATTAATTACA





323
ETV1
3039221
CGGAAAGCGGATCGCACCGGAAGTC





324
ETV1
3039220
TGTAGCGGAGAACAAGCCTAAAAAC





325
ETV1
3039220
GTTCAGAGCAACTAGCGGTAACGAT





326
ETV1
3039220
GTGTGCAAACGCTTAGTCTCGACGG





327
ETV1
3039220
GCGCGTCCCTTTGTAGCTCTCACAT





328
ETV1
3039218
CGTTCACGGAATGTACCAGTGGTTA





329
ETV1
3039181
GAGACCGCGGTTTGACTCAGTATCC





330
ETV1
3039181
GTTCGTCCCGCAAAAACGCGAAAAG





331
ETV1
3039181
CGGTACCTGACACGTGAAATAAACT





332
ETV1
3039181
AATGCACATAGACCACGGTGGAACG





333
ETV1
3039207
CAAACATGGTCTGATAGTCCGACTT





334
ETV1
3039207
AACATGGTCTGATAGTCCGACTTTC





335
ETV1
3039207
CATGGTCTGATAGTCCGACTTTCAA





336
ETV1
3039207
TCAAACATGGTCTGATAGTCCGACT





337
ETV1
3039210
CCGTTCTTGATTACGTGGTTCTGAA





338
ETV1
3039210
AGTGTAGACGAAAACCGTTCTTGAT





339
ETV1
3039210
TGTTAGTGTAGACGAAAACCGTTCT





340
ETV1
3039210
TTACGTGGTTCTGAAGTTCAAGATT





341
ETV1
3039183
CGAGAACCAAAACCATAATGTTCGG





342
ETV1
3039183
ATTTGCGGTGTATAGTAACGTAACG





343
ETV1
3039183
GTAACGACTTCGCTCAAAAAGTGAG





344
ETV1
3039183
TCCGAAAGACCTTCCAGGATGAAAC





345
ETV1
3039209
AGAAGAAAGGTGGAACAAGTGTTGT





346
ETV1
3039209
TACGAAGTTCTAAATTCACGTTCAC





347
ETV1
3039209
TAAATTCACGTTCACAGAAGAAAGG





348
ETV1
3039209
CAGAAGAAAGGTGGAACAAGTGTTG





349
ETV1
3039202
AAAAGTACCGGACGGTGACTTTTAG





350
ETV1
3039202
AGTACCGGACGGTGACTTTTAGTTC





351
ETV1
3039202
CGAAAAGTACCGGACGGTGACTTTT





352
ETV1
3039202
AAGTACCGGACGGTGACTTTTAGTT





353
ETV1
3039214
ACGATTCTAGCCGTGACCCTTCGTT





354
ETV1
3039214
TGAGAGGGACGGACGAATTGTATTC





355
ETV1
3039214
CTAGGTAATCTGAATACATACGTAC





356
ETV1
3039214
CAACAAAACTACGACTCTATGGTAC





357
ETV1
3039201
ACGTCAGTTCTTGTCGGGAAATTTA





358
ETV1
3039201
CTCTTTTCACGGACATGTTACAGTC





359
ETV1
3039201
TCTTGTCGGGAAATTTAAGTCGATA





360
ETV1
3039201
AGACGGACGTCAGTTCTTGTCGGGA





361
ETV1
3039180
TAACCCGGTACGATTGCAATAGTGT





362
ETV1
3039180
GTCCATCTAATTATTTAGACCGTCG





363
ETV1
3039180
CATCACTGAGTGACTTGATTTATGT





364
ETV1
3039180
AAAACGACAAAATTGCATCACTGAG





365
ETV1
3039227
CTCGAAGTGACAAGTCGGAGCCCCG





366
ETV1
3039227
CGTCAAGGGCGAGTTTTACGAATAT





367
ETV1
3039227
CCCGGGTCCGCGAAGGACCTTAGAG





368
ETV1
3039227
GGAGTCTATCATGGGTACTCGAAGT





369
ETV1
3039226
TCTCCTTCACTTTCGCAGTTCATGT





370
ETV1
3039226
CGGGAGTGACGAATTGCAGGATCAA





371
ETV1
3039226
ACTTTGGGCTCGGTAGAGTGGCGAG





372
ETV1
3039226
GAATTGCAGGATCAATAACAGGAAC





373
ETV4
3758529
GGCCGGCACGCCGGCCTCCCTCGCC





374
ETV4
3758529
CCGGCACGCCGGCCTCCCTCGCCGG





375
ETV4
3758529
GGGCCGGCACGCCGGCCTCCCTCGC





376
ETV4
3758529
GGCACGCCGGCCTCCCTCGCCGGCC





377
ETV4
3758524
ATGGTCTGTCACTACTCGTCAAACA





378
ETV4
3758524
CTACTCGTCAAACAAGGACTAAAGG





379
ETV4
3758524
CAAGGACTAAAGGTAAGTCTTTTGG





380
ETV4
3758524
GTCTGTCACTACTCGTCAAACAAGG





381
ETV4
3758526
TCGAACGCGCTTCGCGACTAGCCGG





382
ETV4
3758526
TTTAGCGGGCCTTTACCCTCGAACG





383
ETV4
3758526
GCTTCGCGACTAGCCGGGCGACCCC





384
ETV4
3758526
CGGGCCTTTACCCTCGAACGCGCTT





385
ETV4
3758511
GGGCCAAACAGTCAAGAACCACGAG





386
ETV4
3758511
ACAACCCCTTTGGAAGTAGACTTTG





387
ETV4
3758511
AGGGTGACGCCCCTCTGTCTTCGGA





388
ETV4
3758511
TTCCGCGAAGGGTTGAAGTATGACC





389
ETV4
3758527
GATTCGCGGAGTCCCACTGAGCGCC





390
ETV4
3758527
GCGGAGTCCCACTGAGCGCCCGTAA





391
ETV4
3758527
TGATTCGCGGAGTCCCACTGAGCGC





392
ETV4
3758527
GTCCCACTGAGCGCCCGTAAGAGGG





393
ETV4
3758513
CGAGGCTATGATAATACTCTTTCCG





394
ETV4
3758513
AGCGAGGCTATGATAATACTCTTTC





395
ETV4
3758513
GCTATGATAATACTCTTTCCGTAGT





396
ETV4
3758513
GCGAGCGAGGCTATGATAATACTCT





397
ETV4
3758519
ACATGGAGGTGTGTCTCCCGAAGAG





398
ETV4
3758519
TACATGGAGGTGTGTCTCCCGAAGA





399
ETV4
3758516
ACGTAAAGCTCTCCCCGGCGGGATG





400
ETV4
3758516
GGTAAAGTAACGGACCTGCCCGGCC





401
ETV4
3758516
CGGCCCCTTACCTCAAGTTCGAGTA





402
ETV4
3758516
ACCTACTGGGTTGTTTACGGGTAAA





403
ETV4
3758521
TGTCTGCCTGAAGCGGATGCTGAGT





404
ETV4
3758521
CCCACCACTAGTTTGTCCTTGTCTG





405
ETV4
3758521
AGTTACCCGTGTCCATGGGTCCCCG





406
ETV4
3758521
GGACATACTTGTCCGCCCGGTCGGT





407
ETV4
3758532
CGGGCTTTTTGTTCAGCCACGCGAC





408
ETV4
3758532
CGACGCGGGCTTTTTGTTCAGCCAC





409
ETV4
3758532
GGCTTTTTGTTCAGCCACGCGACCC





410
ETV4
3758532
AGACGACGCGGGCTTTTTGTTCAGC





411
ETV4
3758531
GTCTTTGCCGCTCGGGCCGAGGACC





412
ETV4
3758531
GGGCCCATTTCGTCCCGACGTCTTT





413
ETV4
3758531
CGTCTTTCGTCTTTGCCGCTCGGGC





414
ETV4
3758531
GGCCCATTTCGTCCCGACGTCTTTC





415
ETV4
3758528
CTATGAACCTGGTCGTTCACGGGAT





416
ETV4
3758528
ACCTGGTCGTTCACGGGATGTGGAA





417
ETV4
3758528
CGGCCTATGAACCTGGTCGTTCACG





418
ETV4
3758528
TCGCCTCCTACTTTCGGCCTATGAA





419
ETV4
3758522
ACCACGGGAACCTGTCAGCGGGGAT





420
ETV4
3758522
CCTTAAAGGACTCTAGGAGACCGTG





421
ETV4
3758522
CGGTACCCATGGAGCCCCTTGTATC





422
ETV4
3758522
GGGCCCGTCTCGTTGCCTTAAAGGA





423
ETV4
3758530
GGAGGGACCTGCCACACGCTTGCGT





424
ETV4
3758530
GGACCTGCCACACGCTTGCGTCGGG





425
ETV4
3758530
CCTGCCACACGCTTGCGTCGGGGGA





426
ETV4
3758530
AGGGACCTGCCACACGCTTGCGTCG





427
ETV4
3758525
AAGGTCCTCTGCACCGAGCGACTTC





428
ETV4
3758525
AGATTCAGTGAAGGTCCTCTGCACC





429
ETV4
3758525
CCTAGATTCAGTGAAGGTCCTCTGC





430
ETV4
3758525
AGTGAAGGTCCTCTGCACCGAGCGA





431
ETV4
3758512
CCGACTCAAACTGGCCGGACAGTCA





432
ETV4
3758512
TGTCAGGGAAACAGGGTGAACCTAC





433
ETV4
3758512
AAGAGAAACCGGAAGGGCCTGTTAG





434
ETV4
3758512
CTGTTAGTCGCAGGTCGAGAGTTCC





435
ETV4
3758523
TACCGCTCGTCACGGAAATGAGGTC





436
ETV4
3758523
CGTCCTTCGGCGGTGAGGGGATGGT





437
ETV4
3758523
GTGGTACCGCTCGTCACGGAAATGA





438
ETV4
3758523
CGTGTCTGGGCCGGGACAGGACGTC





439
ETV4
3758536
GGGTCACCCTCCGGACCCTGGGACT





440
ETV4
3758536
TACCGGGTCACCCTCCGGACCCTGG





441
ETV4
3758536
CCGGACCCTGGGACTTCTCTCGGGT





442
ETV4
3758536
CGGACCCTGGGACTTCTCTCGGGTC





443
ETV5
2709148
TTGATAACTGTCCTAACACAGGTGG





444
ETV5
2709148
TGATAACTGTCCTAACACAGGTGGA





445
ETV5
2709169
ACTCGTCGGGAAGTACTATTTTAGG





446
ETV5
2709169
GGGAATAGGACTAACGCACTAGGTC





447
ETV5
2709169
TAACGCACTAGGTCACACTCGTCGG





448
ETV5
2709169
CACTCGTCGGGAAGTACTATTTTAG





449
ETV5
2709182
ACCATAATCTCTGCGACTTTCGTGG





450
ETV5
2709182
TTCACCATAATCTCTGCGACTTTCG





451
ETV5
2709182
TTACGACTTTGGAGAGTTTCACCAT





452
ETV5
2709182
ACGACTTTGGAGAGTTTCACCATAA





453
ETV5
2709181
TGCCCAAAATACTAGTCGTTCAGGG





454
ETV5
2709181
AAAATACTAGTCGTTCAGGGAAAAT





455
ETV5
2709181
TACCTGCCCAAAATACTAGTCGTTC





456
ETV5
2709181
CCAAAATACTAGTCGTTCAGGGAAA





457
ETV5
2709134
GTGCCAACGTAAGGGTAACCTGAGT





458
ETV5
2709134
ACCGGTACACTTTCGGGCGGAACAA





459
ETV5
2709134
GACGGTTCGACGCAATATAAGACAT





460
ETV5
2709134
TCCCGGCACGGTTGAATACTTCTGT





461
ETV5
2709175
CAAGGACTACTACTTGTCAAACAGG





462
ETV5
2709175
GACTACTACTTGTCAAACAGGGTCT





463
ETV5
2709175
CTACTACTTGTCAAACAGGGTCTAA





464
ETV5
2709175
AGGACTACTACTTGTCAAACAGGGT





465
ETV5
2709153
TGAGGGTACTAGAGTAACACGGTGA





466
ETV5
2709153
TCACCCCTGGTGGTTTAACAGATTC





467
ETV5
2709153
TTTAACAGATTCGTCTCCACTCGAC





468
ETV5
2709153
GTTTTGAGGGTACTAGAGTAACACG





469
ETV5
2709177
AGTCCTAGAGTCAGTTGAAGTTCTC





470
ETV5
2709177
TAGAGTCAGTTGAAGTTCTCCGAAC





471
ETV5
2709177
GAGTCAGTTGAAGTTCTCCGAACCA





472
ETV5
2709177
TCAGTTGAAGTTCTCCGAACCAATC





473
ETV5
2709135
ACCGAAAGGGCCTATTGGTCGCAGG





474
ETV5
2709135
TGGTCGCAGGCAAGGACTTCCGTCT





475
ETV5
2709135
AATGGAGGACCTGTACCTGGCGACG





476
ETV5
2709135
CCTCTCGCTATGCAGATGTTTAAAC





477
ETV5
2709144
ACACAACACGGACTCTCTGACCTTC





478
ETV5
2709144
GCTAATATGAAACTGCTGTGAACAC





479
ETV5
2709144
TATGAAACTGCTGTGAACACAACAC





480
ETV5
2709144
GGGCTAATATGAAACTGCTGTGAAC





481
ETV5
2709139
GACTCGGCGAGAGAGGCGATAATGA





482
ETV5
2709139
CTCGGCGAGAGAGGCGATAATGATA





483
ETV5
2709139
GCGATAATGATACTTTTCCCGTAGT





484
ETV5
2709139
GGCGATAATGATACTTTTCCCGTAG





485
ETV5
2709154
ACTACGGACTTTTGGTCATAGGTAG





486
ETV5
2709154
ACGGTTTCTACTACGGACTTTTGGT





487
ETV5
2709154
GGTGTCGTCGTTTGTAAACGCCAGG





488
ETV5
2709154
CCAGGGGGCTGGTGGTGTAGTCGGG





489
ETV5
2709149
TGTGCCCAAGGTCAGTGGTTACCCT





490
ETV5
2709149
GGGTCAATGGTAGCCGTTTACAGTC





491
ETV5
2709149
TCGGAGCCCTAATGACGCAGCTAAG





492
ETV5
2709149
TGAGATACTTGTACCCCAGGGCCCG





493
ETV5
2709157
TCCGAGAACCACGATTGATACCTCT





494
ETV5
2709157
CTCTTTTCACGGAGATGTTGATAAC





495
ETV5
2709157
TCGACAGCAGAACATCGGTACTCGT





496
ETV5
2709157
TCTAGTTTGCCCTCGACGTGTCGGG





497
ETV5
2709143
TCAAGTTCGACTATCTTGGCCTTCT





498
ETV5
2709143
ATGGTACATAGCTCTCCCCGGGGGA





499
ETV5
2709143
GAATGGTCTCCGCTCCAAGGGAAGT





500
ETV5
2709143
TGGGAAGAACTACTGGGTCGGTTAC





501
ETV5
2709187
CCGGGTCGGAAAGCGGGTCCGCGGG





502
ETV5
2709187
CACGCGCCTCGCCAAGTGGCAGAAG





503
ETV5
2709187
TCGCCAAGTGGCAGAAGCCTCGCCA





504
ETV5
2709187
GAAGCCTCGCCAAGCCGGGTCGGAA





505
ETV5
2709179
CTCCCGCCGGACACTAACTGTCTTT





506
ETV5
2709179
CTCCTTCAAAAACCTGTGTCTAGAC





507
ETV5
2709179
TGTCTAGACCGAGTGCTAAGACTTC





508
ETV5
2709179
ACCTGTGTCTAGACCGAGTGCTAAG





509
ETV5
2709146
AAACGAACTGATTATGGGTTCGAAT





510
ETV5
2709146
CGAACTGATTATGGGTTCGAATTTT





511
ETV5
2709146
AAGAAACGAACTGATTATGGGTTCG





512
ETV5
2709146
GAGAAAGAAACGAACTGATTATGGG





513
ETV5
2709147
AGGATGTACTCTCCCCCAATAAAGA





514
ETV5
2709147
ACGGTCAGTAGGATGTACTCTCCCC





515
ETV5
2709147
CTCCCCCAATAAAGAGGTCGTCGGT





516
ETV5
2709147
CACGGATTGACGGTCAGTAGGATGT





517
ETV5
2709168
ATTCCAGTGTCATCTCCTTCGGCGG





518
ETV5
2709168
GGACAGTAGAGATTACTCAACCCTC





519
ETV5
2709168
CCTTCGGCGGGACAGTAGAGATTAC





520
ETV5
2709168
CCAGTGTCATCTCCTTCGGCGGGAC





521
FABP5P7
3104939
CGTCGACCTTCCTTCTACCGCGGAC





522
FABP5P7
3104939
TCTACCGCGGACCACCTGTCGTTTC





523
FABP5P7
3104939
TCGTTTCCGAAACTACTTATGTACT





524
FABP5P7
3104939
AAACTACTTATGTACTTCCTCGATC





525
FABP5P7
3104943
CACTACCATTTTTGGAGTGGTATTT





526
FABP5P7
3104943
TAACATAGTAGTGAACACTACCATT





527
FABP5P7
3104943
CCCGCGTTACCGGTTCGGTCTAACA





528
FABP5P7
3104943
GGAGTGGTATTTTTGACTCTCGTGA





529
FABP5P7
3104944
AAACTTCTTTGGTGTCGACTACCGT





530
FABP5P7
3104944
TGGTGTCGACTACCGTCTTTTTGAG





531
FABP5P7
3104944
TTGGTGTCGACTACCGTCTTTTTGA





532
FABP5P7
3104944
CTTCTTTGGTGTCGACTACCGTCTT





533
FABP5P7
3104946
TGTCTACCACGTAACCAAGTCGTAG





534
FABP5P7
3104946
GACGTTGAAATGTCTACCACGTAAC





535
FABP5P7
3104946
ACAGACGTTGAAATGTCTACCACGT





536
FABP5P7
3104946
CGTTGAAATGTCTACCACGTAACCA





537
FABP5P7
3104948
CTCACACAGTACTTGTTACAGTGGA





538
FABP5P7
3104948
CACACAGTACTTGTTACAGTGGACA





539
FABP5P7
3104948
TGGACATGAGCCTAGATACTTTTTC





540
FABP5P7
3104948
ACAGTGGACATGAGCCTAGATACTT





541
FABP5P7
3374836
GAACACTACCATTTTTGGAGTGGTA





542
FABP5P7
3374836
AGACGTTGAAATGTCTACCACGTAA





543
FABP5P7
3374836
CCCGCGTTACCGGTTCGGTCTAACA





544
FABP5P7
3374836
ACCTCACACAGTACTTGTTACAGTG





545
FABP5P7
3374837
CGTCGACCTTCCTTCTACCGCGGAC





546
FABP5P7
3374837
TCGTTTCCGAAACTACTTATGTACT





547
FABP5P7
3374837
ACTACTTATGTACTTCCTCGATCCT





548
FABP5P7
3374837
TTCTACCGCGGACCACCTGTCGTTT





549
FABP5P7
3517698
ACTACTTATGTACTTCCTCGATCCT





550
FABP5P7
3517698
TCGTTTCCGAAACTACTTATGTACT





551
FABP5P7
3517698
TTCTACCGCGGACCACCTGTCGTTT





552
FABP5P7
3517698
CGTCGACCTTCCTTCTACCGCGGAC





553
FLI1
3355756
ATGGGTGGGACTCGCCGTCGGCACC





554
FLI1
3355756
GGCGTGCGTCCCGAACGCGACCGAC





555
FLI1
3355756
GGTCGACGGAGTAATTTCTCGTCGG





556
FLI1
3355756
GGACATGGGTGGGACTCGCCGTCGG





557
FLI1
3355736
CGACATTGGCCCAGTTACACACCTT





558
FLI1
3355736
GCTCCAGTCCGACATTGGCCCAGTT





559
FLI1
3355736
GACATTGGCCCAGTTACACACCTTA





560
FLI1
3355736
CAGTCCGACATTGGCCCAGTTACAC





561
FLI1
3355789
AACGTCCATTAACAACTGAAAAAAT





562
FLI1
3355789
CAATTCGACTGTTGACAGTTTCTTC





563
FLI1
3355789
TCCCTAAAAGGACGAGATATATTCG





564
FLI1
3355789
ACGAAACCTTTACGCACATTGTCAT





565
FLI1
3355735
AGCGAGGCGATGTTGTTGTTTGCAC





566
FLI1
3355735
AAAGTAGGCCAATTGACAGAGAAAG





567
FLI1
3355735
TGTTGTTTGCACGTGTCCCCTCACT





568
FLI1
3355735
GGGCTAAGCGTTTCACTTCAGTGAA





569
FLI1
3355788
TCGTATTATACGGATATCGACTTTT





570
FLI1
3355788
GTATTATACGGATATCGACTTTTCC





571
FLI1
3355788
TCAGTGACTGAATACTCTTTCGTTT





572
FLI1
3355788
TTTTCGTATTATACGGATATCGACT





573
FLI1
3355750
GAAACTGAGTCGCATGCCTCGCCGT





574
FLI1
3355750
TGTACTGACGGAGCCCCTCAGGACT





575
FLI1
3355750
GTCGGTCACTCCCAGTTGCAGTTCG





576
FLI1
3355750
ACTCGCTGCTGGTCAGGGAGAAACT





577
FLI1
3355785
CAAAGAACAGTTATGTGCCCCAAGT





578
FLI1
3355785
GTGAATGACCTACGAAACCTGAGTT





579
FLI1
3355785
CTTCGGGTAGGACGTGTGAATGACC





580
FLI1
3355785
GGTACCCGGTCATACGGTCAAACTT





581
FLI1
3355784
GTAGGTAGGAGGTACGGACAGTGAA





582
FLI1
3355784
GGTCGAAGAAACCTCGGCGTAGTGT





583
FLI1
3355784
CTCGGCGTAGTGTTATGACCTGGAG





584
FLI1
3355784
AAGTGTGAATCCGTCGATGATGATC





585
FLI1
3355765
ACAACAGTGTGGAGTCAATGGAGTC





586
FLI1
3355765
ACCCGGTATTTCCTCATGTCGAACT





587
FLI1
3355765
GGGAGATGTTGTGCCTTCACGACAA





588
FLI1
3355765
GTCGAACTACCTCTAGCTGTGTAGG





589
FLI1
3355761
GTTCTGCCCACTTAGTGAACAGTCC





590
FLI1
3355761
CATTAAGCTCTTGGTCCGACGGACC





591
FLI1
3355761
CCGTCCCTCGTAGATTTGGAAATAG





592
FLI1
3355761
ATAGACTATGAGATAAGGGACACCT





593
FLI1
3355775
GGACGAGTTACAGAGTTACCCTGAG





594
FLI1
3355775
CACAACGAAAAGTACGGTCAACGAT





595
FLI1
3355775
TTACACGAGGGTGGCGACACTACAG





596
FLI1
3355775
CCCCACTCATGTGAAGGTCTTAAAT





597
FLI1
3355778
CAGAGAGGGTAACCTTACGCTCAAG





598
FLI1
3355778
ACGCTCAAGATGGTCCTTGACGAAC





599
FLI1
3355778
TGTCGGAGTCATGGTAGTCACTACG





600
FLI1
3355778
TCGACCCAGGATGAGTGACGTAAAG





601
FLI1
3355779
CCTCCCCGTGTTTGCTAGTCATTCT





602
FLI1
3355779
GGAACCTCCCCGTGTTTGCTAGTCA





603
FLI1
3355779
CATTCTTATGTCTCGTTGCCGGGGT





604
FLI1
3355779
CCGTGTTTGCTAGTCATTCTTATGT





605
FLI1
3355777
TCCAATAGAAGACAGGGACTACTCC





606
FLI1
3355777
AGTCTGTACGTGACCAGGGTATTCG





607
FLI1
3355777
AAGGGACGAAAAACTCATCTGTAGT





608
FLI1
3355777
ACTCCGATTCAGCATGGTTAAAGGG





609
FLI1
3355786
TCCACCCTTCGAATATTAGATTAAA





610
FLI1
3355786
GTAACTAACATTCCGGTCACTTCAA





611
FLI1
3355786
AGTGGGTTGACCTTAAACTACCTTT





612
FLI1
3355786
TGACCTTGTAACTAACATTCCGGTC





613
FLI1
3355787
CACACAAATTCTGCGGTTCCCGTAA





614
FLI1
3355787
CTGGAGCCAGTGTTTTCGTCAAAAT





615
FLI1
3355787
CGTCTTAGGGAGAGTCACCTGTCAT





616
FLI1
3355787
CACGACACGCGAACAGTCTGGTAGT





617
FLI1
3355783
TAAACTGAAGGTGCCGTAACGGGTC





618
FLI1
3355783
ACTGGTTTCACGTGCCGTTTTCTAT





619
FLI1
3355783
GCCCGGGAGGCAATAATGATACTAT





620
FLI1
3355783
GCTGGCTCAGCAGGTACATGTTCAT





621
FLI1
3355776
CTTCTCCTCGAACCCCGTTATTGTA





622
FLI1
3355776
CGAACCCCGTTATTGTACTTAAGAC





623
FLI1
3355776
TCTTCTCCTCGAACCCCGTTATTGT





624
FLI1
3355776
TCCTCGAACCCCGTTATTGTACTTA





625
FLI1
3355760
CGATATACCTGCTCTTCTTACCGGG





626
FLI1
3355760
GGTTGCTCTCCTCTCAGTAGCAGGG





627
FLI1
3355760
AGGCCACCTGACGTCGCAATCGTTT





628
FLI1
3355760
GGGTACTTGATGTTGTCGATATACC





629
FLI1
3355791
CTGAGTGTCGTAACCATTGGGATCT





630
FLI1
3355791
GATTCATGGAAGATCTGTTGTACAG





631
FLI1
3355791
TCAAGGAAGTGACAATCCATCGAAT





632
FLI1
3355791
TAAACGTTCCTTAATCTGAGTGTCG





633
FLI1
3355790
TGAAAGGATAAATGAAGAACGTGAT





634
FLI1
3355790
TAAAAAGCTTACATGGATGACGTCA





635
FLI1
3355790
AGTTCTTAAAAAGCTTACATGGATG





636
FLI1
3355790
AAATGAAGAACGTGATAGTTCTTAA





637
GPR116
2955921
TTGTACTTGGTCGACCACTTCTCCG





638
GPR116
2955921
ACTTGTACTTGGTCGACCACTTCTC





639
GPR116
2955921
TGTACTTGGTCGACCACTTCTCCGT





640
GPR116
2955921
GTACTTGTACTTGGTCGACCACTTC





641
GPR116
2955916
GGATGAACTTGTCGGAGTCAAAAGG





642
GPR116
2955916
TAAAACTCGTATTTACACTGTTGTC





643
GPR116
2955916
ACCCTTATTGTGACTGGTTTAATGG





644
GPR116
2955916
GGTTTAATGGCTGTAAAACTCGTAT





645
GPR116
2955910
ACGTCAACGGAATTTCTTGACGGAG





646
GPR116
2955910
GTAACGTCAACGGAATTTCTTGACG





647
GPR116
2955910
TGACGGAGGGTTACCTGGAAAAACG





648
GPR116
2955910
TTTCTTGACGGAGGGTTACCTGGAA





649
GPR116
2955923
ACACGGAGTACAAATAACACTAAAT





650
GPR116
2955923
AATGCTCAGATGATAAGTAGGAAAC





651
GPR116
2955923
ACGTGACTTGACCTTAATGCTCAGA





652
GPR116
2955923
GGGTTCCTCTTGGTGAAACACGGAG





653
GPR116
2955912
GTTACTTCCAATCCGGATGACTGGT





654
GPR116
2955912
TGGTACCGTGATTACAGATTCGTAG





655
GPR116
2955912
TCTGACCAGTAAGTGTGTATCTCCC





656
GPR116
2955912
TTTCGGAGTCCGAGTACCTGGAGTC





657
GPR116
2955906
GTCCGAAGTTCCCGCACTGACACTG





658
GPR116
2955906
ATGGTCCGAAGTTCCCGCACTGACA





659
GPR116
2955906
CCGAAGTTCCCGCACTGACACTGTC





660
GPR116
2955906
TCCCGCACTGACACTGTCCCAAGTT





661
GPR116
2955892
TCTGTATCTAAGATCGACGTCGTCT





662
GPR116
2955892
GACTACCTTGGGTCACGGGTTCGCC





663
GPR116
2955892
CAAGTAGTCACGGATACCTCGGTCT





664
GPR116
2955892
CCAGCAGACCTTGTTGTCAGTAGAT





665
GPR116
2955881
TGTACGGTCCTAGGGCATTATCCAC





666
GPR116
2955881
GGGTAACCGCCCTGGTAGTGAATGT





667
GPR116
2955881
TCAGTAGGTCTTCGATACGGCCAAG





668
GPR116
2955881
TACGGCCAAGAGTTTGCAAGGGTCG





669
GPR116
2955884
AAGTTACGTTCGAGTCAAAGGACCA





670
GPR116
2955884
CTCGGGTAGATACTTCGACTTAGAC





671
GPR116
2955884
GTTAAAGTTACGTTCGAGTCAAAGG





672
GPR116
2955884
ACGATTATTAAGTCAGACCTCGGGT





673
GPR116
2955883
TCTTCAGTCCAAGTACACCTTTCGT





674
GPR116
2955883
TAACCCATCAAGACTTTTCCACTGC





675
GPR116
2955883
TTAGTTCCCGTTTTAATTCTTTAAC





676
GPR116
2955883
CGTCTCTCCCCGAAACCTTTTAGTT





677
GPR116
2955877
AAGTCCGCCGCTTTGCTTCACACAG





678
GPR116
2955877
CAGCCTAAGCAGATAACAGTGGTAC





679
GPR116
2955877
AGATCTTTTGAACGTCAGCCTAAGC





680
GPR116
2955877
GTGACAGTCGGTGTTATGTTGATAC





681
GPR116
2955867
CTTGTCCTATTAGGTTGGATGCACT





682
GPR116
2955917
CGGTGTTTTTCAGGATGCCGACTTC





683
GPR116
2955887
GTGCTCCTCCATAGAACTACCTCGT





684
GPR116
2955887
TTGATACTACTCCAAATAACCTTGT





685
GPR116
2955887
GGTTTCTAAAATATGGTGCTCCTCC





686
GPR116
2955887
ACTGTCAGTTCTGGAGCTGGTCCCT





687
GPR116
2955866
TACCCCTTGCACAAGAGCCCCGTCC





688
GPR116
2955866
CGTCCAAAGGCCCTCGTCTACGGTT





689
GPR116
2955866
ACGAACGTTTCGTTACCCCTTGCAC





690
GPR116
2955866
GTCCAAAGGCCCTCGTCTACGGTTT





691
GPR116
2955878
AGGGTTCGTAATGTCAGCCCTCTAT





692
GPR116
2955878
TAATGTCAGCCCTCTATCGGGAGGA





693
GPR116
2955878
TCTAAAAGGGTTCGTAATGTCAGCC





694
GPR116
2955878
ACCTTTCTAAAAGGGTTCGTAATGT





695
GPR116
2955914
GGAACCATATAGTTACCTGTGTTGT





696
GPR116
2955914
ACCATATAGTTACCTGTGTTGTTCC





697
GPR116
2955914
GAGGGAACCATATAGTTACCTGTGT





698
GPR116
2955914
GGAGGAGGGAACCATATAGTTACCT





699
GPR116
2955885
ACAAGTGGGCGACGGAGATTTCGAC





700
GPR116
2955885
AATGAAAGGTATGCCCAAGGAGTAG





701
GPR116
2955885
GTCATAACGTTGGTTTCTGCAGTAA





702
GPR116
2955885
GATTTCGACTTGTAGTACCAACTAG





703
GPR116
2955898
TGTTAGGACATAGAAACTTGACGAC





704
GPR116
2955898
ACTACACGCTGTTGTTAGGACATAG





705
GPR116
2955898
CGCTGTTGTTAGGACATAGAAACTT





706
GPR116
2955898
ACTTCCACTACACGCTGTTGTTAGG





707
GPR116
2955879
GGAACTAGACGAGAGTTGTCAAGGT





708
GPR116
2955879
CCTACTCTACGAGGGATGTATGGAC





709
GPR116
2955879
AATCGTATCTGTTTCGCCTTGTACT





710
GPR116
2955879
GGACTTCCTAGAAAGATAATCGTAT





711
GPR116
2955924
AAGAGGGAGGTGACCCGCACTCTCG





712
GPR116
2955924
GTAGACTAGTCTCGCCCTCGGTCGG





713
GPR116
2955924
CGGACTTTTGCGCTTTACTCAGAAC





714
GPR116
2955924
TACTCAGAACGAACCAAGAGGGAGG





715
GPR116
2955904
GACCTTCACACCAACACTGTATACT





716
GPR116
2955904
ACCTGATGTTGAGGAAAGTTCGTCA





717
GPR116
2955904
GGTGGTAGTGAACTCAATTATGTAT





718
GPR116
2955904
AACATGTCTCGGAGTTAGTCTGGAT





719
GPR116
2955899
GTAAAAACTTATACTCACGTTCTTC





720
GPR116
2955899
ATAATCTGTAAAAACTTATACTCAC





721
GPR116
2955900
TGTCGTCAACCTTTAGGTCTTGTCG





722
GPR116
2955900
TTGTTGTACTGAAGCCACAGGTTCG





723
GPR116
2955900
AACCGCGATACTTCTTGTCGTCAAC





724
GPR116
2955900
GTCGTCTAAGAGCTAAATGTGGCGT





725
GPR116
2955911
ACCACGAGGACGCTCTGTCCAATAC





726
GPR116
2955911
AGAGTAAACAGTTCTCGCACTGCAG





727
GPR116
2955911
ACAGTTCTCGCACTGCAGAAGGAGG





728
GPR116
2955911
GTCCAATACCCACCGGAGCCCTTTC





729
GPR116
2955874
TAAGTAAAATGAGAAACCTACGGAG





730
GPR116
2955874
AGAAACCTACGGAGACCCTAGACTT





731
GPR116
2955874
AAATGAGAAACCTACGGAGACCCTA





732
GPR116
2955874
TAATAAGTAAAATGAGAAACCTACG





733
GPR116
2955908
AGGCGGGAGATATCCAGGATGTTCT





734
GPR116
2955908
CTTCTGGAGTACTTGTGAAGGAGGC





735
GPR116
2955908
TTCTTCTGGAGTACTTGTGAAGGAG





736
GPR116
2955908
TATCCAGGATGTTCTGGCTGAACCT





737
GPR116
2955864
GTCGTTGCGATGTAACGTTTATTTT





738
GPR116
2955864
ACGTGCGTATAATCTCAATTGGTAC





739
GPR116
2955864
ACGTTTATTTTCAGGCTAGGGTTTT





740
GPR116
2955864
CAATTGGTACATGATAACTATGTCG





741
GPR116
2955865
ACAACGTGACTTCTGTCTGGGACAG





742
GPR116
2955865
GAAACCCGTCATAGAAGGACTACAG





743
GPR116
2955865
CCGAAGTTCGTCCATGAAGAGACAC





744
GPR116
2955865
TTCCGGGTTGAAGAGACAGATATAA





745
GPR116
2955872
CAAGAGGTTATAGTTCCTCTAAATT





746
GPR116
2955872
AGAGGTTATAGTTCCTCTAAATTGT





747
GPR116
2955872
TACTCAAGAGGTTATAGTTCCTCTA





748
GPR116
2955872
CTCAAGAGGTTATAGTTCCTCTAAA





749
GPR116
2955873
CGACTTATTCAAAAGTAACAGCTCT





750
GPR116
2955873
AAAAGTAACAGCTCTACCAGAAGTG





751
GPR116
2955873
TATTCAAAAGTAACAGCTCTACCAG





752
GPR116
2955873
TCGAAACGACTTATTCAAAAGTAAC





753
GPR116
2955875
ACACAAGGGTCCCTGGTTGGAACAC





754
GPR116
2955875
TAACCCCAGGAGTGTGGTGAGAACC





755
GPR116
2955875
AACGGTAGAGCCAGTAGTGCGACCC





756
GPR116
2955875
CCTGAAGAATATACGCGGTGTGGAC





757
GPR116
2955876
ACTACCCCTGTTACAGTGGACATAG





758
GPR116
2955876
TACCCCTGTTACAGTGGACATAGAC





759
GPR116
2955876
CCTGTTACAGTGGACATAGACACTG





760
GPR116
2955876
CCCCTGTTACAGTGGACATAGACAC





761
GPR116
3172054
TCGAAACGACTTATTCAAAAGTAAC





762
GPR116
3172054
TATTCAAAAGTAACAGCTCTACCAG





763
GPR116
3172054
CGACTTATTCAAAAGTAACAGCTCT





764
GPR116
3172054
AAAAGTAACAGCTCTACCAGAAGTG





765
GPR116
3172055
AGAGGTTATAGTTCCTCTAAATTGT





766
GPR116
3172055
CAAGAGGTTATAGTTCCTCTAAATT





767
GPR116
3172055
TACTCAAGAGGTTATAGTTCCTCTA





768
GPR116
3172055
CTCAAGAGGTTATAGTTCCTCTAAA





769
GPR116
3207265
TGGACCAAGTAACACCAGCGACGGT





770
GPR116
3207265
GGAAGACCAGCGGTTGTGGACCAAG





771
GPR116
3207265
AGAATACAACCCCACCCGAAAAGGT





772
GPR116
3207265
AGATAGCGGACCAAAAGTAAGACGT





773
GPR116
3207266
ACTACCCCTGTTACAGTGGACATAG





774
GPR116
3207266
CCACTACCCCTGTTACAGTGGACAT





775
GPR116
3207266
ACCCCTGTTACAGTGGACATAGACA





776
GPR116
3207266
CCTGTTACAGTGGACATAGACACTG





777
GPR116
3207387
ACCGGGAACCACACAACGTATCGAG





778
GPR116
3207387
ACTGGAACAACTTGTTTACCGTCTC





779
GPR116
3207387
AGACACGAGGATTACTGTGAACTGG





780
GPR116
3207387
GGAACCACACAACGTATCGAGGGAT





781
GPR116
3207390
TACTCAAGAGGTTATAGTTCCTCTA





782
GPR116
3207390
AGAGGTTATAGTTCCTCTAAATTGT





783
GPR116
3207390
CTCAAGAGGTTATAGTTCCTCTAAA





784
GPR116
3207390
CAAGAGGTTATAGTTCCTCTAAATT





785
GPR116
3207391
AAAAGTAACAGCTCTACCAGAAGTG





786
GPR116
3207391
TCGAAACGACTTATTCAAAAGTAAC





787
GPR116
3207391
CGACTTATTCAAAAGTAACAGCTCT





788
GPR116
3207391
TATTCAAAAGTAACAGCTCTACCAG





789
GPR116
2955929
CAAGTGGAGTGGACTCTCCCAAAAC





790
GPR116
2955929
GTGGACTCTCCCAAAACCCGTCTAG





791
GPR116
2955929
CTTACCCTACGGGAGCTCCAAGTGG





792
GPR116
2955929
GTCTAGTCGTCATTCCACAATTTAA





793
GPR116
2955986
CTTCAGACCAGAACACTTTGGGGTG





794
GPR116
2955986
CTTCCGTCAAGTGGAGACGAGGGCT





795
GPR116
2955986
GCTGTCGGACCCTTGGGCGTTCTCG





796
GPR116
2955986
GGGGTCGTAAACTTCAGACCAGAAC





797
GRM7
2609074
GAGCCGAACCTCCTGCTAAGGGCCT





798
GRM7
2609074
TAGGAGCCGAACCTCCTGCTAAGGG





799
GRM7
2609074
GAACCTCCTGCTAAGGGCCTCGCTC





800
GRM7
2609074
CCTGCTAAGGGCCTCGCTCCGTACT





801
GRM7
2609075
ACCCAAGACGGCGTCACAAGAGAGC





802
GRM7
2609075
CGTCACAAGAGAGCGGAGGACGAGG





803
GRM7
2609075
GGCGACTCGCCACCCAAGACGGCGT





804
GRM7
2609075
TCCTTCCGCCTAGGCCCCGGCGACT





805
GRM7
2609071
CGAATGAAAGCAGGTCCGCGAGTAG





806
GRM7
2609071
GCGCGAGCTTGTCAGCGAATGAAAG





807
GRM7
2609071
ACAAGGTCCCTGTGAATGCGCGAGC





808
GRM7
2609071
GACGAGGCGCAGGACTGAAACTACT





809
GRM7
2609056
CGTCGTTAAACCTTTCTGGTAGAAC





810
GRM7
2609056
CCTTATGTTCCATAATGTGTCTTCG





811
GRM7
2609056
GTCGTTAAACCTTTCTGGTAGAACT





812
GRM7
2609094
CTACGGGAAGATAGGACAGAGTCAA





813
GRM7
2609094
AGAGTCAAAGGGTTAGGATTTGCAG





814
GRM7
2609094
ACGGGAAGATAGGACAGAGTCAAAG





815
GRM7
2609094
CCTCTACGGGAAGATAGGACAGAGT





816
GRM7
2609070
ACTTCCCGGGCCTGGAGCCGCTCGG





817
GRM7
2609070
GGACTTCCCGGGCCTGGAGCCGCTC





818
GRM7
2609070
GCTCGGGTGGTGGCAAGGGAGGTCG





819
GRM7
2609070
TCGGGTGGTGGCAAGGGAGGTCGCG





820
GRM7
2609082
CATCTTGATCTACTGTAACGTCCGT





821
GRM7
2609120
ACTACTGGCCGCGATACTGAAGAAG





822
GRM7
2609120
ACACAGATGGGAGCGTAGCCTTCCT





823
GRM7
2609120
TCCGGGATCCGACCTTAATACACAG





824
GRM7
2609120
CACACCTCAGGAAGTGCGTCTAAAG





825
GRM7
2609135
CTAAAAACGGTTGCTACTCCTATAT





826
GRM7
2609135
GGTCCTTGCGTTTCTGTCCTGGTAA





827
GRM7
2609135
TTGAGGTCCCGGCAGCACTAAAAAC





828
GRM7
2609135
GTCCTGGTAACTGAAACTATCTTAA





829
GRM7
2609210
TTTGTACTGTACCTAGTCGTTGAGG





830
GRM7
2609210
GGTTTCGAACAAGAAGAACTCGACT





831
GRM7
2609210
ATCCTTTTGTACTGTACCTAGTCGT





832
GRM7
2609210
ACTCGACTGGGTTGTGAATCCTTTT





833
GRM7
2609197
TAGCAAGAACAGAATACCCGACCCA





834
GRM7
2609197
CATTGAGAGGCAAAGAAAGTAGAAG





835
GRM7
2609197
CTCTTTATGACACTAGCAAGAACAG





836
GRM7
2609197
ACTCAAACTGAGTAAGGACGGTGGT





837
GRM7
2609183
GACGTTTTCTGTACTGAGTACGAAA





838
GRM7
2609183
TCTGTACTGAGTACGAAAAAATACC





839
GRM7
2609183
TTTTCTGTACTGAGTACGAAAAAAT





840
GRM7
2609183
GTACTGAGTACGAAAAAATACCGAC





841
GRM7
2609198
TCGAAAACCTCCGAGACGAAGTCTT





842
GRM7
2609198
ACCTCCGAGACGAAGTCTTCACACT





843
GRM7
2609198
AAAACCTCCGAGACGAAGTCTTCAC





844
GRM7
2609198
AACCTCCGAGACGAAGTCTTCACAC





845
GRM7
2609201
ACAACAAATTCCGTCTTCCCTAAAG





846
GRM7
2609201
TACCCGTATATCGATAGTGAAACAT





847
GRM7
2609201
GATCCTCGGAAATCAGTACGTACGT





848
GRM7
2609201
AAGGTCCTTATAAAACCGATCAACG





849
GRM7
2609194
TGTTTGATGGTGCGAATGTTAGAGG





850
GRM7
2609194
GTATGTTTGATGGTGCGAATGTTAG





851
GRM7
2609194
ATGTTTGATGGTGCGAATGTTAGAG





852
GRM7
2609194
TGTATGTTTGATGGTGCGAATGTTA





853
GRM7
2609160
CCGTGAGGTCACTACAAATTGTTCT





854
GRM7
2609160
CGTGGACCCGCAATACTGTAGAAAG





855
GRM7
2609160
CGTCACCTGTCTGCTTGAAGTCGAG





856
GRM7
2609160
AATGGCAGACTAGCCCGTCACCTGT





857
GRM7
2609149
ACTACGGATGAAATGCAGGGCATGT





858
GRM7
2609149
CAGGGCATGTGAACTTTTGTTGTCT





859
GRM7
2609149
TCTTCTGTGTCTAGCGTTTACGTGT





860
GRM7
2609149
TGACGTTCAACTGCTAATCACCCAG





861
GRM7
2609196
GGACTTGAGTTACAGGTCTTTGCCT





862
GRM7
2609196
TCGGTGGTACAGTAGCTCCGACAGT





863
GRM7
2609196
GTTGCCACTCCGTTTCTGGCTCGAG





864
GRM7
2609196
TTCGCTTCGAAGTTCCGCCATCAGT





865
GRM7
2609174
TATCTCTGGTAAACACGGACGATGT





866
GRM7
2609174
GAAGGTCCTGTAGCATCATGGGAAT





867
GRM7
2609174
TGTTCTACTACAATCTTCCTACCCT





868
GRM7
2609174
GGAAACTAATACTCTATCCTCTTAA





869
GRM7
2609200
CTTCTCAAAATAAGATACGTTCTGT





870
GRM7
2609200
TTTGTATAGATGGTATGGTGACCTC





871
GRM7
2609200
CTATTGCCGTAGTATGACACCCCTT





872
GRM7
2609200
GTGTCCCGGTCTGTGATGGTACTAT





873
GRM7
2609158
ACTAACTGCGTCAGATACGATACCG





874
GRM7
2609158
AACGACTTCATATATGCGTTACAAT





875
GRM7
2609158
TAGAGACACGACTGATGGCCCCACA





876
GRM7
2609158
GTCCTCCCATTTCAGGTCAAGCACT





877
GRM7
2609178
GGACACTCGGAACGCTACCAATGGT





878
GRM7
2609178
CTATGGGCGGAGTCACACGTGTGAT





879
GRM7
2609178
ACGGTAGTTCTGAGCCCCACATGGG





880
GRM7
2609178
GTCGATACAAGAAAACTGCCCGTAG





881
GRM7
2609209
TGGAGTCGAACGTGTTTCTCCTAAC





882
GRM7
2609209
CTGGAGTCGAACGTGTTTCTCCTAA





883
GRM7
2609209
GGAGTCGAACGTGTTTCTCCTAACT





884
GRM7
2609209
CCTGGAGTCGAACGTGTTTCTCCTA





885
GRM7
2609203
GACAATGAACCATGTGATAGGGTGG





886
GRM7
2609203
ATGAACCATGTGATAGGGTGGTTGT





887
GRM7
2609203
TGACATATGGTGGTCATTCTTTCTC





888
GRM7
2609203
TTTCAGACAATGAACCATGTGATAG





889
GRM7
2609136
ACTTCTATAGCGTCTTCCCCGGTAG





890
GRM7
2609136
AGTCGGGTTCGCTCGGTGCCACCTT





891
GRM7
2609136
TCCCCGGTAGTGGTAAGTCGGGTTC





892
GRM7
2609136
CGGTAAAAGAAACCCACCCTAGTCT





893
GRM7
2609173
AAGGGTAGGTTCTATTTCAGTCTAC





894
GRM7
2609173
ATAGTGGACAGTCCAGACCTCTTCG





895
GRM7
2609173
TTTACACACGTACAACTCCTGACTT





896
GRM7
2609173
TCAGTCTACGAGATCTTTACACACG





897
GRM7
2609202
CGGTTGACCCAAACTAGGACTGTTT





898
GRM7
2609202
GACTGTTTGTGATGTGTTTCTTGAC





899
GRM7
2609202
ACTCACTTACAGCACTTTATGAAAC





900
GRM7
2609202
AACGAGACGTTTATTCTCTCTATAG





901
GRM7
2609199
TGACTGTTTACGTGGATAGTCCAAC





902
GRM7
2609199
AAGGACGATTCCGTTGTTGAAAAAC





903
GRM7
2609199
CCATGACTTAGGAGGTTGACTGTTT





904
GRM7
2609199
AAAAGGAGATCGTACACTTACAACT





905
GRM7
2609207
CATGTCACCTTGAACCTAATGTGAA





906
GRM7
2609207
CCGACATGTCACCTTGAACCTAATG





907
GRM7
2609207
AAAAAACCGACATGTCACCTTGAAC





908
GRM7
2609207
AACCGACATGTCACCTTGAACCTAA





909
GRM7
2609195
TAGTCACCGCGACCCCTACGATATG





910
GRM7
2609195
ATTCACGTAGTCACCGCGACCCCTA





911
GRM7
2609195
GTAGTCACCGCGACCCCTACGATAT





912
GRM7
2609195
TGGATTCACGTAGTCACCGCGACCC





913
GRM7
2609190
GACTCGTAGATTACCACGGACCTGT





914
GRM7
2609190
CGGACCTGTGTGTGACAGTAACAAA





915
GRM7
2609190
GTCCGAAAGGGACTTAGTAACATTC





916
GRM7
2609190
TCTGCCCCGGAGACAGGATAAATAA





917
GRM7
2609213
TGACCGTAGATCAGTTCGCTAACAG





918
GRM7
2609213
GTAGACGTGACCGTAGATCAGTTCG





919
GRM7
2609213
ACGTGACCGTAGATCAGTTCGCTAA





920
GRM7
2609213
CGTAGATCAGTTCGCTAACAGACTC





921
GRM7
2609223
GCCGACGTTAACACCTGGAAGGGAT





922
GRM7
2609223
GGTGACTCTCGGTGTCCTGGCAAAA





923
GRM7
2609223
CTCGGGATAAGAGAGTCTGCCACCT





924
GRM7
2609223
ACAACTTTGAGTTCAGGGCGGGACC





925
GRM7
2609222
TACAGTCAATATTATTGGACCAATA





926
GRM7
2609222
CAGTCAATATTATTGGACCAATAGA





927
GRM7
2609222
GTCAATATTATTGGACCAATAGATT





928
GRM7
2609222
ACAGTCAATATTATTGGACCAATAG





929
GRM7
2609215
ACATGGTGTGTATTATTTCAAATTC





930
GRM7
2609215
GTAGGACATGGTGTGTATTATTTCA





931
GRM7
2609215
AACAGTAGGACATGGTGTGTATTAT





932
GRM7
2609215
AAGATAAACCAGAGAACATGGGTAA





933
MME
2648729
CCCGTAGCCGTACCAGTATCCTGTG





934
MME
2648729
ATCACGGGTCGTCAGGTTGAGTAAC





935
MME
2648729
TTGAGTAACTTGATACCCCCGTAGC





936
MME
2648729
TCCTGTGCTTTAGTGGGTACCGAAG





937
MME
2648680
TTCCAGGTTTCCCGCGCTCGCGGGT





938
MME
2648680
AGGTTTCCCGCGCTCGCGGGTCCCG





939
MME
2648680
GGTTTCCCGCGCTCGCGGGTCCCGC





940
MME
2648680
TCTTTCCAGGTTTCCCGCGCTCGCG





941
MME
2648678
TCTACACGTTCACCGCTTCGAACTG





942
MME
2648678
CCTCGTCGGCGGGTTGAGGACCGCG





943
MME
2648678
CTTCGAACTGGCTCTCGTCCGACCT





944
MME
2648678
GTTGAGGACCGCGCCCTAGACGACT





945
MME
2648725
TCTACTTATGAAGCTCTTGTATTAA





946
MME
2648725
TACTTATGAAGCTCTTGTATTAAGT





947
MME
2648725
CTACTTATGAAGCTCTTGTATTAAG





948
MME
2648725
ACTTATGAAGCTCTTGTATTAAGTT





949
MME
2648707
TATATCATCGTCACGTCTTTCGTTT





950
MME
2648707
GTAACATGTCCAGAACATATTTACT





951
MME
2648707
TTTGACTTCTATATCATCGTCACGT





952
MME
2648707
GTTTTCGTAACATGTCCAGAACATA





953
MME
2648682
TCCTCCCGAGACCTTCAGTGCAGTC





954
MME
2648682
GGACCTCCTCCCGAGACCTTCAGTG





955
MME
2648682
CCTCCCGAGACCTTCAGTGCAGTCC





956
MME
2648682
ACCTCCTCCCGAGACCTTCAGTGCA





957
MME
2648721
GTGAACCTACCTACGGCTCTGTTTT





958
MME
2648721
AACGTGTCTAGGCTCTTCAAAAATA





959
MME
2648721
AAGTCTGAAATCTACTGGAGTGAAC





960
MME
2648721
CAGCTCCTAAACTAACGTGTCTAGG





961
MME
2648681
GTCCCAGGCGTCGATTCCAGGTCGC





962
MME
2648681
CTTCCTCGGCGATGACCCTGGACTT





963
MME
2648681
TCCTCGGCGATGACCCTGGACTTCT





964
MME
2648681
TCGCGCTAGGCTCGCGGGTCCTGGG





965
MME
2648724
AATTTCTTTCCTAGCCGATAGGACT





966
MME
2648724
GTTAATTTCTTTCCTAGCCGATAGG





967
MME
2648724
CCTAGCCGATAGGACTACTGTAACA





968
MME
2648724
TCTTTCCTAGCCGATAGGACTACTG





969
MME
2648710
TACTTACGTGACCTTAGATATTTCT





970
MME
2648710
AATGATACTTACGTGACCTTAGATA





971
MME
2648710
TAATGATACTTACGTGACCTTAGAT





972
MME
2648743
GGTCAAACGACTACAGGGATCTTTT





973
MME
2648743
TCTTCGTAACGTCGGGAACCGATCT





974
MME
2648743
CCCAGATTCCAGATAGTTCAGTTAG





975
MME
2648743
GGGATCCCCAGTGACATGACTGAAC





976
MME
2648717
CAACAAATACGAGGTCTTATAAATT





977
MME
2648717
CCAACAAATACGAGGTCTTATAAAT





978
MME
2648717
TTACTTTAGTACAGTTGACACTTAT





979
MME
2648717
CAGTTGACACTTATAATCATAATGT





980
MME
2648742
TAGGTCTTTTCTTCACGGCCCAAAC





981
MME
2648742
ACGTCTTGAGACGTCTCAAAAGTCT





982
MME
2648742
CGTTCTTAAGTATGTACTTAGGTCT





983
MME
2648742
GAAAGTGACGGCGTTCTTAAGTATG





984
MME
2648679
TCGGAGGTTGAAGAGGGCTTAGGGT





985
MME
2648679
GGGCACGCGAGTAACCAGCCCTACA





986
MME
2648679
GCCTACGTGCCTGACTCTCCGCGAA





987
MME
2648679
TCTCCGCGAACCGACCCGAGAGTCG





988
MME
2648702
AAACTCTTATACTTAGACGGACACC





989
MME
2648702
AACTCTTATACTTAGACGGACACCT





990
MME
2648686
GGTCAATTATCTATGACCATAGTCA





991
MME
2648686
CTTCGGTGACCTCGTTCTATATTTT





992
MME
2648686
TAACGAATCAGTTTTGGAGTTCCAT





993
MME
2648686
TGGTAACTACAATCAGGTCTCAAGT





994
MME
2648733
GGTAAAATCACTAAATCTCACAAAG





995
MME
2648733
TCACTAAATCTCACAAAGAGTATAA





996
MME
2648733
CTAAATCTCACAAAGAGTATAAATT





997
MME
2648733
ATCTCACAAAGAGTATAAATTATTA





998
MME
2648684
ACCAACCGTGAAGCACAGGTCTTGA





999
MME
2648684
ACTAAATAGGACTCATGGAGACAGG





1000
MME
2648684
CAGGTCTTGAGGCATAAAGTCCGAC





1001
MME
2648684
TGTGGATTAATTACAGACCCTTTGT





1002
MME
2648720
GCAACACGTTTGATACAGTTACCCT





1003
MME
2648720
TGTCGTTGAACCTCTGCAACACGTT





1004
MME
2648720
GACACCCCTCCGAAATACACCTTCG





1005
MME
2648720
GTTTGATACAGTTACCCTTATACCT





1006
MME
2648687
ATCGACACTGTTACTAGCGTGAGAT





1007
MME
2648687
TAGCGTGAGATACGTTGGATGCTAC





1008
MME
2648687
GACGAGGAGTGGTAGTATCGACACT





1009
MME
2648687
TCTTTGTCGCTACCTGAGGTGACCT





1010
MME
2648685
GACAACCATTATAACAGCTCGACTT





1011
MME
2648685
GGAATGAGAAGAGATACCCTAACCC





1012
MME
2648685
CCCAAATCAGTATACAAGGTGTCAC





1013
MME
2648685
CATACAAAAACGCATGGGACGAAAT





1014
MME
2648716
TACTAGGTTACGAAGACATATTGTT





1015
MME
2648716
CGATGCCGATTTGGACTTCTAGCTT





1016
MME
2648716
GGACTTCTAGCTTTACTAGGTTACG





1017
MME
2648716
ATTGTTCTACTGTAACCGGGTCTAG





1018
MME
2648683
AGTAAAGGTATCAAGGGACGCCGGA





1019
MME
2648683
AGACGGAACCCCTCAATACAAAACA





1020
MME
2648683
GATGGTCTAACGTGGCCCCGACTAA





1021
MME
2648683
ATACAAAACAATGGCTCTAGGCGCG





1022
MME
2648709
TTAAACAAACAACCGTGACTACTAT





1023
MME
2648709
AATTAAACAAACAACCGTGACTACT





1024
MME
2648709
TGTCGACTTTTTCGATAACGTGTTG





1025
MME
2648709
TTTTTCGATAACGTGTTGACTTAAG





1026
MME
2648727
CCTCGTCGACATCAGTTACGTAAAA





1027
MME
2648727
ACCTCGTCGACATCAGTTACGTAAA





1028
MME
2648727
CTCGTCGACATCAGTTACGTAAAAT





1029
MME
2648727
CGTCGACATCAGTTACGTAAAATGA





1030
MME
2648688
TACCATAAACGTTCAGTAGTCTGAC





1031
MME
2648688
CCATAAACGTTCAGTAGTCTGACGT





1032
MME
2648688
AAACGTTCAGTAGTCTGACGTATTT





1033
MME
2648688
TTCAGTAGTCTGACGTATTTTAGTC





1034
MME
2648732
TTACCTTAATTATGTGACCCTCTTT





1035
MME
2648732
ATTACCTTAATTATGTGACCCTCTT





1036
MME
2648732
AATTACCTTAATTATGTGACCCTCT





1037
MME
2648715
AAAGACACCGGTCTAACTAAGCAGT





1038
MME
2648715
TACACCTAAAATACTAAAGACACCG





1039
MME
2648715
TCCTTCTTTCTAACGGGTAGCTACT





1040
MME
2648715
GGGTAGCTACTTTTGGTCGAACGAA





1041
MME
2648718
TACAGGACCTCTAAGTATTACCTAG





1042
MME
2648718
TTGGATGTTCCTCAGGTCTTTACGA





1043
MME
2648718
CGTCGGAGTCGGCTTGGATGTTCCT





1044
MME
2648718
GTATTACCTAGAACATTCGTCGGAG





1045
MME
2648731
TTCTACCTCTGGAGCAACTGACCAC





1046
MME
2648731
AGGGTCACGTACCACATAGTCATAC





1047
MME
2648731
ACTGACCACCTGAGTTGTCAGACGT





1048
MME
2648731
ACGTTCATTGAAATTCCTCGTTAGG





1049
MME
2648705
GACGAGCTGACTAGGTTTTGTACCT





1050
MME
2648705
AAAAGTTTATACGAACGCCTCCGAC





1051
MME
2648705
TGCATTACAGTAAGGGCTCTGGTCG





1052
MME
2648705
GCCTCCGACCAACTTTGCATTACAG





1053
MME
2648736
TATCCGGTCTCATACGCCAATTGAG





1054
MME
2648736
CCGGTCTCATACGCCAATTGAGGTA





1055
MME
2648736
CACCACACCTTGGATATCCGGTCTC





1056
MME
2648736
ACACCACACCTTGGATATCCGGTCT





1057
MME
2648734
GATTTAGTGTTTGTTGATAAAAAGA





1058
MME
2648734
CCTGAACTGGATTTAGTGTTTGTTG





1059
MME
2648734
TGAACTGGATTTAGTGTTTGTTGAT





1060
MME
2648734
ACCTGAACTGGATTTAGTGTTTGTT





1061
MME
2648701
GTCTACCGAGTACGCTCTTTCATCG





1062
MME
2648701
TGGTATTCCACAGAGTGTCTTTGAC





1063
MME
2648701
ATCACAATCTTACACGATACCTTAG





1064
MME
2648701
TCCTCTTCGAAGTAAGCAAGATAAT





1065
MME
2648708
ACCTCTTGGAGATGAGTTTGACAAT





1066
MME
2648708
TCTGTATATACCCACCGGTCATCGT





1067
MME
2648708
GTTTGACAATGGTCTGTATATACCC





1068
MME
2648708
ATACCCACCGGTCATCGTTGTCTTT





1069
MME
2648703
GTTTTCCCGTGTTTATCTCAGACTC





1070
MME
2648703
CCTCCGTTACTTGACTCTTGCCTAG





1071
MME
2648703
TACCTTACCTGAGACCTCCGTTACT





1072
MME
2648703
TTGCCTAGACTGGAGACACCGTTCC





1073
MME
2648745
GAGACATAACACGACTAACACCTAG





1074
MME
2648745
CGAGGGATTCTGACACTGTTGACAG





1075
MME
2648745
CTCCGGAGACTACCTGGAAGATCTT





1076
MME
2648745
TCTTCGAGAGCTGTTATGGGCAACC





1077
MME
2648744
CAGGGACTCTCACAGAGACTATTTT





1078
MME
2648744
CGGTAACCTGTCAACAGATCTCTAT





1079
MME
2648744
CCCGTTTAGACGTGGATACATCGAG





1080
MME
2648744
ATACATCGAGACGTAGAGGACAGAA





1081
NPR3
2805680
ACATCTCGTATGTTTGTCGAGAGGG





1082
NPR3
2805680
TCTTCCAGCAAAACTTTACGCCGGC





1083
NPR3
2805680
ACAGTTTATAGGAACCCCGGGAAAT





1084
NPR3
2805680
GGCTTAACATCTCGTATGTTTGTCG





1085
NPR3
2805664
GTAGTACGACCACCGCGTGTCCGTA





1086
NPR3
2805664
TACACACGCTCGTCACTGTGGTAGG





1087
NPR3
2805664
CTCTGATGCGGAAGAAGTTGTAACT





1088
NPR3
2805664
GTACTGGTCACCTCTGATGCGGAAG





1089
NPR3
2805646
GGGCACGCATGATGAGCCGACCCGC





1090
NPR3
2805646
GCACGCATGATGAGCCGACCCGCAA





1091
NPR3
2805646
CACGAGTGAAAGAGGGGCACGCATG





1092
NPR3
2805646
ATGATGAGCCGACCCGCAACGACCG





1093
NPR3
2805676
CCTCCCTTTTAATATGTCGTCTGAA





1094
NPR3
2805676
TTTAATATGTCGTCTGAACCTTGTC





1095
NPR3
2805676
CTACGGTAGGAGGAGATGCAGAACC





1096
NPR3
2805676
GAGATGTACTTCATGAGTCTCGACC





1097
NPR3
2805643
AAGGACGAGAGTCACGCGACTGTCT





1098
NPR3
2805643
TCGACCCTGTGACACTGGAGCCGTG





1099
NPR3
2805643
CGCTAAGGTCGCGTTTGGACGCACC





1100
NPR3
2805643
CTCGTTGTTCAAAGTGAAAGGACGA





1101
NPR3
2805647
GGGTCCTACTGAGCATGAACAAAAG





1102
NPR3
2805647
CTCCCAAACGTGTGCAGGTAGATGT





1103
NPR3
2805647
AGCACGCGTTATAGGTCCGGTCACT





1104
NPR3
2805647
GGTCCACCGAATGCTCCTAAGTCTG





1105
NPR3
2805678
ATAGCGGCCCGTCCACAGGTATCTA





1106
NPR3
2805678
GTTGCCTCTGGCTATACCCCTAAAG





1107
NPR3
2805678
CCCCTAAAGAGACACTAACGGTACT





1108
NPR3
2805678
GGTATCTACGGTTGCCTCTGGCTAT





1109
NPR3
2805636
CTACACGACACATGCCTTGGACCGG





1110
NPR3
2805636
CACGACACATGCCTTGGACCGGGAC





1111
NPR3
2805636
TACACGACACATGCCTTGGACCGGG





1112
NPR3
2805636
CCCTACACGACACATGCCTTGGACC





1113
NPR3
2805645
TCTGCGTGTCCAAATGTGGGCCACT





1114
NPR3
2805645
GCCTCCCGCTTATATATGTTCATAT





1115
NPR3
2805645
TAACGTCTCTTCCTGCGAAGGAGAG





1116
NPR3
2805645
AGGAGAGATAGAAAACCGCGTAATC





1117
NPR3
2805642
GTCCTGGAAAGAACCTCAGCGCCTT





1118
NPR3
2805642
CGCTACGAGGAGACCAGTGCCTGAA





1119
NPR3
2805642
TCGCCAACCTAGAAACTCGTGAGTC





1120
NPR3
2805642
CACGGAGCTCGCGAGGTCTCTTCCT





1121
NPR3
2805662
ACTAGTAAGATGACGGACAATTGGT





1122
NPR3
2805662
ATAGACAACCTTAGGGTCACCTTCT





1123
NPR3
2805662
AGGTCAGTAGAAAGGTTATACCAAC





1124
NPR3
2805662
GACAATTGGTGTGTACGTTCGAAAG





1125
NPR3
2805681
ACCGGATCTTCTTAGCCGTCACTGT





1126
NPR3
2805681
CCGAAATGATCCTCGACCGAACGAT





1127
NPR3
2805681
GTCCTTAACAGCACCCCCGAAATGA





1128
NPR3
2805681
GACCGAACGATTACCGGAAGATGAA





1129
NPR3
2805684
AAACCCTCGTAAAGTGTGTTCCTAT





1130
NPR3
2805684
ACTAATTAGTGGTAGACGGAGGTCC





1131
NPR3
2805684
GTCTTCCCCGCAAGAACTTCTTAAG





1132
NPR3
2805684
GCACAGTGAGACAATTTACAAGTAT





1133
NPR3
2805683
AGTCTAGGGTAAAAAGTCATCGAAT





1134
NPR3
2805683
TTTATGTCTTATTGGTAACTCTCCG





1135
NPR3
2805683
AACTCTCCGCTTGGGTCGTTCTTCT





1136
NPR3
2805683
GTAGCCCTTAATGCCCTTCTAAGGT





1137
NPR3
2805696
GACGTATACCCAATGTTTTTGAGAC





1138
NPR3
2805696
CCAAAGACCTACGATATGGTTAAAT





1139
NPR3
2805696
TGTCCAGTTTTACGCATCTACGAAA





1140
NPR3
2805696
TCACAGACAGAATACCAGTAGTAAC





1141
NPR3
2805685
CAGAGTATTTGCGATGAGACCTAAC





1142
NPR3
2805685
CTGTCCAAACACCAACTCCTGAAGA





1143
NPR3
2805685
TCGGGATAAAGCGTGATTGTAAAAT





1144
NPR3
2805685
CAGGCTACAGATGTAAGTCCAAGAC





1145
NPR3
2805688
ACCCTTCGACAGTACTCTCACGTGG





1146
NPR3
2805688
GAGTCCAATGATGAAAGTGAATATG





1147
NPR3
2805688
CAGAACCTTAATGTATTGACCCCAG





1148
NPR3
2805688
CCCAGAAAGGAGTTATTGTAAAACT





1149
NPR3
2805691
GACTCTCCCGCACTATTTTCTTAAT





1150
NPR3
2805691
CTCTTCAGGCGAAGACAACGAGGGT





1151
NPR3
2805691
CGAAGACAACGAGGGTGGACTCAGT





1152
NPR3
2805691
TCACACTAGTTGACTTTGTTGATAC





1153
NPR3
2805692
AGGTCCGTTCGTTTCGCAACATGGT





1154
NPR3
2805692
TAGGTCCGTTCGTTTCGCAACATGG





1155
NPR3
2805692
GTCCGTTCGTTTCGCAACATGGTGA





1156
NPR3
2805692
CGTTCGTTTCGCAACATGGTGAACC





1157
NPR3
2805686
TCAAGACCGGTCTAGTACTCAAAGT





1158
NPR3
2805686
CTTGTTGAAACAACTCTCAATGATG





1159
NPR3
2805686
GATGAACTGTCGTTCGTGTCTTTAC





1160
NPR3
2805686
CGTTCAATAAAATCCCACTGTGAGG





1161
NPR3
2805689
TCAAGTGTGTTCATTGTCACCTCCG





1162
NPR3
2805699
ACTGGTGTGAACGAGAGCCCCTTCA





1163
NPR3
2805699
TCACCGCAGTGATGGAAGAACATTC





1164
NPR3
2805699
TAGACTCGAAACAAGGGACACGTAC





1165
NPR3
2805699
AACGGGTACGTCCATCTTTAAACAC





1166
NPR3
2805697
AAAAACATATCTCAGGTAGAGAGGG





1167
NPR3
2805697
AACATATCTCAGGTAGAGAGGGAGT





1168
NPR3
2805697
CTTAAAAAACATATCTCAGGTAGAG





1169
NPR3
2805697
TTCTTAAAAAACATATCTCAGGTAG





1170
NPR3
2805690
CGTTCGACGGACAGGGTCTACGACC





1171
NPR3
2805690
CGCGTTCGACGGACAGGGTCTACGA





1172
NPR3
2805690
TCGACGGACAGGGTCTACGACCGGG





1173
NPR3
2805690
CGGACAGGGTCTACGACCGGGTACA





1174
NPR3
2805698
AGTTGTTACTCTACTTCCGGTAACG





1175
NPR3
2805698
ACCTTACGGGAGTGAAGAGGGATAA





1176
NPR3
2805698
ACACATTCTGTACGTCAGTTGTTAC





1177
NPR3
2805698
GTGTCCTTACCAAGATGTCTGGGAT





1178
OR4K6P
3527237
TCGGTTAATCGAAAATGGGAGATAA





1179
OR4K6P
3527237
GTTAATCGAAAATGGGAGATAAACG





1180
OR4K6P
3527237
CTCGGTTAATCGAAAATGGGAGATA





1181
OR4K6P
3527237
GGTTAATCGAAAATGGGAGATAAAC





1182
OR4K6P
3527236
AAAAACGTGGAGAAGTGGCCCTGAC





1183
OR4K6P
3527236
ACGTGGAGAAGTGGCCCTGACTCTA





1184
OR4K6P
3527236
AACGTGGAGAAGTGGCCCTGACTCT





1185
OR4K6P
3527236
CTAGAAAAAAACGTGGAGAAGTGGC





1186
OR4K6P
3527233
CTTAAGTACAATGAACCTGAATGAC





1187
OR4K6P
3527234
CGAGTCGTTGGACAGAGAGTAACTG





1188
OR4K6P
3527234
AGTCGTTGGACAGAGAGTAACTGTA





1189
OR4K6P
3527234
CATGAAGGACGAGTCGTTGGACAGA





1190
OR4K6P
3527234
GACGAGTCGTTGGACAGAGAGTAAC





1191
OR4K6P
3527235
TACCTGAAAAAACGAGACGCATTCT





1192
OR4K6P
3527235
AGGAAACGGTGTGGTTTCTACTAAT





1193
OR4K6P
3527235
ACGAGACGCATTCTGGTAGAGAAAA





1194
OR4K6P
3527235
GGAAACGGTGTGGTTTCTACTAATA





1195
OR4K6P
3527238
GTGTTTGAAGGACCATCTGTTTTAA





1196
OR4K6P
3527238
AGACACTAGAAGGAAACCAGTAGGT





1197
OR4K6P
3527238
TGTCCTAGGAGGTTCCGAGAAAGAT





1198
OR4K6P
3527238
AGTCCCTGATGAGGAGGTGTCCTAG





1199
OR4K6P
3780615
CTTAAGTACAATGAACCTGAATGAC





1200
OR4K6P
3780617
ACGAGACGCATTCTGGTAGAGAAAA





1201
OR4K6P
3780617
CCTGAAAAAACGAGACGCATTCTGG





1202
OR4K6P
3780617
TGAAAAAACGAGACGCATTCTGGTA





1203
OR4K6P
3780617
TACCTGAAAAAACGAGACGCATTCT





1204
OR4K6P
3780621
GTGTTTGAAGGACCATCTGTTTTAA





1205
OR4K6P
3780621
AGTCCCTGATGAGGAGGTGTCCTAG





1206
OR4K6P
3780621
AGACACTAGAAGGAAACCAGTAGGT





1207
OR4K6P
3780621
TGTCCTAGGAGGTTCCGAGAAAGAT





1208
OR4K6P
3925119
AGTCCCTGATGAGGAGGTGTCCTAG





1209
OR4K6P
3925119
AGACACTAGAAGGAAACCAGTAGGT





1210
OR4K6P
3925119
TGTCCTAGGAGGTTCCGAGAAAGAT





1211
OR4K6P
3925119
GTGTTTGAAGGACCATCTGTTTTAA





1212
OR4K6P
3925121
ATAAGTTGTTAATACTCGGTTTCTC





1213
OR4K6P
3925121
TTGTTAATACTCGGTTTCTCACACA





1214
OR4K6P
3925121
GTTGTTAATACTCGGTTTCTCACAC





1215
OR4K6P
3925121
AAGTTGTTAATACTCGGTTTCTCAC





1216
OR4K6P
3925122
ACGAGACGCATTCTGGTAGAGAAAA





1217
OR4K6P
3925122
TACCTGAAAAAACGAGACGCATTCT





1218
OR4K6P
3925122
TGAAAAAACGAGACGCATTCTGGTA





1219
OR4K6P
3925122
CCTGAAAAAACGAGACGCATTCTGG





1220
OR4K6P
3925124
CTTAAGTACAATGAACCTGAATGAC





1221
OR4K7P
3780618
ATAACGGTATACATTTGGAGAGGTG





1222
OR4K7P
3780618
GATAAGTTGTTAATACTCGGTTTCT





1223
OR4K7P
3780618
TAACGGTATACATTTGGAGAGGTGA





1224
OR4K7P
3780618
TTTGGAGAGGTGATAAGTTGTTAAT





1225
OR4K7P
3780619
CACACACAACTCGAACACCGTCAAA





1226
OR4K7P
3780619
CACACAACTCGAACACCGTCAAAGA





1227
OR4K7P
3780619
TCGAACACCGTCAAAGAACAACCTG





1228
OR4K7P
3780619
GAACACCGTCAAAGAACAACCTGTC





1229
OR4K7P
3780620
ACTCGGTTAATCAAAAAGGGAGATA





1230
OR4K7P
3780620
ACCCGAAAGATGTATGTTACTCGGT





1231
OR4K7P
3780620
GGGAAGACACAAGGGTTACAACATC





1232
OR4K7P
3780620
AGATGTATGTTACTCGGTTAATCAA





1233
OR4K7P
3925120
ACTCGGTTAATCAAAAAGGGAGATA





1234
OR4K7P
3925120
AGATGTATGTTACTCGGTTAATCAA





1235
OR4K7P
3925120
GGGAAGACACAAGGGTTACAACATC





1236
OR4K7P
3925120
ACCCGAAAGATGTATGTTACTCGGT





1237
P3H2
2710502
TTTCGATAGTGGGTTCTATCTAGCT





1238
P3H2
2710502
CCAGGGAAGTCCTCACTTGCATCTC





1239
P3H2
2710502
GGGAAGTCCTCACTTGCATCTCCCT





1240
P3H2
2710502
TTCTATCTAGCTCTGGATTCTCTTC





1241
P3H2
2710503
ATACCTCCTGCTGTCCTACTCTTAG





1242
P3H2
2710503
TACCTCCTGCTGTCCTACTCTTAGC





1243
P3H2
2710483
CGAGACACCAAGTGGAACCTGGGTG





1244
P3H2
2710483
ACCGAGACACCAAGTGGAACCTGGG





1245
P3H2
2710483
TGGAACCTGGGTGAAATATCTCTTA





1246
P3H2
2710483
GTGGAACCTGGGTGAAATATCTCTT





1247
P3H2
2710492
CTCTTAAGTATAAGTGTCTCTACCT





1248
P3H2
2710492
CCTCCTCTTAAGTATAAGTGTCTCT





1249
P3H2
2710492
TTCCTCCTCTTAAGTATAAGTGTCT





1250
P3H2
2710492
TCCTCTTAAGTATAAGTGTCTCTAC





1251
P3H2
2710496
CTTTTCAAACTTCCACGTTGACAGG





1252
P3H2
2710496
GGGTATGTGGGTTACTTTTCAAACT





1253
P3H2
2710496
ACGTTGACAGGACTTTCGTGAGTTT





1254
P3H2
2710496
ACTTCCACGTTGACAGGACTTTCGT





1255
P3H2
2710542
GATGTCGCCTCTGATGCTCGCTCGC





1256
P3H2
2710542
GCCGCGCCGGCGGATGATGTCGCCT





1257
P3H2
2710542
GCTGGACGAGATGCGGTCGCCGCGC





1258
P3H2
2710542
TCGGGAAGCTGGACGAGATGCGGTC





1259
P3H2
2710493
GCAGCACAAGTATAGAGGTTCCGTC





1260
P3H2
2710493
TAGAAGACTTCATCGACGGTATTGG





1261
P3H2
2710493
CGTGTCAAACGTAGGGTAAAGTGTT





1262
P3H2
2710493
GAGACAAAACGAACTGCAGCACAAG





1263
P3H2
2710506
AAGGAGACGTGATACTAATGGATGT





1264
P3H2
2710506
GTGATGTACGTCCACGAACAAACAG





1265
P3H2
2710506
ACACTCCCTTGAACGGTGGGCGGGA





1266
P3H2
2710506
ATGGATGTCAAACGGATGATAGCTC





1267
P3H2
2710487
TCGATCCTGAGACCACTGTAAGTTT





1268
P3H2
2710487
CGGTATAAGGTTACCCCCGGTTCGG





1269
P3H2
2710487
TCCCTGGAGCAAAATAGAGAACTCG





1270
P3H2
2710487
GTTCGGGGGTTTGCTCTCTGCAAGA





1271
P3H2
2710543
ATGACGGCGGCGGTGACACCCCGCC





1272
P3H2
2710543
CCCTCGCGTAGACCCGCGGCGGCGA





1273
P3H2
2710543
ACGGCGGCGGTGACACCCCGCCGGG





1274
P3H2
2710543
TACGCCCTCGCGTAGACCCGCGGCG





1275
P3H2
2710544
CTCGCATTGGCAGGGCGCGGAGAGA





1276
P3H2
2710544
GGGCTTCGGGAGAGCTCGCATTGGC





1277
P3H2
2710544
GGCAGGGCGCGGAGAGACTCCGCCT





1278
P3H2
2710544
GCCTGCGCTCCACGGGGCTTCGGGA





1279
P3H2
2710539
GTGGCGCAGTCGCTCCTACACGCGT





1280
P3H2
2710539
GGCGTAGGGCGGTGGCGCAGTCGCT





1281
P3H2
2710539
TCGCGTCTCACGGGATGTTGATGGA





1282
P3H2
2710539
ACACGCGTCGCTGAAGGTCGCGTCT





1283
P3H2
2710482
ACTATCAGTGATTAGACAGAACTCG





1284
P3H2
2710482
TCGGTTAATCCGAACGAAGTACTTG





1285
P3H2
2710482
TCAGGAAATTTAACGAAGCAGACTC





1286
P3H2
2710482
CACTCAAAGAGTGGGCGGGTCTTTC





1287
P3H2
2710509
TCTACCGATAGTCCGTGAAGCTTGT





1288
P3H2
2710509
TGTCTTACGGCCTGGGATACACTCC





1289
P3H2
2710509
AAAGCAACTTCTATGTCTTACGGCC





1290
P3H2
2710509
CCGACCAGACATACTTCGATAACGT





1291
P3H2
2710494
GGGTAGGTACGACTGTTGACAAACA





1292
P3H2
2710494
ACAAACAACCTAGGTCTCCGGTTGC





1293
P3H2
2710494
GGACGAATGTGTAAAGCTCTGATAT





1294
P3H2
2710494
GTCTCCGGTTGCTTACGACCTTCCT





1295
P3H2
2710540
ACAACCCCGCCCGCGCGACAATAGC





1296
P3H2
2710540
GAACAACCCCGCCCGCGCGACAATA





1297
P3H2
2710540
GACGGGGAAAAGGCGAGGAACAACC





1298
P3H2
2710540
ACCCCGCCCGCGCGACAATAGCGTC





1299
P3H2
2710504
TTGCAGTATTCGACCTCAGACTCGA





1300
P3H2
2710504
TTTGCAGTATTCGACCTCAGACTCG





1301
P3H2
2710504
GACCTCAGACTCGACTATTTTAGTC





1302
P3H2
2710495
ACTGTAGTCGCTTTTCCGAGCTTCC





1303
P3H2
2710495
AGACCAATACTTCCAGCTCAGGGTG





1304
P3H2
2710495
TATGTGTGTACCAGACGGCTTGTCG





1305
P3H2
2710495
TCAGGGTGACTTCTCGCGAGCAGAC





1306
P3H2
2710497
ACCCCTACCAAGAATCGTAACTGAT





1307
P3H2
2710497
ACTACTGCATAGAAGAACATAAACG





1308
P3H2
2710497
AGAATCGTAACTGATCTCAAGAGTC





1309
P3H2
2710497
TCTGGACTACTTAAGTATCAATAGT





1310
P3H2
2710546
CGGTCCGTGCCGGAGGCGGAGAGTC





1311
P3H2
2710488
CATACTCTGGAGTCAGGGAGATACT





1312
P3H2
2710488
TACTCTGGAGTCAGGGAGATACTAC





1313
P3H2
2710488
ACTCTGGAGTCAGGGAGATACTACC





1314
P3H2
2710488
TCTGGAGTCAGGGAGATACTACCTT





1315
P3H2
2710489
GGACCGAAGGTTCCAGTTGATGGTC





1316
P3H2
2710489
GGTAGGACCGAAGGTTCCAGTTGAT





1317
P3H2
2710489
ACCCTCCGTCGTGTGGTAGGACCGA





1318
P3H2
2710489
GTACCCTCCGTCGTGTGGTAGGACC





1319
P3H2
2710505
CGGGACCTCACACGGTTTCGGATAG





1320
P3H2
2710505
ACACCTAATGATACTCTCAGACGAC





1321
P3H2
2710505
AACTGGGCCGTAGGTAACTCCGGTC





1322
P3H2
2710505
AACCACTCATACACTTTCGGGACCT





1323
P3H2
2710545
CTCGCCGGTCTAGCGCCGCCTCAGC





1324
P3H2
2710545
GACCCCGAGCGCCTCGCCGGTCTAG





1325
P3H2
2710545
TCAGCCGCGCGAAGGGGCTCCCTTC





1326
P3H2
2710545
TCGCGGCCGCCAGTGGACCCCGAGC





1327
P3H2
2710476
CCGCATTACTAGTGGGTCCGAGGCC





1328
P3H2
2710476
GCGACGGAGTCCATAGTACCCGCAT





1329
P3H2
2710476
GTGCACACGAGGTCAAGATTTTAAT





1330
P3H2
2710476
GAATCCACGATTGCCGGTACTCGAG





1331
P3H2
2710486
AGGTCTCCACCAAGAGTGATTTCTC





1332
P3H2
2710486
AATGTCTGGGGCTTTCTTTTACGAT





1333
P3H2
2710486
CAATACGCTCATAACGGTACCACTG





1334
P3H2
2710486
CCGACCTTAAACAATACGCTCATAA





1335
P3H2
2710485
GTACCGGACTTCTTATATCGGGTCA





1336
P3H2
2710485
ATGGAGTCTATCCTAGGTACCTTAC





1337
P3H2
2710485
TAGGTACCTTACCAGTTTTTGGGAG





1338
P3H2
2710485
ACCAGTTTTTGGGAGGTACCGGACT





1339
P3H2
2710541
GACGCCCTTTAGGCGTGCGCGACAC





1340
P3H2
2710541
CGCCCTTTAGGCGTGCGCGACACGG





1341
P3H2
2710541
CGGACGCCCTTTAGGCGTGCGCGAC





1342
P3H2
2710541
CCGCGGACGCCCTTTAGGCGTGCGC





1343
P3H2
2710484
CCACTTCCGTCAGTGGTTCCCTTTC





1344
P3H2
2710484
TTTACACCCGCGTACTAGTCGAAGA





1345
P3H2
2710484
CTCCTCTCTTGGGAGTACCCCACTT





1346
P3H2
2710484
TTTTACACCCGCGTACTAGTCGAAG





1347
P3H2
2710510
GTAACTCTTAATGTCCCGCTGTCGA





1348
P3H2
2710510
CACAACTTCGTAACGTCAACCATCT





1349
P3H2
2710510
TAATGTCCCGCTGTCGACCACAACT





1350
P3H2
2710510
CGTAACGTCAACCATCTGTCTCTTC





1351
P3H2
2710475
AAACACGAACACAGACTAAACAAAT





1352
P3H2
2710475
TCTAAACACGAACACAGACTAAACA





1353
P3H2
2710475
GACTAAACAAATTATTTCCCTCCGA





1354
P3H2
2710475
GAGTAACGACGATAGGTCGTGTGTC





1355
P3H2
3164926
TTTTATACACCTATGAGGTAAACCG





1356
P3H2
3164926
TATACACCTATGAGGTAAACCGTTC





1357
P3H2
3164926
TAACCTTATTAACCACCTTGTCCGG





1358
P3H2
3164926
ACCTACTAGGTCTTTAAAATCTTCC





1359
P3H2
2710549
GTAGGTGTGGTTCAACCTGCTTTTC





1360
P3H2
2710549
GGGACTAGGTTACGGGCCTGTGTGT





1361
P3H2
2710549
TGTAGGTGTGGTTCAACCTGCTTTT





1362
P3H2
2710549
ACTAGGTTACGGGCCTGTGTGTAGG





1363
POTEB2
3612777
TCTTTCTTCTTCTAGAGAACGCACT





1364
POTEB2
3612777
CTTACTTCTTCGTAATTGCTTTTGG





1365
POTEB2
3612777
TCTTCTTCTAGAGAACGCACTTTTG





1366
POTEB2
3612777
TCTTCTAGAGAACGCACTTTTGTCG





1367
POTEB2
3612778
CTAAGACTGATTATTTGTTTTCGTC





1368
POTEB2
3612778
TTACTATGGGTCTTTGTTGAAAGAC





1369
POTEB2
3612778
TCTACTCTAAGACTGATTATTTGTT





1370
POTEB2
3612778
CGTCTATCTTCACCGACTTTTCCTT





1371
POTEB2
3612779
TACCTTCATTAGGACACCCTAATGG





1372
POTEB2
3612779
CCTTCATTAGGACACCCTAATGGTC





1373
POTEB2
3612779
TAGGACACCCTAATGGTCTTTTGGA





1374
POTEB2
3612779
TTCGTACCTTCATTAGGACACCCTA





1375
POTEB2
3612781
TTGGTCTTTATTTATTCCTGACACT





1376
POTEB2
3612781
GGTCTTTATTTATTCCTGACACTAT





1377
POTEB2
3612781
TCTTTATTTATTCCTGACACTATCT





1378
POTEB2
3612781
TTATTTATTCCTGACACTATCTCTC





1379
POTEB2
3612782
TCAGTCACTTTTATCGGTCGGTCTC





1380
POTEB2
3612782
AGTGTTTCCGAATTTCAGTCACTTT





1381
POTEB2
3612782
CCTTCTCAGTGTTTCCGAATTTCAG





1382
POTEB2
3612782
TTTCAGTCACTTTTATCGGTCGGTC





1383
POTEB2
3612786
CTTAATGAAAGACTGATATTTCTTT





1384
POTEB2
3612786
CTACGATTTTTAGAGAAGACTTTTG





1385
POTEB2
3612786
TAGAGAAGACTTTTGTCGTTAGGTC





1386
POTEB2
3612786
ACACTTAATGAAAGACTGATATTTC





1387
POTEB2
3612787
GTCTCTTTCAATCGTGCCGAAGACG





1388
POTEB2
3612787
TATGTCTCTTTCAATCGTGCCGAAG





1389
POTEB2
3612787
TGCCGAAGACGTATTCCTCCGTCGT





1390
POTEB2
3612787
CTCTTTCAATCGTGCCGAAGACGTA





1391
POTEB2
3612790
AAACGAACCGCATGTACTTGTTTTT





1392
POTEB2
3612790
AAAACGAACCGCATGTACTTGTTTT





1393
POTEB2
3612790
GAAAACGAACCGCATGTACTTGTTT





1394
POTEB2
3612791
TGGCGAGATGTGATACGATAGATGT





1395
POTEB2
3612791
ACCTTGTACCGCGACTACCTTTATA





1396
POTEB2
3612791
ACCGCGACTACCTTTATAAGTTCTA





1397
POTEB2
3612791
CTACCTTTATAAGTTCTACTCATAC





1398
POTEB2
3612795
GTTCTCGTTGCACCCGTGAACCCCT





1399
POTEB2
3612795
GACTGTACTTGTTCTCCCTGTTCGT





1400
POTEB2
3612795
GAAGTACCTCGGCTCCATGGTGCAG





1401
POTEB2
3612795
GTGAACCCCTCTGATGCTGCTGTCG





1402
POTEB2
3612796
CGTTCACCACGACAGTGACGAAGGG





1403
POTEB2
3612796
TGAGTCCTCGTTCTACCCGTTCACC





1404
POTEB2
3612796
CCCGTTCACCACGACAGTGACGAAG





1405
POTEB2
3612796
TCACCACGACAGTGACGAAGGGGAC





1406
POTEB2
3612798
CACCGACTCCAAACAAGTTACGGGC





1407
POTEB2
3612798
CCAAACAAGTTACGGGCGACGGAGA





1408
POTEB2
3612798
ACTCCAAACAAGTTACGGGCGACGG





1409
POTEB2
3612798
CAAGTTACGGGCGACGGAGACGACA





1410
POTEB2
3800384
TCTTTCTTCTTCTAGAGAACGCACT





1411
POTEB2
3800384
CTTTCTTCTTCTAGAGAACGCACTT





1412
POTEB2
3800384
TCTTCTTCTAGAGAACGCACTTTTG





1413
POTEB2
3800384
TCTTCTAGAGAACGCACTTTTGTCG





1414
POTEB2
3800387
TTCGTACCTTCATTAGGACACCCTA





1415
POTEB2
3800387
CCTTCATTAGGACACCCTAATGGTC





1416
POTEB2
3800387
TAGGACACCCTAATGGTCTTTTGGA





1417
POTEB2
3800387
TACCTTCATTAGGACACCCTAATGG





1418
POTEB2
3800392
TAGAGAAGACTTTTGTCGTTAGGTC





1419
POTEB2
3800392
ACACTTAATGAAAGACTGATATTTC





1420
POTEB2
3800392
CTTAATGAAAGACTGATATTTCTTT





1421
POTEB2
3800392
CTACGATTTTTAGAGAAGACTTTTG





1422
POTEB2
3800395
GAAAACGAACCGCATGTACTTGTTT





1423
POTEB2
3800395
AAAACGAACCGCATGTACTTGTTTT





1424
POTEB2
3800395
AAACGAACCGCATGTACTTGTTTTT





1425
POTEB2
3800396
GAATATACCACGACTATAACTTAGT





1426
POTEB2
3800396
TGACGAGAATATACCACGACTATAA





1427
POTEB2
3800396
CGGTTTCGTGACGAGAATATACCAC





1428
POTEB2
3800396
CGAGAATATACCACGACTATAACTT





1429
POTEB2
3914572
AAACGAACCGCATGTACTTGTTTTT





1430
POTEB2
3914572
GAAAACGAACCGCATGTACTTGTTT





1431
POTEB2
3914572
AAAACGAACCGCATGTACTTGTTTT





1432
POTEB2
3914576
ACACTTAATGAAAGACTGATATTTC





1433
POTEB2
3914576
TAGAGAAGACTTTTGTCGTTAGGTC





1434
POTEB2
3914576
CTACGATTTTTAGAGAAGACTTTTG





1435
POTEB2
3914576
CTTAATGAAAGACTGATATTTCTTT





1436
POTEB2
3914579
AGTGTTTCCGAATTTCAGTCACTTT





1437
POTEB2
3914579
CCTTCTCAGTGTTTCCGAATTTCAG





1438
POTEB2
3914579
TTTCAGTCACTTTTATCGGTCGGTC





1439
POTEB2
3914579
TCAGTCACTTTTATCGGTCGGTCTC





1440
POTEB2
3914582
TTCGTACCTTCATTAGGACACCCTA





1441
POTEB2
3914582
CCTTCATTAGGACACCCTAATGGTC





1442
POTEB2
3914582
TACCTTCATTAGGACACCCTAATGG





1443
POTEB2
3914582
TAGGACACCCTAATGGTCTTTTGGA





1444
RP11-
3612740
TATACTTTTGGATAAGACCAGATTT



403B2.10







1445
RP11-
3612740
ATACTTTTGGATAAGACCAGATTTA



403B2.10







1446
RP11-
3612741
ACCCGAGACTAGTCACGGACAACGC



403B2.10







1447
RP11-
3612741
CCCGAGACTAGTCACGGACAACGCA



403B2.10







1448
RP11-
3612741
CACCCGAGACTAGTCACGGACAACG



403B2.10







1449
RP11-
3612743
AAGAGATGGAACTCACGCGGTCCGC



403B2.10







1450
RP11-
3612743
ACCTCAGAAATTCTAAAAGAGATGG



403B2.10







1451
RP11-
3612743
TGGACCTCGCTCTCGGCGGATGGAC



403B2.10







1452
RP11-
3612743
AGATGGAACTCACGCGGTCCGCGCC



403B2.10







1453
RP11-
3612746
TTTACGTCAACTTTCTATAAAGTAT



403B2.10







1454
RP11-
3612746
CGTCAACTTTCTATAAAGTATTTCC



403B2.10







1455
RP11-
3612746
TACGTCAACTTTCTATAAAGTATTT



403B2.10







1456
RP11-
3612746
TCAACTTTCTATAAAGTATTTCCTT



403B2.10







1457
RP11-
3612750
CTTCTGAAACTTGCGTGAGGAGTCT



403B2.10







1458
RP11-
3612750
CGACAGCATTTTTCGCGTCTCTTCT



403B2.10







1459
RP11-
3612750
GAGGGTGGACGATTCCATCGACGGG



403B2.10







1460
RP11-
3612750
CGACGGGGATTAGATTCAGCTTACC



403B2.10







1461
RP11-
3612752
CCTGATTAACGTCCTCGGTAATATC



403B2.10







1462
RP11-
3612752
GACCTGATTAACGTCCTCGGTAATA



403B2.10







1463
RP11-
3612752
ACCTGATTAACGTCCTCGGTAATAT



403B2.10







1464
RP11-
3612754
TGTATGTCGACATGTAGTCTTTGTC



403B2.10







1465
RP11-
3612754
ATGAGACCCTGTATGTCGACATGTA



403B2.10







1466
RP11-
3612754
GTATGTCGACATGTAGTCTTTGTCT



403B2.10







1467
RP11-
3612754
AGACCCTGTATGTCGACATGTAGTC



403B2.10







1468
RP11-
3612758
CCAAGTGAAGGTAATGTCATACTCA



403B2.10







1469
RP11-
3612758
ACCGTTTTTAACAGACTGAGTGTCT



403B2.10







1470
RP11-
3612758
ATGTCATACTCACCGTTTTTAACAG



403B2.10







1471
RP11-
3612758
GTTTTCTTCCAAGTGAAGGTAATGT



403B2.10







1472
RP11-
3612760
AGACGGTACGTTTAAATGCGAATCA



403B2.10







1473
RP11-
3612762
CAGCGCCTAAAGTAGTCTCCAACCT



403B2.10







1474
RP11-
3612762
AGCGCCTAAAGTAGTCTCCAACCTC



403B2.10







1475
RP11-
3612762
TCAGCGCCTAAAGTAGTCTCCAACC



403B2.10







1476
RP11-
3800341
TATACTTTTGGATAAGACCAGATTT



403B2.10







1477
RP11-
3800341
ATACTTTTGGATAAGACCAGATTTA



403B2.10







1478
RP11-
3800343
CGACGGGGATTAGATTCAGCTTACC



403B2.10







1479
RP11-
3800343
CATCGACGGGGATTAGATTCAGCTT



403B2.10







1480
RP11-
3800343
GACGGGGATTAGATTCAGCTTACCC



403B2.10







1481
RP11-
3800343
TCGACGGGGATTAGATTCAGCTTAC



403B2.10







1482
RP11-
3800345
CTGAAACTTGCGTGAGGAGTCTCAG



403B2.10







1483
RP11-
3800345
CTTCTGAAACTTGCGTGAGGAGTCT



403B2.10







1484
RP11-
3800345
TGAAACTTGCGTGAGGAGTCTCAGG



403B2.10







1485
RP11-
3800345
TCTGAAACTTGCGTGAGGAGTCTCA



403B2.10







1486
RP11-
3800349
AATAGTAGAAAACGACAGCATTTTT



403B2.10







1487
RP11-
3800349
ACGACAGCATTTTTCGCGTCTCTTC



403B2.10







1488
RP11-
3800349
ACAGCATTTTTCGCGTCTCTTCTTT



403B2.10







1489
RP11-
3800349
GAATAGTAGAAAACGACAGCATTTT



403B2.10







1490
RP11-
3800351
CCCGAGACTAGTCACGGACAACGCA



403B2.10







1491
RP11-
3800351
AAGTTTATTTCGACCTGATTAACGT



403B2.10







1492
RP11-
3800351
GAAGTTTATTTCGACCTGATTAACG



403B2.10







1493
RP11-
3800351
CTCACCCGAGACTAGTCACGGACAA



403B2.10







1494
RP11-
3800355
ACCGTTTTTAACAGACTGAGTGTCT



403B2.10







1495
RP11-
3800355
GTTTTCTTCCAAGTGAAGGTAATGT



403B2.10







1496
RP11-
3800355
ATGTCATACTCACCGTTTTTAACAG



403B2.10







1497
RP11-
3800355
CCAAGTGAAGGTAATGTCATACTCA



403B2.10







1498
RP11-
3800363
AGACGGTACGTTTAAATGCGAATCA



403B2.10







1499
RP11-
3800365
GTCGGCGGCGGGTGCCGTGCCGTCG



403B2.10







1500
RP11-
3800365
TCGGCGGCGGGTGCCGTGCCGTCGG



403B2.10







1501
RP11-
3914598
CGACGGGGATTAGATTCAGCTTACC



403B2.10







1502
RP11-
3914598
CTTCTGAAACTTGCGTGAGGAGTCT



403B2.10







1503
RP11-
3914598
GAGGGTGGACGATTCCATCGACGGG



403B2.10







1504
RP11-
3914598
TGAAACTTGCGTGAGGAGTCTCAGG



403B2.10







1505
RP11-
3914599
ACTACTAAGGGCGTGTCTCGTTCCT



403B2.10







1506
RP11-
3914599
AAGGGCGTGTCTCGTTCCTACCCAG



403B2.10







1507
RP11-
3914599
GCGTGTCTCGTTCCTACCCAGATAT



403B2.10







1508
RP11-
3914599
AGGACACTACTAAGGGCGTGTCTCG



403B2.10







1509
RP11-
3914604
TCGTCTTTACTGAAGTAGACAATAT



403B2.10







1510
RP11-
3914604
TCTTTACTGAAGTAGACAATATAGA



403B2.10







1511
RP11-
3914604
CAATCGTCTTTACTGAAGTAGACAA



403B2.10







1512
RP11-
3914604
GTCTTTACTGAAGTAGACAATATAG



403B2.10







1513
RP11-
3914605
GACTCATGAGACCCTGTATGTCGAC



403B2.10







1514
RP11-
3914605
TCATGAGACCCTGTATGTCGACATG



403B2.10







1515
RP11-
3914605
ACTCATGAGACCCTGTATGTCGACA



403B2.10







1516
RP11-
3914605
AGACTCATGAGACCCTGTATGTCGA



403B2.10







1517
RP11-
3914609
CCAAGTGAAGGTAATGTCATACTCA



403B2.10







1518
RP11-
3914609
ATGTCATACTCACCGTTTTTAACAG



403B2.10







1519
RP11-
3914609
ACCGTTTTTAACAGACTGAGTGTCT



403B2.10







1520
RP11-
3914609
GTTTTCTTCCAAGTGAAGGTAATGT



403B2.10







1521
RP11-
3914611
AATAGTAGAAAACGACAGCATTTTT



403B2.10







1522
RP11-
3914611
ACAGCATTTTTCGCGTCTCTTCTTT



403B2.10







1523
RP11-
3914611
GAATAGTAGAAAACGACAGCATTTT



403B2.10







1524
RP11-
3914611
ACGACAGCATTTTTCGCGTCTCTTC



403B2.10







1525
RP11-
3915491
AGACGGTACGTTTAAATGCGAATCA



403B2.10







1526
RP11-
3915497
GTTTTCTTCCAAGTGAAGGTAATGT



403B2.10







1527
RP11-
3915497
ACCGTTTTTAACAGACTGAGTGTCT



403B2.10







1528
RP11-
3915497
CCAAGTGAAGGTAATGTCATACTCA



403B2.10







1529
RP11-
3915497
ATGTCATACTCACCGTTTTTAACAG



403B2.10







1530
RP11-
3915500
GAAGTTTATTTCGACCTGATTAACG



403B2.10







1531
RP11-
3915500
CTCGGTAATATCCTTGAAACGAACG



403B2.10







1532
RP11-
3915500
AAGTTTATTTCGACCTGATTAACGT



403B2.10







1533
RP11-
3915500
CGGTAATATCCTTGAAACGAACGAG



403B2.10







1534
RP11-
3915503
TGAAACTTGCGTGAGGAGTCTCAGG



403B2.10







1535
RP11-
3915503
TCTGAAACTTGCGTGAGGAGTCTCA



403B2.10







1536
RP11-
3915503
CTGAAACTTGCGTGAGGAGTCTCAG



403B2.10







1537
RP11-
3915503
CTTCTGAAACTTGCGTGAGGAGTCT



403B2.10







1538
SPINK1
2880434
GTTACTTGAATTACCTACGTGGTTC





1539
SPINK1
2880434
GAATAGGGTTACTTACGCACAATAC





1540
SPINK1
2880434
AGACACCCTGACTACCTTTATGAAT





1541
SPINK1
2880434
TCTATATACTGGGACAGACACCCTG





1542
SPINK1
2880452
CAAAAGTTGACTGGAGACCTGCGTC





1543
SPINK1
2880452
ACCTCCGGTCCGATACTGTGTCTCA





1544
SPINK1
2880452
CCCTCTAGACACTATATCGGGTCAT





1545
SPINK1
2880452
GAAGACTTCTCTGCACCATTCACGC





1546
SPINK1
2880439
AAGAAGAGTCACGGAACCGGGACAA





1547
SPINK1
2880439
TACTTCCATTGTCCGTAGAAAGAAG





1548
SPINK1
2880439
CGTAGAAAGAAGAGTCACGGAACCG





1549
SPINK1
2880439
CGGAACCGGGACAACTCAGATAGAC





1550
SPINK1
2880430
TCCAAAACTTTAGGGTAGTCCAGTG





1551
SPINK1
2880430
CCAAAACTTTAGGGTAGTCCAGTGG





1552
SPINK1
2880430
GTTCCAAAACTTTAGGGTAGTCCAG





1553
SPINK1
2880430
TTGGTTCCAAAACTTTAGGGTAGTC





1554
SPINK1
2880433
CGATTATAAGGGACAGAATGAACAC





1555
SPINK1
2880433
AGTACTCGTACATATCCTACCGAAG





1556
SPINK1
2880433
TTTCTTATCTTACGGTCGGCCCACG





1557
SPINK1
2880433
TCGTTGACTTTGGAATCGTACAGAG





1558
SPINK1
2880429
TAACAACTTATTTACATAGACTTAT





1559
SPINK1
2880429
CCGGAATAACAACTTATTTACATAG





1560
SPINK1
2880429
AATAACAACTTATTTACATAGACTT





1561
SPINK1
2880429
GGAATAACAACTTATTTACATAGAC





1562
SPINK1
2880435
GTGACCTCGACTGAGGGACCCTTCT





1563
SPINK1
2880435
GACCTCGACTGAGGGACCCTTCTCT





1564
SPINK1
2880435
TTGTGACCTCGACTGAGGGACCCTT





1565
SPINK1
2880435
ATTGTGACCTCGACTGAGGGACCCT





1566
TTN
2589513
GGACGCCTTGGTTTACTATTCTGAC





1567
TTN
2589513
GGATATGCTCTGGTCGTACACTTTG





1568
TTN
2589513
ACACTTTGGGTTCCCCTGTCGATAA





1569
TTN
2589513
CGGACACTATATCGTTTTCTATGAG





1570
TTN
2589527
TAGATATTGGTAACCATCTTTTCTC





1571
TTN
2589527
TTTTTCGTAGATATTGGTAACCATC





1572
TTN
2589527
TCGTAGATATTGGTAACCATCTTTT





1573
TTN
2589527
TCTTTTCTCTGAGGGGGACAACTTC





1574
TTN
2589398
GGTCACTGATAGGAGCGTCTTTTAC





1575
TTN
2589398
TCTCGATAACGGTCCTGGCGCCATT





1576
TTN
2589398
CGCCATTTGTAATCGGGTGGAAGAC





1577
TTN
2589398
AGACCCGAGCAGGTTTCGTACTACC





1578
TTN
2589323
GGCACACAATCGGTTCTTACGTCGT





1579
TTN
2589323
CCAGCGACCGACTTCACGTTGATGT





1580
TTN
2589323
GTGGCACTGACGAGAGTCACTTCCT





1581
TTN
2589323
GTCGTTCCAACACCCGATGTAGTAT





1582
TTN
2589361
AGAGAGACTCAACCTGTTTTGGACT





1583
TTN
2589361
GCGGTTCAGGTGGACAATTGGACTT





1584
TTN
2589361
TCACACGAGCTCATTTCAGAGAAGT





1585
TTN
2589361
CTCTTCACTAGGAGCCAGGGAACGT





1586
TTN
2589371
GTAACAACTCTTTGCCCTGTGAAGG





1587
TTN
2589371
CTCGGATGACATCGGGTTATAGGTA





1588
TTN
2589371
TGGTGGACCGTTTAACATAGTCGAT





1589
TTN
2589371
TGGATGGAGTTAAGTCTCGGATGAC





1590
TTN
2589355
CACAGTTCCGAATATTACTCTTTCC





1591
TTN
2589355
GCTAGGTTCTCACAACCCACAAGGA





1592
TTN
2589355
CAAGGCACAGTTCCGAATATTACTC





1593
TTN
2589355
TTTTCGCTAGGTTCTCACAACCCAC





1594
TTN
2589748
AAGGAAACCGGTTTGACTTTCTAAG





1595
TTN
2589748
GTGGAAGTGGATTGACCTCCTAAAG





1596
TTN
2589748
CTCGGACACGTCAGGCGATAGTTAT





1597
TTN
2589748
ATCGTTGTGAACTCTAAGGAAACCG





1598
TTN
2589789
TTTACGGACAAATAGGTGGACGGTA





1599
TTN
2589789
AAAGTTACGGCCCAAAGACCTTGTC





1600
TTN
2589789
CACAGAGGACTAGTCCTTTACGGAC





1601
TTN
2589789
TCCTTTACGGACAAATAGGTGGACG





1602
TTN
2589500
GACACCCTGTCTATTCTGGAGTCCT





1603
TTN
2589500
ACCGTTCTTTGCGTACGATTAGGAT





1604
TTN
2589500
AGTCTATAACCTGTCATGTGGACAC





1605
TTN
2589500
CCTTTTGAAGTTCTAATATGACCAC





1606
TTN
2589459
CACTTCCTAGAGTATGGTTTACCAC





1607
TTN
2589459
CACTTATGAAGAAGGCACAATTTCG





1608
TTN
2589459
ACCCTCCTCTTGTATATATGGTCAG





1609
TTN
2589459
GATGGACCTGGTACGTTTCTATAAT





1610
TTN
2589482
CTCAAATGACAGTGACCAGATGTCT





1611
TTN
2589482
TGGCACGTCTCTCAACACTCAAATG





1612
TTN
2589482
CATGGATAAGGCACACTCACGTTCT





1613
TTN
2589482
GGACCCGGTCATGCATTGAATCTTC





1614
TTN
2589524
AGTCCAAGGTCTTTTTCACCTCGAA





1615
TTN
2589524
TTTCACCTCGAATGTGGAGACTTTC





1616
TTN
2589524
GGTCTTTTTCACCTCGAATGTGGAG





1617
TTN
2589524
CCAAGGTCTTTTTCACCTCGAATGT





1618
TTN
2589315
CAGCTACAGTGGTTTAGGTGACAAT





1619
TTN
2589315
CCATCGGCTGAGTGACCTATACAAG





1620
TTN
2589315
GAGTCTTCACGGAAACCACGGACGT





1621
TTN
2589315
TCGGCACTGACATGTTCTGGAGTCT





1622
TTN
2589486
GAGTAATATTTTCTAACGTCCGACC





1623
TTN
2589486
AGAGCACGATCTGAAAAACACCTTC





1624
TTN
2589486
CTACCTTCATATGTGTCTGAGTAAT





1625
TTN
2589486
CTTATACGAACGCCCCATCTTCTGT





1626
TTN
2589512
TTCTTTCACGTTCGAAACTACGTCT





1627
TTN
2589512
CGCACTTCAACTTGACGAATTTGGT





1628
TTN
2589512
CTGTAAGGACCTGTTACCTTTGACT





1629
TTN
2589512
CCTGCAATGGTAAATACTCTTTCTT





1630
TTN
2589475
CGTATACAACTACTTGGACATTTAT





1631
TTN
2589475
AATACCTGAAACACTGACTAGATCT





1632
TTN
2589475
GACTAGATCTTAAGTGTCAAGGACT





1633
TTN
2589475
ACACGAGCATTGTTTACACCGGGAC





1634
TTN
2589791
TGTCTCGCTACGTCCTCTTATGTGG





1635
TTN
2589791
CCTTGTCCTCAAGACAGTGAGAGAT





1636
TTN
2589791
AAATAGAGACTCTGGTCTGTCTCGC





1637
TTN
2589791
CTGCTACAACTACGGGTGACCATAT





1638
TTN
2589650
CTTTTCTGAAGAGCTTCTTACCTCC





1639
TTN
2589650
TTTAACTTTTCTGAAGAGCTTCTTA





1640
TTN
2589650
TTTCTGAAGAGCTTCTTACCTCCTT





1641
TTN
2589650
AACTTTTCTGAAGAGCTTCTTACCT





1642
TTN
2589616
GTTAATGGTTTGCACTTTTTCTCGT





1643
TTN
2589616
AGTTAATGGTTTGCACTTTTTCTCG





1644
TTN
2589616
TTAATGGTTTGCACTTTTTCTCGTC





1645
TTN
2589381
CGGAAATGACATTGACTGGAACAAC





1646
TTN
2589381
CCACGATAGTCACGAGGTAGTCTTT





1647
TTN
2589381
TCGCTCTAGATGGAAGCTTCAGAAC





1648
TTN
2589381
GGTACAATTACAGGGTCTTACACGG





1649
TTN
2589318
TGACTAGTCACCATGGCTCACGTAT





1650
TTN
2589318
ACTCGCTTATGTCGCTTAGTTAACG





1651
TTN
2589318
ACCTGGTTTGGGTACATGCTACCAC





1652
TTN
2589318
AAGTCTCAACGACGGCACTTGCACT





1653
TTN
2589615
CTTTTCTTCATCGTGGTGGACAATC





1654
TTN
2589615
ATGGACAGGGATCTTTTCTTCATCG





1655
TTN
2589615
CTCCCAACAGCGTCTTCTTTTTCAT





1656
TTN
2589615
TTTCTTCATCGTGGTGGACAATCTC





1657
TTN
2589418
AGACATACCTTATTCACTAGGAGAC





1658
TTN
2589418
TTCTAATATAAAAGGCCTATGTACG





1659
TTN
2589418
GGTCACTGTAGACGTTCACGATTTT





1660
TTN
2589418
GACCACAGACTAAGTTACTTTCGGT





1661
TTN
2589458
AGGATGTCGCCTCCGTTACTGATAA





1662
TTN
2589458
GGTGGACATCTACATCTCCAAGTAT





1663
TTN
2589458
TCATGGTTAAGGCACACGCTCGTCT





1664
TTN
2589458
GCGGCGCCCATAATCACTTGGAAGA





1665
TTN
2589490
CCAGTAAGTCTTGCGAGTGGAACTC





1666
TTN
2589490
CTGAGGGTTCGAGAGCTTGGCTACC





1667
TTN
2589490
GGACCGCGTCTTCACTAAACCATAT





1668
TTN
2589490
GACTGACTTCCTGCCTTCTCTTAGG





1669
TTN
2589784
CACTCCGCGGGTTCTAAAAGGACGT





1670
TTN
2589784
TAAAAGGACGTAGAAGTCCTGCAGT





1671
TTN
2589784
GAAGTCCTGCAGTGACATTTCACGC





1672
TTN
2589784
TCACGCCACTGTGCCGAGTTAAGGA





1673
TTN
2589687
ACTGTTGTATACCTAAAGAATAAGT





1674
TTN
2589687
CACTGTTGTATACCTAAAGAATAAG





1675
TTN
2589460
GTGACCTCTTATTCGAGCCGAGTCG





1676
TTN
2589460
CTGGACCTCTGAGTACTGTAATAAC





1677
TTN
2589460
CACAGGCACGTCTACGGCCTTAAAT





1678
TTN
2589460
CTCGACAGGGTCAAGGTTGACAATC





1679
TTN
2589759
GTCACCGGAGATATAGACATTTCGT





1680
TTN
2589759
CGACGAACACGAAGACCTTCTGTGT





1681
TTN
2589759
CGAGTTCCCGAAGGACGGTAGAAAC





1682
TTN
2589759
TTTGGTTAAGCGACACGAGTTCCCG





1683
TTN
2589535
CTTTCATCGACAAGGGTTTTTCGGT





1684
TTN
2589535
TTTCATCGACAAGGGTTTTTCGGTC





1685
TTN
2589535
TTCATCGACAAGGGTTTTTCGGTCT





1686
TTN
2589819
TGGACGGCGCGGAATGAAATAATGT





1687
TTN
2589819
AACCTACGGTTCAACCGCCGTTGGG





1688
TTN
2589819
TCTACACCAATACTGACTATGATCG





1689
TTN
2589819
GACCACAAGGAGATTGGTGACCTAT





1690
TTN
2589647
TTCTTCTACCAATAAAGTCTTCTTT





1691
TTN
2589647
CGTATGTTTCTTCTACCAATAAAGT





1692
TTN
2589647
GTGTGTCTCCTCCTCCACAGTCAGT





1693
TTN
2589647
TTTTCTACAAGAAACGAAGAGTGTG





1694
TTN
2589642
GACTCGATGGACTCTTTGGTCGAGG





1695
TTN
2589642
TTTGGTCGAGGTCTTCTTCACCGGG





1696
TTN
2589642
GGGACTCGATGGACTCTTTGGTCGA





1697
TTN
2589642
CTCGATGGACTCTTTGGTCGAGGTC





1698
TTN
2589684
GAACCTCACATGTCATCGACCGTGG





1699
TTN
2589684
GCCCTCTGTGGACATGGAACCTCAC





1700
TTN
2589684
CATAGGCCGGAATTCTAGTAGTTAC





1701
TTN
2589684
AAACTCCACGTCTTGGGACAACCGT





1702
TTN
2589812
TCAGACGCATATGGACAACAAGAAG





1703
TTN
2589812
GAACCTCGAGGCTGAATGTAAGGGT





1704
TTN
2589812
CCTCGGACGACGTGGTGAACCTCGA





1705
TTN
2589812
TACCGTTCGCGTAGTTTGTACCTCT





1706
TTN
2589532
AACGAGGACTTCTCCTTTAACGAGG





1707
TTN
2589532
CCTCCTTGGTCTCCAAGGTGGAGGT





1708
TTN
2589532
CTTGGACTCCTTTAACGAGGACTTC





1709
TTN
2589532
GGACTTCTCCTTTAACGAGGACTTC





1710
TTN
2589330
GTCGTCTGAACGGACCCGTGATTAA





1711
TTN
2589330
TGGTTAAGGCACAAAGACGTCAATT





1712
TTN
2589330
TGAGTTACTGCCAACACGAGGGTAT





1713
TTN
2589330
GACTAGGTCACCAACGAGTTTATGT





1714
TTN
2589481
GGTACTGACACTCTCGACTTCTGGA





1715
TTN
2589481
TCAAAGGCTCACTCTCGGGTTTTAG





1716
TTN
2589481
CGTCGGTGTGGGAAGCAGTTTCAAC





1717
TTN
2589481
CTTCTGGACAGACGTTGACAATGAC





1718
TTN
2589821
AACGAGCAGAATACTAAGCGCTTCG





1719
TTN
2589821
GCCCGCTAAATGAACGTCACGACAT





1720
TTN
2589821
ACGACATTTACTCCGACCTTGGCAG





1721
TTN
2589821
AGCGCTTCGTAAACGCCTTCTGTCG





1722
TTN
2589421
ACCTGGTGGTCATCCTGGTCAATCA





1723
TTN
2589421
GGACCTGGTGGTCATCCTGGTCAAT





1724
TTN
2589421
GACCTGGTGGTCATCCTGGTCAATC





1725
TTN
2589707
AACCGTTTCTGTACACGAGTCGAGT





1726
TTN
2589707
CACGAGTTGGCTACGCTTAGTGAAC





1727
TTN
2589707
TCACAGTACAATGACCACGAGTTGG





1728
TTN
2589707
ACACACCCTTTGTGAGGAGTAAACT





1729
TTN
2589810
TAGTGATTAATAACAGGGACGGTGT





1730
TTN
2589810
GACGGTGTGGGTCACTAAGACCCCT





1731
TTN
2589810
CCCTTACCTGACACCAACGGGTTTT





1732
TTN
2589810
CATCAGTAATTTCTTCTACCATGAG





1733
TTN
2589417
CTACAGTCATACTTAAGGCCCAAAG





1734
TTN
2589417
GGACTACGTGGACTAGTCGGTTAAC





1735
TTN
2589417
CTGAGACGTAATCATTGGACCTTAT





1736
TTN
2589417
ACCCGATCTCAATGGTTTCTAGGAT





1737
TTN
2589308
GTGTCCGATGAACTAACTTTACGTT





1738
TTN
2589308
GACGACTCCATGGTCCTTGTCAGTT





1739
TTN
2589308
ACGTCTTATGTCCAAGGCGCAGGAT





1740
TTN
2589308
CACATTGTGGTGAGGTTGGTTCTAA





1741
TTN
2589345
CACATCGATATTTCCGTGATCTAGG





1742
TTN
2589345
GATCTAGGTAAATGTCAAGGTTCAG





1743
TTN
2589345
GAAACGACCAGTTCTGGGCTCTCAC





1744
TTN
2589345
TCGGATTCTACCCACGCACATTTGT





1745
TTN
2589422
GGTTTGCAAGTCTAAGGCCGTTTAT





1746
TTN
2589422
TGCGAAGTGGAGCTGAAGTCTCTAT





1747
TTN
2589422
GACCGGCAATGAGTCCGTTTGGTTT





1748
TTN
2589422
GCTCAACCACTTCGAAAACGGGAGT





1749
TTN
2589699
CATTGACGTGACATAGGCAGGTACA





1750
TTN
2589699
TGACGTGACATAGGCAGGTACAAAG





1751
TTN
2589699
TCATTGACGTGACATAGGCAGGTAC





1752
TTN
2589699
TTTCATTGACGTGACATAGGCAGGT





1753
TTN
2589538
GACGACTTCAACACCTTCTCGGTCT





1754
TTN
2589538
GAGGACGACTTCAACACCTTCTCGG





1755
TTN
2589538
CCTTCAACGGGATCTTCTCGGAGGA





1756
TTN
2589538
CTCGGACTCCTTCAACGGGATCTTC





1757
TTN
2589497
CAAAACGTGTTGACAGCGGACCTGG





1758
TTN
2589497
TTGACAGCGGACCTGGTCTGCCCAC





1759
TTN
2589497
TCTTCCGTTTTATGTGAGGGAACAA





1760
TTN
2589497
AGATCACGGGTGGAGGCTCAATTCG





1761
TTN
2589483
CCATATTTTAACACGAAGTCTTGTT





1762
TTN
2589483
CCAACTACAACCGTTCGGAGACTGT





1763
TTN
2589483
ATGATGCCGACTTGTTTGAAGAAAG





1764
TTN
2589483
TCGTCTTCGACTTACCAAATTTCTT





1765
TTN
2589778
GGGTTGTCCAGAAGCAGCCTAATAT





1766
TTN
2589778
CCAAAGTATTGTTAGCCGGGTAGGG





1767
TTN
2589778
CCCTATGTGCACTGCGGAAAAGTCT





1768
TTN
2589778
GGACTCCAAATGACCGAGAGGGAAA





1769
TTN
2589449
GTCACAAGGCTTTACAAGTGCAACT





1770
TTN
2589449
GAATCGTAAGGGTTTCGCCAGGCCC





1771
TTN
2589449
CAAGCTCCTCTGTGATAGTTTCAAT





1772
TTN
2589449
AAGGTTAGCGGAACCGAGTCACAAG





1773
TTN
2589304
CCGGAGAAGGACTGTAATTTACCAT





1774
TTN
2589304
ACGGTCTAACAACCTTCCGGAGAAG





1775
TTN
2589304
TAACCAGCAGGTCATGGACGGTACT





1776
TTN
2589304
CCAAGGTGTGAAGCCGAAGTACAAT





1777
TTN
2589344
AATGGTACTGACACGGAAAGGCTCC





1778
TTN
2589344
CGGTCTGTGACTGGAGGCATGATCT





1779
TTN
2589344
ACCCAGAGACACTGGTTGTTGACAT





1780
TTN
2589344
AGGACTTTTGCTACCACCTCGTGGT





1781
TTN
2589796
CTTCAATCACAAAGGGTACTGTGAC





1782
TTN
2589796
TAATTCGGTTCACTGTTTGTGTCTG





1783
TTN
2589796
TGACAAGGTCATTTTACCAAGGTAT





1784
TTN
2589796
AGGTATTCTCACACCTTTAATTCGG





1785
TTN
2589545
TTACGGGAACCGAGGAGGATTTTTC





1786
TTN
2589545
TCCGAGGGTATCTCCAACAAGGACT





1787
TTN
2589545
CGGTCTCCGAGGGTATCTCCAACAA





1788
TTN
2589545
GGATTTTTCGGACTTCAGGGAGGAC





1789
TTN
2589384
CTTTTGACCACCAAGAGGTTAATGT





1790
TTN
2589384
GGGTGGAGGGTTATAACACCTACAG





1791
TTN
2589384
ACCTACAGTCTGTGCTAAGTCATAG





1792
TTN
2589384
GTCATAGAGATTGAACCTGACTGGG





1793
TTN
2589510
CTTTTGCGAAGAATTGAAACGTGTT





1794
TTN
2589510
GGAATTACGTTAATGTTGACGGTAA





1795
TTN
2589510
CGACCACTTCAGGAGATGGTCCGGG





1796
TTN
2589510
CACCTTTTGCGAAGAATTGAAACGT





1797
TTN
2589502
CCTACCGTGATTCGTAAGTTACCAC





1798
TTN
2589502
CACACTTCATAGGTCCCTCGGGTTT





1799
TTN
2589502
CCTCGGGTTTTGTAAGGCAACCGAT





1800
TTN
2589502
GTGTGTTCACCGTTTGACTAGTAAC





1801
TTN
2589405
TAAGGAATTGTGAACACTTGGGTCG





1802
TTN
2589405
CCGACATAAGCATTTACAGTCTCAT





1803
TTN
2589405
AGACCAACTGTGATACCGGAAGGAA





1804
TTN
2589405
ACCAGTCTTTTCCTGTTCAACTAGA





1805
TTN
2589329
GTAATGGGACTGTACCCGTTCCGGT





1806
TTN
2589329
CTTTTCGTGTTCTACCCATTTTCAC





1807
TTN
2589329
CCGTAAGGTCTTGGATCGTTGTATT





1808
TTN
2589329
GTTGTCATATAGGAACTTTCTTCTC





1809
TTN
2589380
CGATGGTTAGGAAAACCGTGCTTCC





1810
TTN
2589380
GGTGATACCGTTTCCTCTTGGACAT





1811
TTN
2589380
CCGCCGAGTGGTTAATTCAGGATAT





1812
TTN
2589380
CGCCCACTTATATGGTAGTGACGAT





1813
TTN
2589413
ACACCAATGACCTGATGTTGTTCCT





1814
TTN
2589413
GGATATCTAAGGCACATTTTCGACT





1815
TTN
2589413
GGGATCAGACCTTATTCGGCCTAGC





1816
TTN
2589413
GTTCCTGGACGTGGTACATCTACAA





1817
TTN
2589845
TCGCTGATCATGACGACTCGAAGAG





1818
TTN
2589845
GTCACCTGCTATAAGGGACTTTCGG





1819
TTN
2589845
GCTACCGGCGCGATTTGACTGCTAG





1820
TTN
2589845
GGCCGCACGTCTAGAGGAAATCGCT





1821
TTN
2589700
AAGTAGTTATTTCACCGAAGGGAAT





1822
TTN
2589700
AGGAAAACGTAATCTCACACATCAC





1823
TTN
2589700
GGTCTTGAGAGTCGGTTCACCAAGT





1824
TTN
2589700
GGGTACTGACAGTGATGACCTTTAG





1825
TTN
2589445
AGGAGCAAACGAACTTCCGCAATTT





1826
TTN
2589445
TCAGGAATAACCAGTGCACAATCGG





1827
TTN
2589445
GAGGAGGAAACCTGTTACCACCGAG





1828
TTN
2589445
TACCACCGAGAGGTTAATGACCGAT





1829
TTN
2589787
GTTTGAGGGTTACCGTACAGAGAAA





1830
TTN
2589787
AGGGTTACCGTACAGAGAAATAGTC





1831
TTN
2589787
TTATGTAGTTTGAGGGTTACCGTAC





1832
TTN
2589787
GTAGTTTGAGGGTTACCGTACAGAG





1833
TTN
2589592
CTTCATCTTCTTAAGTAGTTTAATC





1834
TTN
2589592
AACTTTTTCAAGTATCCCATTATCT





1835
TTN
2589592
CCGCTCAAAGTACTTCATCTTCTTA





1836
TTN
2589592
CTTATAAAACTTCTTCCGCTCAAAG





1837
TTN
2589802
GTAAAATGCGCCCTCTTTTATACTG





1838
TTN
2589802
TCTCCAGAAGCACTGGAATGGACAT





1839
TTN
2589802
ACAAACTCCAACTCGACAGGGTGAG





1840
TTN
2589802
CAGGGTGAGACCTTAACTACAGGAC





1841
TTN
2589471
GAACCTGTTTCCGACTATACTAAGA





1842
TTN
2589471
AGGTGTCACTGATAACAACTATCAT





1843
TTN
2589471
CAACTATCATTCTCTTCACTGTGAC





1844
TTN
2589471
ACTTGAAGGACGGTGGCATTGGCCT





1845
TTN
2589416
TCAGGTGGACAATTAGGACTTCGTT





1846
TTN
2589416
TCAGCTAGATTGAACCGTCGGTGGT





1847
TTN
2589416
CCACTTAGTCTAGGTCGAGTACAAG





1848
TTN
2589416
AGTACAAGGCCTCGGTCAGGATCAT





1849
TTN
2589515
GGGTTCGTGTCCAAATAACGTCTAC





1850
TTN
2589515
CTGGAGGTGCCGATTTGAACAACAT





1851
TTN
2589515
TGAAAGGCTACGACCACTTATGTGG





1852
TTN
2589515
CATCGTTATAGGCACTCTCAGGGTT





1853
TTN
2589472
GTCTCCTTTAGGTCCGACACCTGTG





1854
TTN
2589472
GTCTGGGTGTCTCCTTTAGGTCCGA





1855
TTN
2589472
CGTCCCACGATCGTTTGGTTCGTCT





1856
TTN
2589472
GATCGTTTGGTTCGTCTGGGTGTCT





1857
TTN
2589305
ACCCGACTCGTCTGGAGCGTCTTGA





1858
TTN
2589305
GCGTCTTGACGATACAGATATTTCT





1859
TTN
2589305
AGTGTTATCCTCCAAACGACCTTCG





1860
TTN
2589305
CGACCTTCGATGACTCATACTTAAG





1861
TTN
2589424
GGATGAAAAAGGCTTAACGCCGACT





1862
TTN
2589424
AGGTCCAGGGCAACCTTGTGGTAAG





1863
TTN
2589424
ACAACTCTGTAGTCTCCGTGAACAA





1864
TTN
2589424
GGGTCACTGTATATGTCAATGGGCT





1865
TTN
2589609
CGGTCAAGGACGAGGATTCTTTCAC





1866
TTN
2589609
GTCAAGGACGAGGATTCTTTCACCT





1867
TTN
2589609
GGTCAAGGACGAGGATTCTTTCACC





1868
TTN
2589609
TCAAGGACGAGGATTCTTTCACCTC





1869
TTN
2589402
GTAGGGTGGACATTTACCTTTTTTC





1870
TTN
2589402
AAGTTAAGACTAGTATTTTCTACAC





1871
TTN
2589402
GGTTTCTAGGAATACGGTCTCGTTT





1872
TTN
2589402
GAGGCTTAACTTCGGGTACACATAC





1873
TTN
2589514
CGCCCGAGACTGGTAGTTGCTACGT





1874
TTN
2589514
GGACCTCACAAGTAGAACGCATTTT





1875
TTN
2589514
ACCTTTTGCGGTTGTTGGACCTCAC





1876
TTN
2589514
ACCGGCTTAACACGGTCCGCAGTAA





1877
TTN
2589807
GGCGACACCTCGAGTTCAGAGCTTT





1878
TTN
2589807
CGGACCATATGACGCTGACGATAAT





1879
TTN
2589807
CCATGACCGGGCTTCTGTTACAAAC





1880
TTN
2589807
GGACCTGTAGCACCTGACGTTTAGT





1881
TTN
2589375
TGGAAGGATTACCTGCCACCGACTT





1882
TTN
2589375
CCTAGGGTAACTGGGTGGACCTTTT





1883
TTN
2589375
CTTAAGGCACACTAGCGGTTTTTAC





1884
TTN
2589375
ACCCGATTCGGACTTATATGACCCC





1885
TTN
2589525
GGTGGACGAGGTGGATTCCTTCTAC





1886
TTN
2589525
GACGAGGTGGATTCCTTCTACACTT





1887
TTN
2589525
CGAGGTGGATTCCTTCTACACTTCC





1888
TTN
2589525
TGGACGAGGTGGATTCCTTCTACAC





1889
TTN
2589682
GGGTACCTACAAAATTGACCCTGGT





1890
TTN
2589682
GTGTTCATAGCATTTTCCTTGTGGA





1891
TTN
2589682
ATTGACCCTGGTTACATTGAAAGTG





1892
TTN
2589682
GTTACATTGAAAGTGTTCATAGCAT





1893
TTN
2589758
ACGCGAGTAGAACTCAGTCTCGAAT





1894
TTN
2589758
TCCCAGGGCGTCAACTTCGTGAACT





1895
TTN
2589758
AGAGGGTTGGATGTCGACGTCTAAC





1896
TTN
2589758
ACGTCTAACATGTCAGGGTCTTTTG





1897
TTN
2589820
TTCCTTTGGTGTCGGCACTGACTCT





1898
TTN
2589820
TTGGTGTCGGCACTGACTCTTTAAA





1899
TTN
2589820
CTTTGGTGTCGGCACTGACTCTTTA





1900
TTN
2589820
GTGTCGGCACTGACTCTTTAAATGA





1901
TTN
2589672
GACCGTCCCTTTATTTCGGAAGTCT





1902
TTN
2589672
GTCGAAGTCGAAACGATCACCCTGT





1903
TTN
2589672
ACCGATTTCGTCTAAGCCCTCTAAT





1904
TTN
2589672
ACCGACCTTCACTGTGATGGTTTAG





1905
TTN
2589429
TCCTTCCTCGTAAGATGTTTAAATC





1906
TTN
2589429
TCGTAAGATGTTTAAATCTCAATCT





1907
TTN
2589429
CCTCGTAAGATGTTTAAATCTCAAT





1908
TTN
2589429
TTCCTCGTAAGATGTTTAAATCTCA





1909
TTN
2589320
CACTCGGGTCGCTTCGAAGGTTGAA





1910
TTN
2589320
TCGGACGCGACCTGTGCACAGTTGT





1911
TTN
2589320
GGTGGGCCGTATGGACTTCTTCAAC





1912
TTN
2589320
ACTAATGGTCAAGGCCCACTGGCGT





1913
TTN
2589829
CGTCAACGATGACGATTTCGGTTTC





1914
TTN
2589829
TCCTTCGGCTCTTTTGACGGAACAG





1915
TTN
2589829
ACTCTTGATCTCTTTGATACCGATG





1916
TTN
2589829
GACGGAACAGATGTTATCGTCAACG





1917
TTN
2589754
GTCAATAAAATTGCACGTTTCATCC





1918
TTN
2589754
CGGTGTGGACAGTGATTTCCCCAAC





1919
TTN
2589754
TTCACCATGACTCCTCCAACGATGT





1920
TTN
2589754
GTCGACAACAGAGACTGCTTTTTGT





1921
TTN
2589769
CCATAGCTTTATTTAGAAATGATCT





1922
TTN
2589769
TTATTTAGAAATGATCTCGGTCTAC





1923
TTN
2589769
TAGAAATGATCTCGGTCTACTTTCT





1924
TTN
2589769
AGCTTTATTTAGAAATGATCTCGGT





1925
TTN
2589435
GGTCACTTGGATTCCTCACGTGCAT





1926
TTN
2589435
CTCTTGGAGAACTGTCACTTGGACT





1927
TTN
2589435
CACGTGCATGTGCTAAGGGTTTAAC





1928
TTN
2589435
GACCGGGAGGTCACCCTGGGTATTT





1929
TTN
2589367
TCGACGTTCCAATGATTCGAAGAAC





1930
TTN
2589367
TTGGTCGGCGAATCAAACCTGACAC





1931
TTN
2589367
TGAAAGGCATATTACCGTCATTTGT





1932
TTN
2589367
ACTACGGTTACACGTCTGAGAGTCG





1933
TTN
2589365
CATTGACCTGAGTATCTTTTAGTGC





1934
TTN
2589365
TCTTACGACGACCTGAATCACTTGG





1935
TTN
2589365
AGACTAACCTCTCAACGCGGACTCT





1936
TTN
2589365
TTTAGTGCTAATACTCAAGTCTCAA





1937
TTN
2589613
GGGTACATCTTCTTATAGAACATCT





1938
TTN
2589613
TTCTCCTCAAGTATTGACTCCTTCT





1939
TTN
2589613
TCCTTCTTCACCACGGTCACTATGG





1940
TTN
2589613
TTCTCCTTCAACATTGGGTACATCT





1941
TTN
2589705
ACGTCGTGTCGCAACTGTCACTTTC





1942
TTN
2589705
ACCAAGGCTTTACTGTCGCTTGAAG





1943
TTN
2589705
GAATGCTAGTTACTTCGATCACGAC





1944
TTN
2589705
CCCCTGATGTAAACACTCCGAGTAT





1945
TTN
2589740
GATCGGACGTTTCATTGACCATGGG





1946
TTN
2589740
GTAAACAACTTTTCAATCTCGGTAG





1947
TTN
2589740
GGGTCGATCGGACGTTTCATTGACC





1948
TTN
2589740
ACGTTTCATTGACCATGGGGAGGTT





1949
TTN
2589724
TTCGTCATCGACACTACGGATGAAT





1950
TTN
2589724
TGAAGCCTTCGTCATCGACACTACG





1951
TTN
2589724
TTCCACCTTTTACTGAAGCCTTCGT





1952
TTN
2589724
ATCGACACTACGGATGAATTCTCAC





1953
TTN
2589362
AGGATATTTTCCAGCAGGATGTGGT





1954
TTN
2589362
ACAAGGATATTTTCCAGCAGGATGT





1955
TTN
2589307
CTTCACGGATTTCGGCGGACCATAT





1956
TTN
2589307
TCCACCGCAGTAGTCTGAATGGTAT





1957
TTN
2589307
AGACCGTGAATACTGGACCAAGACC





1958
TTN
2589307
ACTACTGTAGGTTCAGGCGAGACAC





1959
TTN
2589773
TCAACGACTTTCTATAAGTTGTGGA





1960
TTN
2589773
CAACGACTTTCTATAAGTTGTGGAA





1961
TTN
2589773
TTCAACGACTTTCTATAAGTTGTGG





1962
TTN
2589423
GCACAGTCACGACAGTTGTAACAAC





1963
TTN
2589423
ACATGGTCTCGCAGGACTTCTGGAC





1964
TTN
2589423
GACATTGAAACTGAACCTTAGGAGG





1965
TTN
2589423
AGCCGAGTAACCCTGACTCTTCAAG





1966
TTN
2589752
CATTTATGGCTTCTGGTAGTTCCTC





1967
TTN
2589752
GATCAGTAGCTGTTTCATTTATGGC





1968
TTN
2589752
AGTTTTATGTATATGCGATCAGTAG





1969
TTN
2589752
CTCATACAGACACTCCGGAACTTAC





1970
TTN
2589736
GAGTCACCGTAACTTCAGTTCGTAC





1971
TTN
2589736
TAGCTCTCATGGTCGAGGGAGGCCC





1972
TTN
2589736
CGAGGAACGGTTAATGCCACTGAAC





1973
TTN
2589736
ACTGGAAACTCTTGTTACACCGGTC





1974
TTN
2589801
AGTCTGGCATCGACTTAGGGTCCTT





1975
TTN
2589801
CGACACAAACTTACACTTCAACGGT





1976
TTN
2589801
GGTCTAAGGTTTCCGCTTACCAACT





1977
TTN
2589801
TCCCTACCGTTTGTGGATGGTGACT





1978
TTN
2589335
AGACTTAAGATGTTTCGACGACTAG





1979
TTN
2589335
GGTTAACGTCTACCGCCATCACTAT





1980
TTN
2589335
GACCTGTCCCAGGTAAAAGACTTGG





1981
TTN
2589335
CCGTATGGTCTTCACTGTTTCTAAT





1982
TTN
2589689
TAGGACTTACAGCTACGACGTCTGT





1983
TTN
2589689
TTCGGAGTAGGATATCTCTGTGACT





1984
TTN
2589689
GGAACTTACACTCGAAGTCCCGTGA





1985
TTN
2589689
ACGCAACCAAGGTAGCGAGAGTTTC





1986
TTN
2589837
CTCTTGGTCACTAGTCGCGACATCT





1987
TTN
2589837
CGCTGACAACAACGACGGCAACTAT





1988
TTN
2589837
ACGAGTCTCCTGTTGGTGCTGACGA





1989
TTN
2589837
CTACGACTGTTTTCACGTCGACAAC





1990
TTN
2589640
TCTCCACGGTTTCTTTGGACAGGGA





1991
TTN
2589640
GTCTCCACGGTTTCTTTGGACAGGG





1992
TTN
2589640
CTTTTCTAAGGGCAAGGACAACGTT





1993
TTN
2589640
CTAAGGGCAAGGACAACGTTTCTTT





1994
TTN
2589584
ATAAACTCCTACATGGACTTCTCGG





1995
TTN
2589584
TTATAAACTCCTACATGGACTTCTC





1996
TTN
2589584
TAAACTCCTACATGGACTTCTCGGT





1997
TTN
2589584
TATAAACTCCTACATGGACTTCTCG





1998
TTN
2589725
GGTCGAGTTTAGCATCTCTTTCGAT





1999
TTN
2589725
ACTTTACCGAATTTCTGCCCTTTGT





2000
TTN
2589725
GTCAACTACAATGCCTCTTTCTAGG





2001
TTN
2589725
TGGAACCTTACACAACACCGACCTT





2002
TTN
2589669
CCTTAGTGACTGAAGGCTCCAGAAG





2003
TTN
2589669
TTATACTTTTTATACGGGCGTACAT





2004
TTN
2589669
GAGGTTAGAATTTCTTTCCTCGACC





2005
TTN
2589669
TTCTCCTTTAACTATAGTACCTTGA





2006
TTN
2589626
GGAGGTTTTCAGTAATTCTACCTTC





2007
TTN
2589626
GAGGTTTTCAGTAATTCTACCTTCT





2008
TTN
2589626
AAGGAGGTTTTCAGTAATTCTACCT





2009
TTN
2589626
CCAAGGAGGTTTTCAGTAATTCTAC





2010
TTN
2589531
CAGTAGTTTTTTGGTCTTCGTGGCG





2011
TTN
2589531
TCTTCTAGTAGGGTCTCTTCTTTCA





2012
TTN
2589531
TTTGGTCTTCGTGGCGGAGGATTTC





2013
TTN
2589531
CTTCTTTCAAGGACAGTAGTTTTTT





2014
TTN
2589404
TGGTCACGAACGTAGTCTAGGAGAT





2015
TTN
2589404
TGCCACCCTCGGTTCACTGTGTAAT





2016
TTN
2589404
GTCTTTCTGTACCAGCTGGCAATGG





2017
TTN
2589404
TGACGACAGTTGCTTATACCGGGAC





2018
TTN
2589670
CGCACCGTAAATTGCTTGTACCACT





2019
TTN
2589670
GACCCAATATGGCTACGCACCGTAA





2020
TTN
2589670
CCTCCAGCACAAAAGTAGGTGGTTT





2021
TTN
2589670
ACGTTTTCAACCTCCACTGGGTTAG





2022
TTN
2589364
CCGACACTTTAAGTTCCTATGTAAC





2023
TTN
2589364
AACCACTTACCTGTTACACGTGAGG





2024
TTN
2589364
GTCATAAGGAAAGAACCTCGTTTGG





2025
TTN
2589364
CTGTATTGGTCTAGAAGTCATAAGG





2026
TTN
2589766
CGTAACTAGACTCACGAAAGTATAA





2027
TTN
2589766
AAACTTAAGTAATGGAACCTCTGGG





2028
TTN
2589766
AGTGAACACAGTTAGTACGACACAT





2029
TTN
2589766
TCACGGAGTCATTAATAATCGTAAC





2030
TTN
4079079
ATAAATGTAACAACCACTAACTTTG





2031
TTN
2589408
GAACATGCGTTCCTTAAGTGACAAT





2032
TTN
2589408
GGTTCAACCATAACCCGCGGGACGT





2033
TTN
2589408
GGTCAGATACTACCACCACGTGGCT





2034
TTN
2589408
TCAAGTCCCACACACGGGTTTTGGT





2035
TTN
2589774
CACTCTGTCAACTTTCTATAAGGTG





2036
TTN
2589347
GTCAAGGCACAAACACGTCTTTTGG





2037
TTN
2589347
GGCCGGAACTACTTCCTGACTACAT





2038
TTN
2589347
GGACCATGAGGATTTCAACACGTAC





2039
TTN
2589347
AGGCTCTGCAATAACAACAGTTTCG





2040
TTN
2589776
GTCTTTGTCCTTAGTGATCCAGCAG





2041
TTN
2589776
CCAGCAGGTGAAAGAGGACTCAGAC





2042
TTN
2589776
TCCGTTTCGAACAGGTCTCACTTAG





2043
TTN
2589776
CCTTTCGCACTCCAAGGACTTTGAT





2044
TTN
2589843
AACAAAGCTGACGAGTCTAGAGTCT





2045
TTN
2589843
GTTTCTGTTAACAAAGCTGACGAGT





2046
TTN
2589843
TCTTCTTCATGGACGATTTTTCTGT





2047
TTN
2589843
AGTCTTAGTTCTGTTTGGGCTTAAC





2048
TTN
2589739
AACCGTAGCTTCTGTCACCACTTAT





2049
TTN
2589739
GTCACTGGTGACGTCATCGTAACAT





2050
TTN
2589739
TCCGGGTTTTACTCCGACCGTCACT





2051
TTN
2589739
CTTACAGAAAACACCTCAGATGACG





2052
TTN
2589389
CGGTGGACAGTTACACTGACAATTC





2053
TTN
2589389
CCTCGGAGGGTAATAACTACCGCCT





2054
TTN
2589389
AGGGCCACTTTGAGCACTACGACAG





2055
TTN
2589389
GGATGAAGAAGGCTCACAAACGACT





2056
TTN
2589709
TAATGCCGGTTGAGGACTTATGTCC





2057
TTN
2589709
AACAATGCCTTGACCTTGGAGACCT





2058
TTN
2589709
CCTCTAAGCCAAAGAAATGTTACGG





2059
TTN
2589709
ATGTTACGGTTCAACGACCCTGTGG





2060
TTN
2589674
CTGAGAACGTGTCGAGTCGACTTAT





2061
TTN
2589674
ATAGACCTTTTGTCGCGGGTGGACT





2062
TTN
2589674
GTTATATGGACGATACGACACTTAC





2063
TTN
2589674
CCGCCTTTCATGGTCTAATCAATAG





2064
TTN
2589803
GTCAGGGACTACACTGAAGACAATT





2065
TTN
2589803
ACTACTGGCACATGTCCGGTAACAC





2066
TTN
2589803
CCTGGAATGTTCGACTATCAACCGT





2067
TTN
2589803
GAGTACGAAGTCTGCTTCCTGGAAT





2068
TTN
2589443
GAGTGTCTAATCCTAAGGACGACAG





2069
TTN
2589443
AGGACGACAGTAGTTCCCTGCGGGT





2070
TTN
2589443
CCCTGCGGGTTGTGGTTTTAGTAGA





2071
TTN
2589443
ACCAAACATTTCGACCGAGTGTCTA





2072
TTN
2589735
AAGTCCCTGATTCCTCTAATGTCGG





2073
TTN
2589735
GACGTTGTTAGTGGCTCCTTCGACA





2074
TTN
2589735
TGAAAGCTCCAGGTTTTACTACAAC





2075
TTN
2589735
TTCGACACAGATATCTACAGTGGGT





2076
TTN
2589661
TTAGGGAGGACACCAACGAGGAGGA





2077
TTN
2589661
ACGATGGTTGTGGGCTTCTTTTCTT





2078
TTN
2589661
AACGATGGTTGTGGGCTTCTTTTCT





2079
TTN
2589661
AGGAGGATAGGGGGAAAACGATGGT





2080
TTN
2589332
CAGTGGGCCCTTTGGTAGTGTGAAT





2081
TTN
2589332
AGGACCCCTAGCGATACTCAAGTCT





2082
TTN
2589332
ACAACCTTGATATTCGGGCGGGAGT





2083
TTN
2589332
GGTGGTAACGCACTACCTCCGTCAT





2084
TTN
2589349
CACTCACCTGAACATCTTCTGGTTT





2085
TTN
2589349
CGGTCGAAATGGTTGCATAATCTTT





2086
TTN
2589349
GGACGGATACTACCACCATCGTTTT





2087
TTN
2589349
CTTTCTAGATGGACTACCGGCGACC





2088
TTN
2589528
GGTTTCACGGACTCTTTTAGTAGGG





2089
TTN
2589710
CCCTTCAGGTATTAAGACCTCTCGT





2090
TTN
2589710
GTCATAAGGACGCTCTAACTTTTAC





2091
TTN
2589710
ACACCTCGAGACCATAGATGTAATC





2092
TTN
2589710
TCTCGTGGATGTGACCTTGTGAAGG





2093
TTN
2589479
GGAGAGTGGCGACTGCTACGTAAAC





2094
TTN
2589479
TATTTCGACCACAAAGTCTAGGTAG





2095
TTN
2589479
CGACCACAAAGTCTAGGTAGACTTT





2096
TTN
2589479
GAACCAGGAGAGTGGCGACTGCTAC





2097
TTN
2589677
CGTAGTTGAAAGGAATGGCAAGTTC





2098
TTN
2589677
CTCTGGGTGATGCTGAATGTTTTAC





2099
TTN
2589677
GGACTTTAACCCCATAGGACCATAT





2100
TTN
2589677
AGTTCGTCAACCTCGGCCAATTCCA





2101
TTN
2589683
CTGTTTACCAGATAGGCCGAGGAGT





2102
TTN
2589683
CCTTTATGGTCTGGTGGGACTGTCT





2103
TTN
2589683
GATGATTATACCGACCAAGACTACT





2104
TTN
2589683
CACATTTCAGATACCCAGTGGAGGT





2105
TTN
2589386
AGCCTCGGTTAACAACGCTCTGTAG





2106
TTN
2589386
TGGAAGTCCCAGTCACGGCTTTTAT





2107
TTN
2589386
CCCAGATGGACTAAACACGATGAAC





2108
TTN
2589386
CCCCTTCTAGGAGATCGTTGACTGT





2109
TTN
2589825
GAGTCGTCTGGTGAAACCTCATGCC





2110
TTN
2589825
GTGCAACAGGGATTTCGTCAGTTCG





2111
TTN
2589825
AGGCGGCGTTTCCATCGACTCGGAG





2112
TTN
2589825
CGTCAGTTCGGATCTCATTAGGTCC





2113
TTN
2589767
GAAACGTCGTGAGTGGAATTGAATT





2114
TTN
2589767
CATCGATGTTTGTTTAGTCCTTACC





2115
TTN
2589767
CTCGAAACGTCGTGAGTGGAATTGA





2116
TTN
2589767
TTAGTCCTTACCGACTCTCGAAACG





2117
TTN
2589493
ACCGTCCCAGTCTTTTGAACAATAT





2118
TTN
2589493
ACGTCACGACCTCACACTTCAGAGG





2119
TTN
2589493
TGAAGGACATTGGACTTACAGCACG





2120
TTN
2589493
AACTTAAGTGATTCGGAGAACTCCT





2121
TTN
2589794
AGTCCTTACAAGTGAAACCCCTACG





2122
TTN
2589794
ACCCCTACGACGACTGATGTGGAAA





2123
TTN
2589794
CGACTTTCTGTAGTTGCGACTTCTT





2124
TTN
2589794
GTCACTTGATACTTCCGTAGAGAAT





2125
TTN
2589295
CGTCGTCACGATCGTCGTACTGACT





2126
TTN
2589295
TCCTTCGAAGAGCAGAGTCAGTCAG





2127
TTN
2589295
ACGTTCGTACAGACGGGTTTCGTAC





2128
TTN
2589295
AGGTACGTTCTCAGGAAACATCTTT





2129
TTN
2589517
GTCACGGTCACCAACCTTTCTTTCG





2130
TTN
2589517
TGGTTGGGGGTAGCGACGGGGTCAT





2131
TTN
2589517
CACGGTCACCAACCTTTCTTTCGTC





2132
TTN
2589517
GGTAGCGACGGGGTCATTGTCACGG





2133
TTN
2589336
CTTAGACTAAGGCAACATCGGTTCT





2134
TTN
2589336
CTGTTCGGCGCAACACACCAGATAC





2135
TTN
2589336
ACTTATGTAGAAGGCCCAGGCTCGG





2136
TTN
2589336
GGCTCGGCACTTGTTTATACCTTAA





2137
TTN
2589722
GAACCTTCCCAGCTGATCGAAGAAT





2138
TTN
2589722
AAGGATCACTTTGGACCCGCTGTCG





2139
TTN
2589722
CCCGCTGTCGTTCGGTATGGACTAA





2140
TTN
2589722
ACCTTGAACAGAGTCCAGGATTTAC





2141
TTN
2589619
TACTTGCTATACTTCTCGTACTTCT





2142
TTN
2589619
TCGCCCTCATACTTGCTATACTTCT





2143
TTN
2589619
CTTCTTATGCTCCTCGCCCTCATAC





2144
TTN
2589619
CTCATACTTGCTATACTTCTCGTAC





2145
TTN
2589805
AAGTCCTGTATCTTCAAGGTCTTAG





2146
TTN
2589805
TATGTCGAAACAGTAGCTGCCCTTT





2147
TTN
2589805
GAGCAGCACCTGCAGTCTTGGAGTG





2148
TTN
2589805
TTGGAGTGCCAGTTCCTACATTGGT





2149
TTN
2589300
CCGCATGTGGAAGAGGACTAATACT





2150
TTN
2589300
AGGTCCGAAGGCTACTCCCGTTAAT





2151
TTN
2589300
GAAACGGACTTCTGTGCCCAATAAT





2152
TTN
2589300
GGCCGACATTCGTGGTTCTGACATT





2153
TTN
2589306
CAGTGTCCGATGATGTAGCTTGCGT





2154
TTN
2589306
TCAAGACAATCGAACAGGACCAGGG





2155
TTN
2589306
CCCGAACAAGGGCTACGACTCATAG





2156
TTN
2589306
GACCAGGGCCGGGTTTCTACTACCA





2157
TTN
2589772
GATCTCTCTATGAGGTGTGGAGGTC





2158
TTN
2589772
CCATCCTCTTTCTATGAGGTGTGGG





2159
TTN
2589772
CCTCTTTCTATGAGGTGTGGGGGTC





2160
TTN
2589772
GGTCCCCTCTGTGATCTCTCTATGA





2161
TTN
2589415
TAACTACACTGAGGTCAACCATCGT





2162
TTN
2589415
CTCACGGTAAGGGTTTTCATTGAAC





2163
TTN
2589415
GAACTTTAAGCATTACGACGGGTAC





2164
TTN
2589415
AATCACGGTAGTAGTTTCCTCACGG





2165
TTN
2589534
TCTTTCTCGCCTCAGAGGAGGGGGT





2166
TTN
2589534
AGGTCTTTCTCGCCTCAGAGGAGGG





2167
TTN
2589534
GGACAAGGTCTTTCTCGCCTCAGAG





2168
TTN
2589534
CAAGGTCTTTCTCGCCTCAGAGGAG





2169
TTN
2589297
GAGTTTCTCCTTCGAAGTTTCCAAG





2170
TTN
2589297
GGTTCCTTCCTTAGCAGTTCACAGT





2171
TTN
2589297
CCGTCGCTAGTCTGGGATTGGTAGT





2172
TTN
2589297
GAACACTTTAGTCACCGCTCGGTAG





2173
TTN
2589817
TCAGGGTCGTTCTTTACGAAATAGT





2174
TTN
2589817
CTGTGTTCACTGACGTAAACAAGTT





2175
TTN
2589817
TGTGTTCACTGACGTAAACAAGTTC





2176
TTN
2589806
TCGTTAACTAGTGAAAGTGTGTCCT





2177
TTN
2589806
CGTGAGACTGTCTTTCCAAGTGAAG





2178
TTN
2589806
GACTGGTAACTATGCAGACTACGAC





2179
TTN
2589806
GTCGACACATGAACACCTTCTACTT





2180
TTN
2589741
AAGCCCGTGCATGTGTACATTTCAG





2181
TTN
2589741
GGGCCGAGTTTCCTACAAGACGGAC





2182
TTN
2589741
TGAGGAGAGTGTTAGTCTACCAAAT





2183
TTN
2589741
TCGTCAGACGGACTTCTCGTGAAAG





2184
TTN
2589815
CTATGACATCACCAGTCTTGAATAC





2185
TTN
2589815
GACATCACCAGTCTTGAATACATCT





2186
TTN
2589815
CCAGTCTTGAATACATCTTCTAGTC





2187
TTN
2589815
ATCACCAGTCTTGAATACATCTTCT





2188
TTN
2589723
GGTAATCACGAGTCACCAAATTCCT





2189
TTN
2589723
CAAGACCCGAGAAGATAAGTATACC





2190
TTN
2589723
AATGTGTACGTTTCACAGTTTACAT





2191
TTN
2589723
GTCCTCTACTACGTACGTCACCGTA





2192
TTN
2589366
CACTTGGAGAACTTAGACTCGGTCA





2193
TTN
2589366
AGGTAAACATCATGGTCTACGTGGT





2194
TTN
2589366
GTTACTAACAACATACCCTTTCTGG





2195
TTN
2589366
GACTCGGTCATCAACGGTTCTTAGG





2196
TTN
2589695
CAAGAGCTCCGGTGTATGTGACCGT





2197
TTN
2589695
GACACTTCGAGACCACAGACAGAAT





2198
TTN
2589695
ACCGTGTGGAGGTTAGAGTCACTCG





2199
TTN
2589695
ATCTCCTAATACGTGTCATGTCGAC





2200
TTN
2589693
GCAAGTACTCTGAGATCCGAAGGGT





2201
TTN
2589693
ATGTTTGACTGGTCTCGGTGTATCC





2202
TTN
2589693
CGGTGTATCCCGTCATATTAACGAG





2203
TTN
2589693
AACGTAAACTTACGGCGTAGTTACC





2204
TTN
2589359
GTCACCGTACTTGGTCAGTTGTTAC





2205
TTN
2589359
AACACCTGTTTCCAGTTGTTTTGAT





2206
TTN
2589359
GGTTTCTGAGGTACCAGTATGTCAC





2207
TTN
2589359
GTTCTTAAGACTTACGATACATCGG





2208
TTN
2589452
ATATTCAAGGCACAATAACGGTTCT





2209
TTN
2589452
AGTGTCCAGACGAACTCCCTGTTCT





2210
TTN
2589452
CTGACTCTCTAGATTTACACTGTAG





2211
TTN
2589452
CACAGATGAATTGACCAGACTAGGT





2212
TTN
2589641
GTTCTTTGGGCACGGTCTCCTCTTT





2213
TTN
2589641
AGGACACGGATTCTTCCTTGGACGA





2214
TTN
2589641
TTCGGTCAAGGACACGGATTCTTCC





2215
TTN
2589641
ACTCCAAGGGTTCTTTGGGCACGGT





2216
TTN
2589714
ACCTTACGTTTCATCGACCTAGTAG





2217
TTN
2589714
ACAGTCACCTCGTTTCATGGTTTGG





2218
TTN
2589714
ACAATCCACGAAGAACGTAGAACCT





2219
TTN
2589714
TAGTGGATAAAGTCAACGGACCAAA





2220
TTN
2589822
TGTCGTTCTCATGGTCGTGGACAAC





2221
TTN
2589822
CAACTTTAAGGACAATGAGGTGGTT





2222
TTN
2589822
ACAATGAGGTGGTTGAAACCAGAGC





2223
TTN
2589822
CTCATGGTCGTGGACAACTTTAAGG





2224
TTN
2589464
GGGTGACTGACTCCCGAGAAATATA





2225
TTN
2589464
ATACACAAGGCTCAACGACGTCTTT





2226
TTN
2589464
TTTCTCTCTGCAGTCCGCTTTTCCG





2227
TTN
2589464
CCTGTTTCGCTGATGTGGCTTTAAC





2228
TTN
2589790
AAGGGTCTCCTACGCCGTCAGATAT





2229
TTN
2589790
ACTACCCGTTCTTATGTGCGAAAAC





2230
TTN
2589790
GCGAAGACACGGCACTATAGGCCTT





2231
TTN
2589790
TAGGCCTTCTGGTGTCGGGTTTTAA





2232
TTN
2589589
CTTCTTTTTCAAGCACTTCGACAAG





2233
TTN
2589589
TTTCGGACTTCAAGGTGGTCGATTT





2234
TTN
2589589
TTCGGACTTCAAGGTGGTCGATTTC





2235
TTN
2589589
CTTTTTCAAGCACTTCGACAAGACT





2236
TTN
4086830
AAACTTCTACCACAACAAGGACCAC





2237
TTN
2589488
CTGGATCAGATGTGGGAGTCTTAAT





2238
TTN
2589488
TCAGTTATGACTTCCACGGTTTCGG





2239
TTN
2589488
CACAGAAACTGGTTAGTGTCTCCAC





2240
TTN
2589488
GAGTCCTAGCATCAAGGAGAATTCC





2241
TTN
2589309
ACACTGTTACTGTGCCATGGCGAGG





2242
TTN
2589309
GGGCACTACCGTACTGTGAATGAAC





2243
TTN
2589309
GGCACAGTGTCGGTAATTACGTTCT





2244
TTN
2589309
CGTCTAGCTACCCAGGCACATTTAT





2245
TTN
2589680
TTCACCTCTTATATGAACGTATCAA





2246
TTN
2589680
GCTACATCTATGTAGTGTTTCACCT





2247
TTN
2589680
TGAACGTATCAATCGTTACTTCGAC





2248
TTN
2589680
ACGACTTGACCTCAACAAGCTACAT





2249
TTN
2589824
CAGGTACACCTATTTGCGGGGGCGT





2250
TTN
2589824
TCGATCGGGAGTGAAATGACAAAGT





2251
TTN
2589824
TCTTTTGATGTCTAGATTGTTGCCT





2252
TTN
2589824
GATTGTTGCCTTTCTAATCAGGTAC





2253
TTN
2589494
AATGAGACTCCCTACATTTCAATCT





2254
TTN
2589494
GACCCCTTCAGGTTGATTGTCGTTT





2255
TTN
2589494
CCTTTTCAAGTATGTGAATGAGACT





2256
TTN
2589494
TGAGTGCGGTTGGAGAAACACTTTC





2257
TTN
2589338
TCTCGACCGTAAAGACCGTTTGGAC





2258
TTN
2589338
TGCCTGGAGCGTAGATATGAGTAGT





2259
TTN
2589338
GGCTAGCGGAATTATCACCTACGAT





2260
TTN
2589338
GGACGCGGATGATAACTCACCATAT





2261
TTN
2589638
GGTAACATTGAGTTTCTCTCCTTAG





2262
TTN
2589638
TATTGGTAACATTGAGTTTCTCTCC





2263
TTN
2589638
TGAGTTTCTCTCCTTAGAGGTGGTG





2264
TTN
2589638
AACATTGAGTTTCTCTCCTTAGAGG





2265
TTN
2589582
TTCCCGACTTCAACATGGACAGTTT





2266
TTN
2589582
TCCGAGAGTCTCTTCAACAGGGCCT





2267
TTN
2589582
CAACAGGGCCTTTTCTTTCACGTAG





2268
TTN
2589582
TCCCGACTTCAACATGGACAGTTTC





2269
TTN
2589444
GGATTAGACTTTCTCGAGTCCTTCA





2270
TTN
2589444
TCTTCCATGATGACTGACCTTTTCT





2271
TTN
2589444
CCGTCGGGTTAGTTTCCTATGTAAC





2272
TTN
2589444
GCTTCAGTTCGTAGAGTGATCCTAC





2273
TTN
2589326
AGAAAGGCACAGTCAAGTCTCTTGT





2274
TTN
2589326
TCCTTCGGGTAAATGGTAACTGCAT





2275
TTN
2589326
TAGACAGAGTCGACTTAGCACACAG





2276
TTN
2589326
GCACTTAGCCCATGTTGTCGAACCG





2277
TTN
2589652
GGACTTTTCTTTCGTGGTGGTGGAG





2278
TTN
2589652
CTTTTCTTTCGTGGTGGTGGAGGAT





2279
TTN
2589652
TTCTTTCGTGGTGGTGGAGGATTTC





2280
TTN
2589652
GTTTCATGGACTTTTCTTTCGTGGT





2281
TTN
2589399
GACACCCACTTTCGGTTACTATGAG





2282
TTN
2589399
TACTATGAGAACAGGCCAGTTGACT





2283
TTN
2589399
CGTGCTCAGTGGTTTCAGTTGTTCC





2284
TTN
2589399
CCAGTTGACTTATAGGAACACGACC





2285
TTN
2589636
CTCCTTCTTCAAGGTGGTGGTGGTT





2286
TTN
2589636
GTTTCTTCTTTCAAGGACTTCTTTC





2287
TTN
2589636
GACTTCTTTCCTTTGGACAAGGAGC





2288
TTN
2589636
GGACAAGGAGCCTTCCTCCTTCTTC





2289
TTN
2589622
ACTTTGAGTTTGGATTTTCTCTCCT





2290
TTN
2589622
TTTCTCTCCTCCTTGGTGGTCGATT





2291
TTN
2589622
GTCTCCTTGGCTTCTCTCGACAGGG





2292
TTN
2589622
TGGCTTCTCTCGACAGGGTCTTCTT





2293
TTN
2589792
TAGGTGGGCCTACAGACTACGACCC





2294
TTN
2589792
CTCTTTATACAGGTGGCGGAAGACT





2295
TTN
2589792
CCGTTGCACAGTTGACGTTTTGAGA





2296
TTN
2589792
CTCTACAAGCGTAGGCTTCATAATT





2297
TTN
2589351
TTATAACAACCGTAACCGTTCGGAT





2298
TTN
2589691
GTGGGTCCAAGTAATTCTTCGATCT





2299
TTN
2589691
TACAGTAAGCAACTGAGCCACCGAC





2300
TTN
2589691
TTACGTTTTAGCCACCCAGAGGTCT





2301
TTN
2589691
ACGACCTTTACGTGTTAGAGTCACA





2302
TTN
2589503
GAGAATAGAAGTAGTGTGGAGAGTC





2303
TTN
2589503
CGGAGAATAGAAGTAGTGTGGAGAG





2304
TTN
2589503
GGAGAATAGAAGTAGTGTGGAGAGT





2305
TTN
2589692
ACGGCCCGTCATGTGGACGATACGT





2306
TTN
2589692
TTTCTGAGAACAAGACGAGTCGACC





2307
TTN
2589692
GCGGGACCTCCGTTGATGTTCTACT





2308
TTN
2589692
CTTCACGGAGGAAAGAAACTAGATT





2309
TTN
2589536
GAGACCACCAAGGGTTTTTCGGTCT





2310
TTN
2589536
TCCACGGGTTCCTCCAACAAGGACT





2311
TTN
2589536
CACGGAGACCACCAAGGGTTTTTCG





2312
TTN
2589536
ACGGGTTCCTCCAACAAGGACTTTT





2313
TTN
2589456
GAGAAGGCACATTCTCGACTTTTGT





2314
TTN
2589456
GGTCCAGGTGGTACACAAAGTTTCG





2315
TTN
2589456
TCTGGAGTCAGGAAACATTTACCCT





2316
TTN
2589456
GAGTCTTACCTAACAACAGTGAAGT





2317
TTN
2589844
GAAGCAAGTTGCTGACGTCTCGTAC





2318
TTN
2589844
ACTGACCTTAGGGATGTGGACACCA





2319
TTN
2589844
AAGATGGCCCTACCTCGGCTTTAGG





2320
TTN
2589844
CCGCTGGAGATGTCGAATGACTAAC





2321
TTN
2589603
CACCAGTAAGGGTTCTTTCTCCTCC





2322
TTN
2589603
GTAAGGGTTCTTTCTCCTCCGAGGG





2323
TTN
2589603
CAGTAAGGGTTCTTTCTCCTCCGAG





2324
TTN
2589603
TCTTTCACCAGTAAGGGTTCTTTCT





2325
TTN
2589394
CATCCGCTAGGTCAGAAGTGACTTG





2326
TTN
2589394
GGTCAGAAGTGACTTGGTCGTTAAC





2327
TTN
2589394
CGCTAGGTCAGAAGTGACTTGGTCG





2328
TTN
2589394
GAAGTGACTTGGTCGTTAACGGTTT





2329
TTN
2589727
CTTATGGTCACGTAACATAGGTTAC





2330
TTN
2589727
ACGAGTACGTCATGATCTCAACGGG





2331
TTN
2589727
CTTGTGGAGGCAAACTTCAGTGAAC





2332
TTN
2589727
AGGTATATTGGTTCACACTGGGAAG





2333
TTN
2589737
CCGTGAGGAGGGAAACTCTAGTGAA





2334
TTN
2589737
TCTAGGAGTTCAAACATCGACGTCT





2335
TTN
2589737
GTCCTAGTAGACCAATCGGACGTCT





2336
TTN
2589737
GACCGCTTATGGTCACAGCCCACTG





2337
TTN
2589775
TTTGTTAGGAGTTATGTAAGTCCTC





2338
TTN
2589775
TTAGGAAGTCTATATTGATTTGTTA





2339
TTN
2589526
AACTTTTCATATAATTTGGACTTCT





2340
TTN
2589526
CATATAATTTGGACTTCTCGGGCTT





2341
TTN
2589526
TTCATATAATTTGGACTTCTCGGGC





2342
TTN
2589526
CTTTTCATATAATTTGGACTTCTCG





2343
TTN
2589847
GACCTCCCATCATGGCGTTGGAAAC





2344
TTN
2589847
TCGTGGCTGCAAATGCGTCGGCAAT





2345
TTN
2589847
TACTGTTGAGTTCGTGGCTGCAAAT





2346
TTN
2589847
CGTCGGCAATGTTTCGCAACACCAT





2347
TTN
2589293
GGTGTCAGTTCTTGTCCCCTCCAAG





2348
TTN
2589293
CTTAAACCTAGACTGAGACGGTGAC





2349
TTN
2589293
CCCCTCCAAGGTGTAACTTTTGTGT





2350
TTN
2589293
ACCACCTGAAATATGGGACTCAAAT





2351
TTN
2589327
AGGAGGCGTCAGAATCGAACCGAAT





2352
TTN
2589327
TGCCACCACGGGCTTAGGTAGTAAT





2353
TTN
2589327
GGAAGTTTCTACACTGGGCCCCTAG





2354
TTN
2589327
GGGCCCCTAGACGATGTAACTACAC





2355
TTN
2589487
CTGGAATCCTAACAACTCGGAGAAT





2356
TTN
2589487
GTGACTCAAGCTACTGCGACAGAAG





2357
TTN
2589487
AAGACCACGTTCCACTTAGCAGAGT





2358
TTN
2589487
TTCACGGAAAACTGTTGGCACAGAG





2359
TTN
2589823
TCGGCCATCACGATAACGGTGTAAT





2360
TTN
2589823
GTGGTTTAGCCACTTCCGAGGATGA





2361
TTN
2589823
TGGTGGCAGGCACTTCTCGCGAAAC





2362
TTN
2589823
TCGCGAAACTTCATGACGTGCCTGC





2363
TTN
2589508
CACTGTAACCTACTATATAGAGTCT





2364
TTN
2589508
ACTACGGTTTGAGGTATGTTCGTCT





2365
TTN
2589508
CTGTAACCTACTATATAGAGTCTAT





2366
TTN
2589508
GGTATGTTCGTCTTGTCATGAGTAG





2367
TTN
2589696
GTAGAGAGACCTTCTAAAACAGTGT





2368
TTN
2589696
CCTTACTCGGAGTGTAAGTGGTCAC





2369
TTN
2589696
CAACAAACTCCACGTCGGTAATCTT





2370
TTN
2589696
CCTCTGATAAGAACGGAGCAATGTT





2371
TTN
2589428
CTCCCCACTAGGCTTAGTAACGGAT





2372
TTN
2589428
GGAATGGAGTTCTTCGGTGGTAACT





2373
TTN
2589428
ATCGAGTAGGTACCAGTAGTTCTTG





2374
TTN
2589428
TCTGGTGTCGGTAATCGAGTAGGTA





2375
TTN
2589348
ATGGCACGCACACTACGGAACATAG





2376
TTN
2589348
AGGCACCGTTTGGATATGGACTACA





2377
TTN
2589348
GCAAGACGCACGTTCACGATGAAAT





2378
TTN
2589348
GGACTTCCCGGAGACTTTCAATGAC





2379
TTN
2589673
CACCGACCAAGGGTTGGATATTGAC





2380
TTN
2589673
TTCACAGGTTACTACGTCCGAGACG





2381
TTN
2589673
CTTGCTGCGACCAAACATGTGTACG





2382
TTN
2589673
CCGAGACGAGACACGTGCAGAAGTT





2383
TTN
2589406
CACTCTCCTGCTGGTCGGGGATTTC





2384
TTN
2589760
AAAACTGCCACTACTAGTATCGGAC





2385
TTN
2589760
TCTTCCTGAAGTATCGCGGCTTGAA





2386
TTN
2589760
CCGTGACCGGGTTAAAAGTAGTTTC





2387
TTN
2589760
TCGACCCTCCAGGAACAGGAGGAGT





2388
TTN
2589694
GTGGCATGAAATAACTTGGAGACCT





2389
TTN
2589694
ACCCTCTCATAAGTACGTTCCGTCT





2390
TTN
2589694
TGGAGACCTTGTACACCTTCGTCAG





2391
TTN
2589694
GTTTCGATGCTAGTCGAGGACGTAT





2392
TTN
2589678
AAGGTTCATCGTGTCATCTCCTACG





2393
TTN
2589678
GCTGACTTTTTAGCCGTTAGGACCT





2394
TTN
2589678
GGAAGAGTCTCCACATTATATTGAT





2395
TTN
2589678
ACTAGGATCTCCCATGTAAGTGACC





2396
TTN
2589363
TGCAGGGACCTGGATAATATCAACT





2397
TTN
2589363
CGTGGTCTGTAACTAGAACTGGATC





2398
TTN
2589363
ATGTTGAAGGCATAGACACGATAAT





2399
TTN
2589363
ACCTCAACCTCTTGTACGACTGCAG





2400
TTN
2589396
ATAAGTCGCACTTGGCCTTCCTGAG





2401
TTN
2589396
GGGTCCTATCTGGACTCACACCGAT





2402
TTN
2589396
GACCTTGATTACAGACGAACCTACG





2403
TTN
2589396
CCTGAGTCCTCTGATATGGTAATGA





2404
TTN
2589352
GTAAGTCCTGTGGTTTAAGTTTTGT





2405
TTN
2589352
GGGTAAGTCCTGTGGTTTAAGTTTT





2406
TTN
2589352
GTTGACCCGAACTACTCCCGGAACT





2407
TTN
2589352
TTTTGTTGACCCGAACTACTCCCGG





2408
TTN
2589703
AGGTCATCCTCGAGAATTTCCAAGA





2409
TTN
2589703
CAGCCCCTTATAGTGACGTTTCGAT





2410
TTN
2589703
CCAAGACTACACTAAGAGGTTACAC





2411
TTN
2589703
ACCCTTCACTGTGCACAAGAACGAG





2412
TTN
2589392
CGGCGAATACGAGCCCTGGGAGTCA





2413
TTN
2589392
TCACTGCGTAGGTTCCGGCGAATAC





2414
TTN
2589392
GTCCGACAATTGACCTGATTCCAGT





2415
TTN
2589392
CCTGCGACACTAGGAGGACAATAAT





2416
TTN
2589743
GCTGTCACCGGTTATGTGTAAACTC





2417
TTN
2589743
CACTGTCGTCCTCTAGGGCGGTGTG





2418
TTN
2589743
TCGTCTTGACTAGGTCCACTGTCGT





2419
TTN
2589743
AAGTCGACTCGACGTGCTGTCACCG





2420
TTN
2589708
CCGGTCATGAGAACGAGTCGAAGGT





2421
TTN
2589708
GGGTGGAAGAAAACGTTCTGTTAAT





2422
TTN
2589708
TGACACCCCAATGGACAATGTGAGT





2423
TTN
2589708
GAGTGAACAGCTAATTTACCGAGAC





2424
TTN
2589733
GTTGGTTACGTCACCCGTAGACTGT





2425
TTN
2589733
ATTCCGTCCCGTGTTGGTTACGTCA





2426
TTN
2589733
CCCTGTATGTGAACAAGACGGTGTT





2427
TTN
2589733
ACGTCACCCGTAGACTGTCAGTTTC





2428
TTN
2589322
GACCAATGGTAGTCTCGTCCAAGAC





2429
TTN
2589322
TTCGGCTTGACCTACGGGCTAATGT





2430
TTN
2589322
GTTCCGGCACAGACAGTACCAGTTT





2431
TTN
2589322
ATGACCGTTTGCTCGTTGACGACAC





2432
TTN
2589378
GTCTAAGACAAGACTACTTTCTACG





2433
TTN
2589378
AGACAAGACTACTTTCTACGTCGTA





2434
TTN
2589378
TAAGACAAGACTACTTTCTACGTCG





2435
TTN
2589378
ACTCCGAAGTCTAAGACAAGACTAC





2436
TTN
2589755
GGGTAATGACTTGGTCTTCAACTTA





2437
TTN
2589755
AGTGTCTTCCAACTTGGGTAATGAC





2438
TTN
2589755
TCAACTTAGATTTATAGACTAGAGT





2439
TTN
2589755
GATTTATAGACTAGAGTTGACTTCT





2440
TTN
2589501
CCAAGTTCTTACTGGTCGCGGATGT





2441
TTN
2589501
GGTCCAGCCAGAGTTACGTTCTGCT





2442
TTN
2589501
GAGGGTTTAATCTCATCTTCGATAC





2443
TTN
2589501
TCCCTTTTGAGTAAGCTAGTGTAAG





2444
TTN
2589454
CAGGCAGTCATGTGGCAGTTTCTTT





2445
TTN
2589454
GTGTTTACTTACCAGTGCGACGTGT





2446
TTN
2589454
ACCTCTTTGTGTTGGACAATGACAC





2447
TTN
2589454
TTGAAGCCCACTCACGACAGTTACG





2448
TTN
2589746
CTTAGTCGTGCGGAGGTAACGTTCG





2449
TTN
2589746
GTCACCCTCAATGAGTACACTTCGT





2450
TTN
2589746
CGTCACTTACTGCAGCCGTCACTAT





2451
TTN
2589746
GACTCCGATATGAACTATAATGCCT





2452
TTN
2589343
TGGGTAGTGCAACAAAGGCCAGACT





2453
TTN
2589343
TCACTGGGCTCTCTCGAAGACGAAG





2454
TTN
2589343
ACATGTGATACAGCAACTTCGTGAT





2455
TTN
2589343
AGGACAAGAATAATTCCTCGTTGAT





2456
TTN
2589374
CACACATGATAGTACCAAGGGAGGT





2457
TTN
2589374
AGTCTCGGACACGAACGTCACTTAG





2458
TTN
2589374
TTCGACTACAAAGTCCGGCGGGTGG





2459
TTN
2589374
CCACGGATATGGGAATGTCGCTGAT





2460
TTN
2589649
CAAAGTTTCTTCTAACAAGGTGTTT





2461
TTN
2589649
AGGGCCTGAGGTCATGTCCTTCTTC





2462
TTN
2589649
AGTTTCTTCTAACAAGGTGTTTTTG





2463
TTN
2589649
GTCCTTCTTCAATAACTTCACTTTC





2464
TTN
2589387
TGAGGACCTGGTCAACACCTGGACT





2465
TTN
2589387
CGGATGTCATGAGACGTTTTCTAAA





2466
TTN
2589387
GGGTTCGCTTTAGTGACAACACCGT





2467
TTN
2589387
AGGACATCGTAACCGACCTTTTTCG





2468
TTN
2589489
GTGAATGCAACAGTACCATCCCCGG





2469
TTN
2589489
CGGTGTAATGTTCTATACCCGTGAA





2470
TTN
2589489
GTCAGGTCACCTTCTCCCTACTATT





2471
TTN
2589489
CCTACTATTCTGTGAACTTAGACCT





2472
TTN
2589333
GCACCAGGGTGCGACCGTATTCATT





2473
TTN
2589333
CTAGGACAGTGATAACCCGGTTAAT





2474
TTN
2589333
GACCCTAGGAGGAGAGTAACTACCT





2475
TTN
2589333
TCTTGTACCAGACAGCACAGTGTGT





2476
TTN
2589360
CAATGTCACATGTCCAACCGGTTCT





2477
TTN
2589360
GTTTCGAAACGGAATCTCAGACTAG





2478
TTN
2589360
CTTCACGGTTAAAGACCTGCAGGAT





2479
TTN
2589360
CTGCAGGATTCGGTTGGTAATGGAC





2480
TTN
2589542
GGATTTTTCGGACTTCAGTGTGGAC





2481
TTN
2589542
TCCGAGGCTTTCTTCAACAAGGACT





2482
TTN
2589542
CGAGGCTTTCTTCAACAAGGACTTT





2483
TTN
2589542
GACTTTTCTTTCACGGTCGCCGAGG





2484
TTN
2589299
TATTTGAGAGACTTCTGTTCCCTCC





2485
TTN
2589299
GTCACCTGAAATATGAACATGTCAT





2486
TTN
2589299
CACAGGAGATCGACGTTTAATTGTT





2487
TTN
2589299
TATTCTGACTATGAAGACTGTCACC





2488
TTN
2589688
AGATGACAGCAACCATTTCTTCAAG





2489
TTN
2589688
GTTTCTATTCCCTCTTTAGCAATCT





2490
TTN
2589688
CTTCGAGTCACTGTATAGATGACAG





2491
TTN
2589688
GGTAACTTCCGCGACTTGGGTAAAG





2492
TTN
2589836
TTCGTTCTCGTCTACGTGCATTGAG





2493
TTN
2589836
CGTCTACGTGCATTGAGTACTCGTC





2494
TTN
2589836
GACGACATTGATTCCATCATCACCG





2495
TTN
2589836
TCACCGGCGGCTATTTCGGTTCCTT





2496
TTN
2589468
CCAATCTACGTTATTCTACGGTCAT





2497
TTN
2589468
ATTTCTGCGTCACTGAGAGTGTACC





2498
TTN
2589468
ACGGTCATTTCCTGTGTTGTATGTC





2499
TTN
2589468
CACCGTCGGGTTAGTGTCCTATGAC





2500
TTN
2589665
ACACTTCACAGGAAACTACTACGGT





2501
TTN
2589665
ACCGGCGACGGTAATATACTGGTAG





2502
TTN
2589665
GTTGAAGTCCTTACTACCGGCGACG





2503
TTN
2589665
CACTCGTAGTCAGACGGTGGAAACT





2504
TTN
2589590
CCTCCACGGATTCTTTTAACACCAT





2505
TTN
2589590
TTTCATGCACAAGGACTTCTCGGGT





2506
TTN
2589590
ACGGATTCTTTTAACACCATCTTCT





2507
TTN
2589590
TGGCCTCCACGGATTCTTTTAACAC





2508
TTN
2589715
AGAAAGTGTGCTTCTGACTTTTTAT





2509
TTN
2589715
GGAGAAAGTGTGCTTCTGACTTTTT





2510
TTN
2589715
AGGGAGAAAGTGTGCTTCTGACTTT





2511
TTN
2589715
GAAAGTGTGCTTCTGACTTTTTATG





2512
TTN
2589328
GCGGAGAAGTAACGGATGGTTCCAT





2513
TTN
2589328
ACTGGCCAATTGTCGAGGACTCAAT





2514
TTN
2589328
TCCAGGAGGGTGTCACCAGTTTCAT





2515
TTN
2589328
ATCTCTCGGGCAGTTGGGTGGTCCA





2516
TTN
2589438
AGTCGTTCGGAAGTCGGTGACAACC





2517
TTN
2589438
GGACCTCCGTCACGTTATTCGCACT





2518
TTN
2589438
GGGACAATGGGTGATATAACAACTC





2519
TTN
2589438
ACTCACGGAACGTACCCTGGGATGA





2520
TTN
2589436
CCACCATCTACTATGAACGTGAAAT





2521
TTN
2589436
ACACGGTAAGGGCTGTGATTGGACC





2522
TTN
2589436
CTCACTGTGACCGAATATATGGTAG





2523
TTN
2589436
AGGCGTCAGAGCGTCCTCACTGTGA





2524
TTN
2589410
CACCGTCAGGTTATTGACCGATGAT





2525
TTN
2589410
GACCGATGATATACCTTGCAGCTCT





2526
TTN
2589410
TGGATAGCGACTGGACTTCAAGTCT





2527
TTN
2589410
TGACCGTTTACCCACTCCCAGTTGT





2528
TTN
2589473
GGATGGCGCACTTCCGGAATTTGTC





2529
TTN
2589473
CTCCTTCCGTTTACCATACGGATGG





2530
TTN
2589473
TCACTGTCCAGAACTCCTTCCGTTT





2531
TTN
2589473
TTACCATACGGATGGCGCACTTCCG





2532
TTN
2589369
GTCTTACAATACACCGAGCACTGGG





2533
TTN
2589369
AGCACTGGGTACACTAGGTGGTCCT





2534
TTN
2589369
CCAATATCGGGCTTTACGGCGTCCT





2535
TTN
2589369
GACCGGATCAACTTCTAGTGTCTAT





2536
TTN
2589519
CTTCTCCAACTTCATGGATGACAAT





2537
TTN
2589519
TCTCCAACTTCATGGATGACAATGT





2538
TTN
2589519
CTCCAACTTCATGGATGACAATGTT





2539
TTN
2589480
GAGTCAGTAGTCAAGTCGAGTTTAC





2540
TTN
2589480
CTCTGGTTCAGGAGGACATTTGGAT





2541
TTN
2589480
TACCCTTGGAGGAGACTTTCTACCT





2542
TTN
2589480
GAAGGAGTCTAGTCTGAGTCAGTAG





2543
TTN
2589319
ACCTATGGTGGTTTGTGTCGTAATC





2544
TTN
2589611
GGACACGAATAAGGATTTTTCCTCT





2545
TTN
2589611
GGTCTCCTCTTTCAAGGACACGAAT





2546
TTN
2589611
TTTTCCTCTTCGGAGGCGGTCGTTT





2547
TTN
2589611
TTCCTCTTCGGAGGCGGTCGTTTTC





2548
TTN
2589662
TGGTACGGATAGTCTCGTCACGGTG





2549
TTN
2589662
TTAGGGTTGGTACGGATAGTCTCGT





2550
TTN
2589662
CTCAAGGTTAGGGTTGGTACGGATA





2551
TTN
2589662
GTTGGTACGGATAGTCTCGTCACGG





2552
TTN
2589412
CCCGGTGGTTGTCCAGGATAATTAT





2553
TTN
2589412
CGGACAAGGATGACGTTTCACCTGT





2554
TTN
2589412
ACGTCGGCCATCGTTTTGTCATCGG





2555
TTN
2589412
AGTACCGTCGGTGGATTCCTACTAC





2556
TTN
2589718
CACCTTTTACAACGTTGAGATGTCA





2557
TTN
2589718
GTTCGTAGGTATCTTCCGCGGGTCG





2558
TTN
2589718
GGTGGTTCTAAACAGAGGTTTGACT





2559
TTN
2589718
TGTCGGAGTGACAACATCGGCCTCT





2560
TTN
2589655
GATTTTTTCTTCAAGTGCTCCTTAC





2561
TTN
2589655
TCACCCTTCTCCGAATGGTTCTTTC





2562
TTN
2589655
TCTTCCGATACTGCTTCCCCTCCTT





2563
TTN
2589655
TCTTCCCGTTCTTATGATACTTTCC





2564
TTN
2589610
TTTTCCACCTTCGAGGTGGACGGTT





2565
TTN
2589610
ATTTTTCCACCTTCGAGGTGGACGG





2566
TTN
2589610
GGATTTTTCCACCTTCGAGGTGGAC





2567
TTN
2589610
TTCCACCTTCGAGGTGGACGGTTTC





2568
TTN
2589461
TCTCAATTAAGAGCGGGTTATTTCC





2569
TTN
2589461
GTTACGATAACCACAGTCGCTCGGT





2570
TTN
2589461
GGGAACTGGATGTACACTGACTACG





2571
TTN
2589461
GTCGCTCGGTAGACTTTAGAGACTT





2572
TTN
2589478
TCCGGTTGACGTTGGACCACAAAAC





2573
TTN
2589478
CTTGCAAGTCTGTTCCCGTAAATAT





2574
TTN
2589478
ACCAAGGTTCATGTCCGATAGGTTC





2575
TTN
2589478
GAACAGACGGATACGGCTTGAACAG





2576
TTN
2589756
GACTCCCAGGATCTTAAGTCGTTCC





2577
TTN
2589756
CCTTTATCTGTAGGATTGTCGACTC





2578
TTN
2589756
TTCCTCGGTTTTGTTCAAACGTTCT





2579
TTN
2589756
TTATCTGTAGGATTGTCGACTCCCA





2580
TTN
2589656
TCGGTAAACTTGTTGGAATAATACT





2581
TTN
2589656
TGTGTCTCGGTAAACTTGTTGGAAT





2582
TTN
2589656
TGGTATGTGTCTCGGTAAACTTGTT





2583
TTN
2589656
CATCTTGGTATGTGTCTCGGTAAAC





2584
TTN
2589676
AAAATTTTGACTGGCCTCGGAACGT





2585
TTN
2589676
ACACGGTATTCACCTAGTCTTGGAT





2586
TTN
2589676
CCGGTCATAAGGACGTGTCGATGTT





2587
TTN
2589676
CTTGGATAGAGGCACAGAACCATAT





2588
TTN
2589376
TCGACCTAGAGGCACCGTAGATAGT





2589
TTN
2589376
CTTTAAGGTCACGAGCCAGCTGGCT





2590
TTN
2589376
ACCGGATTCGGGTTTGTGCTACCAC





2591
TTN
2589376
GGGCGGAATGATGACCTAATCTCAT





2592
TTN
2589605
CTCCTTTAAGGTGGACTCCTTCTCC





2593
TTN
2589605
TCAAGGAGGGCTTCTTCTTATACAT





2594
TTN
2589605
GGAGGGCTTCTTCTTATACATGGAC





2595
TTN
2589605
TTCTTCTTATACATGGACTCCTTCT





2596
TTN
2589799
GTGGAGGTTTTGTAGACGGTTTGAG





2597
TTN
2589799
CGGTGGAGGTTTTGTAGACGGTTTG





2598
TTN
2589799
CCGGTGGAGGTTTTGTAGACGGTTT





2599
TTN
2589799
ACCGGTGGAGGTTTTGTAGACGGTT





2600
TTN
2589498
CTGTCGTGCGAAACTTTGGCTTTAG





2601
TTN
2589498
TAGAGACTTCTACTATAGGTGCGGT





2602
TTN
2589498
CCTCTGACTCTGTCGTGCGAAACTT





2603
TTN
2589498
TGCGGTTGACCTTTGAGTTCCCTCT





2604
TTN
2589401
GAGACCTCCTGCCTCCGTCATTGTA





2605
TTN
2589401
AAGACTATATCTGCGACTACGAACG





2606
TTN
2589401
GTGCCGAGATCGAAGTCAGTGTTTT





2607
TTN
2589401
GTCGGAGGTAAACTGTAAAGACTAT





2608
TTN
2589321
AGGATACAGCAATGGTCCGAGTAGT





2609
TTN
2589321
GTCTCGGTTAACATCGGTCTTTGAG





2610
TTN
2589321
ATCGTCCGAGTTGACCCACTAACAA





2611
TTN
2589321
TGAGTGATGTAGCACCTTTCTGCGC





2612
TTN
2589667
GCGATCGCGATTTGATTGACATTAA





2613
TTN
2589667
ACAGTTGAATTTCTGGTCCCGTTAA





2614
TTN
2589667
ATAGCTAACCAAACACCAGGTGTGT





2615
TTN
2589667
ACCACTGGCTGTATGTGAGTCTCAG





2616
TTN
2589604
GGTTTCTTTGGACATGGTCTCTTCT





2617
TTN
2589618
TAGGGACATTTCGGACAGGGTCTTC





2618
TTN
2589618
GGATAGGGACATTTCGGACAGGGTC





2619
TTN
2589618
GATAGGGACATTTCGGACAGGGTCT





2620
TTN
2589618
ATAGGGACATTTCGGACAGGGTCTT





2621
TTN
2589354
ACCGTGTACCATAGTCGTTGTCAAC





2622
TTN
2589354
GACCACCGACGGTTTATTCGTTGAT





2623
TTN
2589354
CCGGGTCAAGCCAAACTACTTCAAT





2624
TTN
2589354
ACCCTTGGAGGTCGGATATGACCAC





2625
TTN
2589753
GAGTGTTGTAGGTATTGTTTACGAT





2626
TTN
2589753
TCCACTATAACATGTGGAGTGTTGT





2627
TTN
2589753
ATAACATGTGGAGTGTTGTAGGTAT





2628
TTN
2589753
CATGTGGAGTGTTGTAGGTATTGTT





2629
TTN
2589301
CACTGACCAGTAGGTTTTGGATAGC





2630
TTN
2589301
CGGTCACTACCTCCACGTTTCTAAT





2631
TTN
2589301
ACTACTACGGTGTCAAATGGTTCAG





2632
TTN
2589301
CTCGTTACGATGGAACCAGACGTTT





2633
TTN
2589439
GGCAAAACCATAACCGGGTGGACAC





2634
TTN
2589439
GCACACGCTCGTCTTTTGGCAAAAC





2635
TTN
2589439
GTTCCCCATCAACGTCTGAAAGTAC





2636
TTN
2589439
GTCCGGGTGGGTTTCTAGACTTTCA





2637
TTN
2589296
AGTCGATGTCGAAGGAATTACCAGG





2638
TTN
2589296
AAAGGCACCGGTCACAAGTCGATGT





2639
TTN
2589296
CGTATTCGGCGAGGTCTTTACATAT





2640
TTN
2589296
AGTCAGTCGCTGTCACCTTTCATGT





2641
TTN
2589467
TTTTTATGTCTAAGGCACACAACCG





2642
TTN
2589467
TAGTTGACTTGGTTAGAATTATTTC





2643
TTN
2589467
CGACCTGGACCTTTTGGTTCGTTTA





2644
TTN
2589467
TGTCTAAGGCACACAACCGACTTTT





2645
TTN
2589835
TAAAGGCGTCGATTTCGGTTTCTTG





2646
TTN
2589835
ATCATTAAAGGCGTCGATTTCGGTT





2647
TTN
2589835
CATTAAAGGCGTCGATTTCGGTTTC





2648
TTN
2589835
TTCCATCATTAAAGGCGTCGATTTC





2649
TTN
2589797
AAGTGACAGCTCGAATGTGTGGGAT





2650
TTN
2589797
CGGTAGCACCTACTCAGACAAATAC





2651
TTN
2589797
ACCTCGGTCACGGTCTGACGTGCAC





2652
TTN
2589797
AGACTCCTAATTTTTGACACGGTAG





2653
TTN
2589450
TGCCGCAGTACTGTTTGGACTGAAA





2654
TTN
2589450
GAGGTCTCTCCGAGTGTATGTGACT





2655
TTN
2589450
ACCGTCAGGGTAGGTTCCTATATAG





2656
TTN
2589450
CATACTCAAGGCACAGTTTCGACAG





2657
TTN
2589745
CCTCTAGAAAAGCAAATTATCACGT





2658
TTN
2589745
CCTTGTTTACGAGATGAAGTCACAC





2659
TTN
2589745
ACCGACGTACCGTTGGGTGAATGAG





2660
TTN
2589745
TGAGAACTCGGACGTCTGTATCACT





2661
TTN
2589719
GAAGTCTGTAGCCACTTATGGTGAC





2662
TTN
2589719
CGTCGAAGGGAGGATATCATCTTTG





2663
TTN
2589719
GGTGGCAAACTCCACCATACCATGT





2664
TTN
2589719
TACCATGTTTCTGTTCGCCGTTGAG





2665
TTN
2589477
TCAGTCGGCCTTTTGTACCTGATTT





2666
TTN
2589477
ACCACTATATTGGTTCCTGAGTCAT





2667
TTN
2589477
ACCTCCTTCAGGCAATTGACCTATG





2668
TTN
2589477
AACTGAACCCTTGGTGGACTACTAC





2669
TTN
2589717
GAAGGAATTCCTAAGAGAGTCAACT





2670
TTN
2589717
GACCGTGAGGCCTTGAGAGACAACT





2671
TTN
2589717
GGGCGTCAGTAACAACTCTTCCGTC





2672
TTN
2589717
CACTGACATCCTCTTTGCACGTGAG





2673
TTN
2589518
GACTTTAGTTCGGTCGTTATGGAGA





2674
TTN
2589518
ACTTGGCTTTGGTTTCGGGCTTCGT





2675
TTN
2589518
TTAGTTCGGTCGTTATGGAGAGGGA





2676
TTN
2589518
AGAGGGACGTGGACTTGGCTTTGGT





2677
TTN
2589314
AGGGTCGACCGTCTGGTCATCTCGA





2678
TTN
2589314
ACCAAGAAACGACCAAGATTTGACT





2679
TTN
2589314
CCACTATGGATAACGACCGGCAGGT





2680
TTN
2589314
TCTTCTGGTAGGTACAGGGTCGACC





2681
TTN
2589800
GTGTTTTCCTCTGAATAGTAACGAC





2682
TTN
2589800
CTACCGGTGTTTTCCTCTGAATAGT





2683
TTN
2589800
GGTGGTTTAATCTACTGTAACCTCT





2684
TTN
2589800
GACGGTGGTTTAATCTACTGTAACC





2685
TTN
2589346
CAGACACCGGCAATTAACGTTTCAT





2686
TTN
2589346
TACCACCACGTCTATAGCTGATAAT





2687
TTN
2589346
TCATGAACTATTCGGACCAGGTGGT





2688
TTN
2589346
CGGTGGAACGTACCTGTTATACACT





2689
TTN
2589530
GGTCACTTCTTCCAGGGTTGACAAT





2690
TTN
2589530
AAGGTCACTTCTTCCAGGGTTGACA





2691
TTN
2589530
TCACTTCTTCCAGGGTTGACAATTC





2692
TTN
2589530
CACTTCTTCCAGGGTTGACAATTCT





2693
TTN
2589701
TCACTGTGGAGTTGGGAATAACCCC





2694
TTN
2589701
TGCTACGACCTTACTCTCTTACGAG





2695
TTN
2589701
TACGACAACTCAATGCCCGGTATCA





2696
TTN
2589701
CCCCTCAGGTCTTCGTAGATTAAGA





2697
TTN
2589466
GTACCGGGGGACCTTTTGGTTGACA





2698
TTN
2589466
AGGAGGTACCGGGGGACCTTTTGGT





2699
TTN
2589466
GGACCTTTTGGTTGACATTTTCTAC





2700
TTN
2589466
ACCTTTTGGTTGACATTTTCTACAT





2701
TTN
2589523
TTCCTTCTTCAACAAGACTTTTCGC





2702
TTN
2589523
ACCTCCACTTTTCTTTCAAGCGTTT





2703
TTN
2589523
CTTGGTTTCCTTCTTCAACAAGACT





2704
TTN
2589523
GACTTGGTTTCCTTCTTCAACAAGA





2705
TTN
2589777
TCACGAAGGGTGAGAACTACTGACT





2706
TTN
2589777
CGTCCACGCAACGTATGGAAGATCT





2707
TTN
2589777
GGTGTACGGTCGCTTAGAAAACCAT





2708
TTN
2589777
AAACTGGTTCGTTTTCCGCGGGTAG





2709
TTN
2589391
GGCTATTGACCCACTCCACGTTGAA





2710
TTN
2589391
GTTAAGGCACACATACGGCAATTAT





2711
TTN
2589391
CCGCCGTCGGGATAGTAACCAATAG





2712
TTN
2589391
AGACACTCAGATAGAACCCCGTTCG





2713
TTN
2589447
GGTTCTTTAGAACGACAATGACTGT





2714
TTN
2589447
CCGTCACTTTAGTGGGTAATACAAT





2715
TTN
2589447
ATGACTGTAATTTCGACTTAGAACG





2716
TTN
2589447
AGAACGATGAACTGTACCCTACGGG





2717
TTN
2589342
TCGACTGCGACCCTCTATACTTTAG





2718
TTN
2589342
GAGAGTTTACCCTCGGTGGATTCAT





2719
TTN
2589342
GTCTTTTGGCGAAACCGTAGTCACT





2720
TTN
2589342
AACAACACGATCTGTCCGGACCAGG





2721
TTN
2589331
TCAGGCCTCTCTCGGAATCTTAATT





2722
TTN
2589331
GGTCACGGAGCTCATTGAACCAAGT





2723
TTN
2589331
GCTGCATGAACCTAGGTGGTCGGAT





2724
TTN
2589331
AGCCCTGGTAGCACCACATATGTGT





2725
TTN
2589734
TCTTTTACCTGTCGTAATTTCCAAG





2726
TTN
2589734
TACATATCACCGACCCAGTGTAGGG





2727
TTN
2589734
TTATAGTCGATCACTTTTCATGTTT





2728
TTN
2589734
TCACCGACCCAGTGTAGGGTATTCG





2729
TTN
2589659
ACAACGTTTCGGGTTTCTCTACTGT





2730
TTN
2589659
AACGTTTCGGGTTTCTCTACTGTGG





2731
TTN
2589659
CAACAACGTTTCGGGTTTCTCTACT





2732
TTN
2589659
CAACGTTTCGGGTTTCTCTACTGTG





2733
TTN
2589713
CCGACGATTACAGCGACCCAGACTA





2734
TTN
2589713
GCGACCCAGACTACTTACAGCACGT





2735
TTN
2589713
ACAGCACGTCACGATTGACATGTTC





2736
TTN
2589713
GTGTACGCACCGACGATTACAGCGA





2737
TTN
2589465
TCACTTGGGTCACTTGGGTCACTGG





2738
TTN
2589465
CCGAGTACCTTCCTGTCCTTATGAG





2739
TTN
2589465
ACCGCCTTCCCCAAGGGTGGTGAGT





2740
TTN
2589465
TGAGTAAGGCTCAATCTCGACACTT





2741
TTN
2589400
GGCACGACTTTTGGCTAAACCGTAA





2742
TTN
2589400
TTCTACCAACGCGTCAAGGGTAAAC





2743
TTN
2589400
CAGGCACGACTTTTGGCTAAACCGT





2744
TTN
2589400
AGTGTAGAGGTTTCTACCAACGCGT





2745
TTN
2589430
AACCTGATTTAGTAGACGTCTAGAC





2746
TTN
2589430
GGGTGATTTTCTACCACCTAGGTTT





2747
TTN
2589430
GACCTATGTAGCAACTTATATTTCT





2748
TTN
2589430
CTAGACCTCACCAGAGGGGGTGATT





2749
TTN
2589804
GGGTAACGATAGGATGTTCCTGAAT





2750
TTN
2589804
CCCACTGTAACAAGTCGAACTTCAA





2751
TTN
2589804
GGTTTTTCAGACACTCCCACTGTAA





2752
TTN
2589804
GTGGTCACCCGCACAGAGACAGATA





2753
TTN
2589633
TTGATAGGAAGCGTCAAGGAGTTTC





2754
TTN
2589633
TTTTCTCTAAACAACGACTTCTTTT





2755
TTN
2589633
CTTCAGAGATTCTTTTGACAACATC





2756
TTN
2589633
GGAGTTTCTCACCTTCAGTGCGCCG





2757
TTN
2589811
ACCATCTGGATACGGTCTCTGCAAG





2758
TTN
2589811
TACAGTGGACGTTCCTACAGAGGAC





2759
TTN
2589811
ATGCGTACAGAGGACGTGCCTACAG





2760
TTN
2589811
ACTCGTCCAGAGGATATGCGTACAG





2761
TTN
2589720
GAACTTACGTTCTATCGACCTAGGG





2762
TTN
2589720
AAACACTCCGAGTCTTAGGGCGACC





2763
TTN
2589720
GTCCACTGAGAAGTGCTGAACTTAC





2764
TTN
2589720
GAGTCACCGGCAGTATGTCTACTTG





2765
TTN
2589368
CCATCTAGGTGGTGCTTATTCATAC





2766
TTN
2589368
GTTAGCACCAAGTACGACCACTTAG





2767
TTN
2589368
GTCATGCACAGCTGTCACCTTTAAT





2768
TTN
2589368
TTCTCGTGGCTGAAACGGTGGTCAG





2769
TTN
2589628
AGGACTTCGTGGATTCTTTTAACAC





2770
TTN
2589628
ACGGTCTTTTCTTTCAAGGACGAGG





2771
TTN
2589628
ACTTCGTGGATTCTTTTAACACGGT





2772
TTN
2589628
AAGGACGAGGTCAAGGATTTTTCCT





2773
TTN
2589729
AGACCACGGTCCCATCTTTTATCAC





2774
TTN
2589729
TTCTTCGGGTCAGGTCAGAATCACG





2775
TTN
2589729
TAGGCTCACAGAACCATAGATCTGC





2776
TTN
2589729
ACTTCGAGCTTTACTGCGTCCGTGC





2777
TTN
2589358
ACGTCCAAGATTCAGTAAGGGTCAT





2778
TTN
2589358
GGACTACCAGCAACCTACTTTCGAT





2779
TTN
2589358
AGGTACTGGCAGACAACCTTGGCAG





2780
TTN
2589358
GACGGTTCCTACTCCAACTTGAGGG





2781
TTN
2589757
CAGATTTTCTCTCGGGCACCGTTAT





2782
TTN
2589757
TCCAGCTCCGACATTTGTAGTGGGT





2783
TTN
2589757
CCGTTCAGGAATTCTAAAGGTGATC





2784
TTN
2589757
ACATGGAACAATGAAGCCGTTTCAG





2785
TTN
2589317
TTCGTCCCGTAACTGGAACGTTCGG





2786
TTN
2589317
GGTGGAGGACAGTATTGCACCTCGT





2787
TTN
2589317
GAGGAACGCGAACTACCACAGACAT





2788
TTN
2589317
CGGCCCGTTAATAACTGTGGTGACT





2789
TTN
2589506
CTTCGACTTTCCTGTCGGAAACTGT





2790
TTN
2589506
TACAAGTGCCGGTCACCTTCGACTT





2791
TTN
2589506
ACCTTTTCGGAGACATGCCTCATCT





2792
TTN
2589506
CTTGAAAGACTTGGACTACAAGTGC





2793
TTN
2589726
AGATATTGGACCGATTTCCTACTAG





2794
TTN
2589726
CTATCTTTTATGGTGATGACAAAAC





2795
TTN
2589726
GGAAAGTCTCATGGCACCGTCCAAG





2796
TTN
2589726
TCCTCAACTCTCCACAATACGAAAG





2797
TTN
2589357
CCCTTGGTTCAGGTCGATGTCAAAT





2798
TTN
2589357
ACCCCTTGGTTCAGGTCGATGTCAA





2799
TTN
2589357
CTTGGTTCAGGTCGATGTCAAATAA





2800
TTN
2589357
TGGTTCAGGTCGATGTCAAATAATA





2801
TTN
2589356
CACAGGGTCTGGTCACGTAGTGAAT





2802
TTN
2589356
GACAACTACGGCACTTTCGACGACT





2803
TTN
2589356
AGGACCCCATGCAACAACTTTACGT





2804
TTN
2589356
GACCGGACTCTCAGTGAGCTAAACT





2805
TTN
2589671
GGGTCGTTGGTTCTTTCGACGCCAT





2806
TTN
2589671
ACAGTCTTGGAGTCTCATAGTCTCA





2807
TTN
2589671
TCGACGCCATCTACCTTCTGAGAAA





2808
TTN
2589671
CCTTCTGAGAAAAAACACAGTCTTG





2809
TTN
2589632
TCCTTCCACACAGGTAAAGTCAAAT





2810
TTN
2589632
CCTTCCACACAGGTAAAGTCAAATA





2811
TTN
2589712
CGTAGAACGTGATGGGCAGAGAAAC





2812
TTN
2589712
CCTCTGGCCACGTTGTAGATAAAAC





2813
TTN
2589712
AAGTGTTCGCAATAATCTCCTTGGG





2814
TTN
2589712
CCAAAGATTGTTGCGACCGGTTCGT





2815
TTN
2589721
CGCTGAGAACATGATGCTACAACGA





2816
TTN
2589721
ACCATCGCTGAGAACATGATGCTAC





2817
TTN
2589721
AATGGTTACTACAACCATCGCTGAG





2818
TTN
2589721
CTACAACCATCGCTGAGAACATGAT





2819
TTN
2589786
GACCCGTCATGAGAACGTTTCGTCG





2820
TTN
2589786
ACACGTCGATGTGAGTGTCACTGAG





2821
TTN
2589786
CGACCCCTTCGGTGAACACGTCGAT





2822
TTN
2589786
ACCAAAGTATTGGTCGTCGATTAAG





2823
TTN
2589831
CTCTTGTTCACGTTTATTGAGTCCT





2824
TTN
2589831
CTCTTCCGTAATGATGGTTTTCTCT





2825
TTN
2589831
TTTCAGTATCAACGGTGTGGGTTTC





2826
TTN
2589831
GTCAACATGGATTTCAGTATCAACG





2827
TTN
2589617
AGGATTCTTTGAGTTTGGAGGTGGT





2828
TTN
2589617
ACTTCTTTTTCATGGTCACGGGTAA





2829
TTN
2589617
ACGGGTAAGGATTCTTTGAGTTTGG





2830
TTN
2589617
TTTTCATGGTCACGGGTAAGGATTC





2831
TTN
2589505
GACCCATACTGTCCTCTCCAAAGGA





2832
TTN
2589505
GGAAGTATTGACAGTCGACCCATAC





2833
TTN
2589505
GGAAGGTCCGACGATTACGGTTTAG





2834
TTN
2589505
CCTTTCTTCGTATAAGACTAGGAAG





2835
TTN
2589697
ACCTCGGGAGGCTGTGTCCGTATAT





2836
TTN
2589697
ACTTAGACTCGAACAACCTCGGGAG





2837
TTN
2589697
ACAGTCAGGTCGAAAAGCCTTTTGC





2838
TTN
2589697
GACGGTTACATCGACCAAGGCTACT





2839
TTN
2589808
CCAAGGGCTGAACTTTACTTTCAGT





2840
TTN
2589808
ACAGTTATATTTCCTTCCAAGGGCT





2841
TTN
2589808
ACTTTCAGTCTCGATGCCCATTGGG





2842
TTN
2589808
GGGACTGTAACATACCAACTTTTTG





2843
TTN
2589433
GGTCGCTGACGATCTCTAGGTTAAC





2844
TTN
2589433
ATCGTCGCACTGAGCATTGAGGTAC





2845
TTN
2589433
ACCCAGGTCGTTCAGACGGTAGTCT





2846
TTN
2589433
AGGCTGATAGTTAAGGCCCATATAC





2847
TTN
2589668
GTCTCTCCCTGCTTTTCCTTAAACT





2848
TTN
2589668
AATAAGTCGTTTCTGACAGTGTCTG





2849
TTN
2589668
AAGTCGTTTCTGACAGTGTCTGTCT





2850
TTN
2589668
AGTCTCTCCCTGCTTTTCCTTAAAC





2851
TTN
2589744
CCGTTTATGTGCACGGACCGACTTT





2852
TTN
2589744
GTAGACAACCCCTTAATTATCAATT





2853
TTN
2589744
CACAACGTCAGAACTATTAGGGACT





2854
TTN
2589744
CCTGTTTGGCAATGGGACGTTCGAC





2855
TTN
2589507
GTTCTGGTTCCGTTTACAATGACAA





2856
TTN
2589507
GGCTAGGGATGAAGTGACACTTTAA





2857
TTN
2589507
CCGGACGCGGCGTAGAATTTTTAGT





2858
TTN
2589507
TTCTCTAACAGGGAAGTGGGTTTAT





2859
TTN
2589620
CGACAAAGTCATGTTGCCCTTCTTC





2860
TTN
2589620
ACAAAGTCATGTTGCCCTTCTTCTT





2861
TTN
2589620
GTCATGTTGCCCTTCTTCTTATACT





2862
TTN
2589620
AAAGTCATGTTGCCCTTCTTCTTAT





2863
TTN
2589353
AGATTCCGTCAATAACATGTTATAG





2864
TTN
2589353
ACCTTGAGGAAAACACTGTAGTTAG





2865
TTN
2589353
TTCTAGTCTACGAACACGTTACCGT





2866
TTN
2589353
CCGTGGTTTTAATAACCGATGGTAG





2867
TTN
2589675
ACGACTGAAACTCACGGTGCAGTGC





2868
TTN
2589675
GTGCAGTGCCCGTGTGTTGGCTATT





2869
TTN
2589675
GTTGGCTATTTCCAGTCGACCCGGT





2870
TTN
2589675
GGTGGGAAGAAACTGTAGGCAGAAC





2871
TTN
2589732
CTTCCTACTGTGGAGATGGTCAGAT





2872
TTN
2589732
CGGTGTCAGTGTTCTACAGTTAGGG





2873
TTN
2589732
AATTTCCGAGAACACCCACCGTGAC





2874
TTN
2589732
GTGAGTCCTCGTCGGGCGAGTCAAA





2875
TTN
2589441
CGACTTTTGAGGAGTCATTAATAAT





2876
TTN
2589441
AGTCATTAATAATAAGGCCTCACAT





2877
TTN
2589441
TTTGCTAGAGTATGTCCGTTTATGT





2878
TTN
2589441
AATAATAAGGCCTCACATTTGCTAG





2879
TTN
2589379
AAGGCTAGAGTCCACGTTTCATTGT





2880
TTN
2589379
GGACGCTACCCACTCTCGTTATTTT





2881
TTN
2589379
CCACCGTCGCTTTAATGTCCTATAG





2882
TTN
2589379
ATGCTTAAGGCACAGTCACGTCTTT





2883
TTN
2589341
CCGTCACGTCAGCATCCGATAGTGG





2884
TTN
2589341
GTGGTACCCAGTGATTACAATGAGC





2885
TTN
2589341
ACCAGTAGGCGTGTTGAGTGAAGTT





2886
TTN
2589341
CAGTGTTGTTAGTCACGACCTGAAT





2887
TTN
2589420
ACTGGTTTCTAATGTACCAATAGAG





2888
TTN
2589420
TTTCTAATGTACCAATAGAGAACCT





2889
TTN
2589420
GGTTTCTAATGTACCAATAGAGAAC





2890
TTN
2589420
TCTAATGTACCAATAGAGAACCTTC





2891
TTN
2589455
GGAAGTCTAGGGTTTTGTCGTGTAC





2892
TTN
2589455
TACCGAATAATCTTCCTGAGTGGAT





2893
TTN
2589455
ACTTACGGAACTTTCGGTTACATCT





2894
TTN
2589455
ACCAGAGCACAGTTGTTTTCGGAAG





2895
TTN
2589474
TAGAAGAATTGTACCCTAGGTGGAT





2896
TTN
2589474
TCCTATATATCAACTTTCTACAGGT





2897
TTN
2589474
CTCTCTAGCTTGTCGGTTATCGTAG





2898
TTN
2589474
ACCACCAAGTGCGTAGTTTCCTATA





2899
TTN
2589403
CGGTCTTTACGACAACCTCAGTCAA





2900
TTN
2589403
GGATGCACTACCTCCACGATTTTAG





2901
TTN
2589403
GGACGTCTAGCGACCTGTCTCATGA





2902
TTN
2589403
CGGAACAACAGTGACCGGATTTCCT





2903
TTN
2589634
GACGGATTCTTTGGGCAGGGTCTCC





2904
TTN
2589634
ACAGCGATTCTTTCGAGGAGGAGGG





2905
TTN
2589634
CAAGGACAGCGATTCTTTCGAGGAG





2906
TTN
2589634
CGGTCAAGGACAGCGATTCTTTCGA





2907
TTN
2589768
CACCTTCCCGGAGGGTCCAAATAGT





2908
TTN
2589768
GTCACGAATCAAGCACCGAGAGGTT





2909
TTN
2589768
AGACTGACAATACGTGGTTATCCAT





2910
TTN
2589768
CAAGGGCTTAAATGAGGACTGGTAT





2911
TTN
2589431
GGAGGACCAGGAGGTAAAGGGTTTC





2912
TTN
2589529
TCTTTCTTGGACACGGACAATGGTT





2913
TTN
2589529
ACGGGTTCTTTGAACAAGGTCATTT





2914
TTN
2589529
CGGACTCCACGGGTTCTTTGAACAA





2915
TTN
2589529
GACTCCACGGGTTCTTTGAACAAGG





2916
TTN
2589350
TCTTACGAAACAACGAGCACTAGGT





2917
TTN
2589350
TTCTTTGTTACAGTGTGACTTTACC





2918
TTN
2589350
TACACTGGGTGGACCAGCGGGACTT





2919
TTN
2589350
ATAATGTTCTTTGTTACAGTGTGAC





2920
TTN
2589583
CAAGGAGAGTCTTTCGGACTTCAGG





2921
TTN
2589583
ACACCAAGGAGAGTCTTTCGGACTT





2922
TTN
2589583
ACCAAGGAGAGTCTTTCGGACTTCA





2923
TTN
2589583
AACACCAAGGAGAGTCTTTCGGACT





2924
TTN
2589509
CAGGAGTGGGCTCTCCGTTTACAAT





2925
TTN
2589509
GGGACTTCCTACAGTGACAAGGTCT





2926
TTN
2589509
CCGAGCTAAGCTTACACAGGAGTGG





2927
TTN
2589509
AGGTCTTTCCGCTGTCCGAGCTAAG





2928
TTN
2589409
GGACAGTTGTTCTCACGTTAGGGAC





2929
TTN
2589409
TGCAGGAACTGTCTGGACCCGGAAC





2930
TTN
2589409
AGGCGTAAGATCGAGCTCAGTTTCC





2931
TTN
2589409
ACGGGTTCCAAGTCGGTAGCAATTG





2932
TTN
2589631
TCGGACTCCTTATACAACACCTTCT





2933
TTN
2589631
CTTTTCGACGTGTAATAAAGATTCT





2934
TTN
2589631
TTCTCGGACTCCTTATACAACACCT





2935
TTN
2589631
GGACTCCTTATACAACACCTTCTTT





2936
TTN
2589462
GTCTCCAGGTCAAAGTCCAAGCCCG





2937
TTN
2589462
GACTACAGTAGCTTCCTTGTCTCCA





2938
TTN
2589462
ACGTCCTGGACTGACATTGAAGTCT





2939
TTN
2589462
GGGTGTCTTTAGGATAGGTAACTTC





2940
TTN
2589742
TGGGAACGCGTTGCACCTATCACAA





2941
TTN
2589742
ACAATTACCATGGACGTCTGACCTG





2942
TTN
2589742
GGTACTCCCACAGGACCAAATTCCT





2943
TTN
2589742
CCCTTAAAGTGAACAGCTCGGTGTT





2944
TTN
2589597
TTTCACCTCCGTGGTGGTCGATTTC





2945
TTN
2589597
CTAATTCTTTCGTCATGGACTTCGT





2946
TTN
2589597
TTTTTCACCTCCGTGGTGGTCGATT





2947
TTN
2589597
AGGACAAGGATTTTTTCACCTCCGT





2948
TTN
2589630
AAGGACGATTTTATCTCCTCGGAGG





2949
TTN
2589630
TATCTCCTCGGAGGTGGCCGATTTC





2950
TTN
2589630
ACGATTTTATCTCCTCGGAGGTGGC





2951
TTN
2589630
GGTTTTTAAGGACGATTTTATCTCC





2952
TTN
2589339
CCGGGTAATGAACGTAGCTAAGAAT





2953
TTN
2589339
GGTCGAAAGCTACCTCCATCGTTCT





2954
TTN
2589339
ATGTAACAACTCTCTGCACTGGAAG





2955
TTN
2589339
GGTAGACTCCAACATCCCGGGTAAT





2956
TTN
2589834
CTATTGACGACGTAGGTACCACCAT





2957
TTN
2589834
GTGTTGTTCTAGTTTACGTGGATTC





2958
TTN
2589834
CCATCAACGGTGACGTTTCAGGTGT





2959
TTN
2589834
TGTTCTAGTTTACGTGGATTCAATA





2960
TTN
2589537
CGTGGACGACAGCAACGGTTTTTTG





2961
TTN
2589537
TTTCTTTCGTGGACGACAGCAACGG





2962
TTN
2589537
ATGGTGGATTCTTTGGACAGGGTCT





2963
TTN
2589537
ACGGTTTTTTGGACTTGATGGTGGT





2964
TTN
2589654
TAAGTTCAAGTTTTCCTCCAGATAC





2965
TTN
2589654
GTTCAAGTTTTCCTCCAGATACTTC





2966
TTN
2589654
ATTAAGTTCAAGTTTTCCTCCAGAT





2967
TTN
2589654
AAGTTCAAGTTTTCCTCCAGATACT





2968
TTN
2589849
AGTGGCTAAGTACAGCCTCTACCAG





2969
TTN
2589849
AAATCCTAATCTCCGAGTGGCTAAG





2970
TTN
2589849
CCTGCAGCAAAGTCTTCGTTGGAAC





2971
TTN
2589849
CAGTCTTTTTGGTTGAGAGGTATCC





2972
TTN
2589591
GTGATTTCAACAAGGAGCTTTTCTC





2973
TTN
2589484
TTCGGTCTCGATTCGAACTTGACCG





2974
TTN
2589484
CGGTCTCGATTCGAACTTGACCGTC





2975
TTN
2589484
GTTTCTTCGGTCTCGATTCGAACTT





2976
TTN
2589484
GTTTCTGTTTCTTCGGTCTCGATTC





2977
TTN
2589750
CCGGTGGATCGGTTTAAGTGGACAC





2978
TTN
2589750
AAGGTTACTCATACCGTCACAGTCG





2979
TTN
2589750
GGGACCTTCATCGTGACCCGGTGGA





2980
TTN
2589750
GGTTTCACGAGGGTTACAGGCCAAG





2981
TTN
2589390
ACGCCTGAATTCCTTCTGTGAGTAT





2982
TTN
2589390
TGCACGACCTCAATGATACTCTGAT





2983
TTN
2589390
TGAAACTGTGAAAGAACGCGACACT





2984
TTN
2589390
GGACTCCCTCTTGAACTACGCCTGA





2985
TTN
2589783
TCCTTAGGCTCTCTGACTTTGTTAG





2986
TTN
2589783
GGTTCCTGATATGTCGACGTAACAT





2987
TTN
2589783
TCCTGTTGCAGTCGTCATGATTCAC





2988
TTN
2589783
GACCTGAGTGCTTCCACGTTTCTAT





2989
TTN
2589463
ACACTGTTTTGCTGTACAACTGGAT





2990
TTN
2589463
TACAACTGGATTTCACCCTCGGTGG





2991
TTN
2589463
TGGGATGCGGGACCGTCACCAACTA





2992
TTN
2589463
GTCACCAACTACACTGTTTTGCTGT





2993
TTN
2589395
AACCCTTGGCGGAGAACTTCTACCT





2994
TTN
2589395
GACCCGAGTTCAGAGACGTTGACAC





2995
TTN
2589395
TAGCACGATACGAAAGAACCCTTGG





2996
TTN
2589395
CGACGTCGCACCTCTTTGAATATCT





2997
TTN
2589373
TACCGTCTAACAGTGAGGTGGTCGT





2998
TTN
2589373
CCTGAGTTCCGTTGAAGCATATGAT





2999
TTN
2589373
TATACCAACTCTAACGGGACGGTCT





3000
TTN
2589373
ATTGGGTGCACAAGACCTATGTTCG





3001
TTN
2589470
GCGCTACTACCACCTAGATTCTAGT





3002
TTN
2589470
TGTTCGAGAGTAGGTGGCAGTTCCT





3003
TTN
2589470
GTTTGATACAACACCTCTCTGCTCG





3004
TTN
2589470
TGTACCTTGGGTGGTGCGCTACTAC





3005
TTN
2589770
AAACCATGTGGGTTACTTCGGTAAC





3006
TTN
2589770
AAGTCGAATACTTTATACCGCAAGG





3007
TTN
2589770
ACCGCAAGGCTAAGTAAACCATGTG





3008
TTN
2589770
TCTGCCATGTGGTTTACTCGTAAAG





3009
TTN
2589370
TTCTGTTGACCGGAACTTCTTCCAC





3010
TTN
2589370
CCGATAGTAGATCTTGCGTTCCTTT





3011
TTN
2589370
TTGTAGCACCCGTAACCGTTCGGCT





3012
TTN
2589370
TCGTAGGAGACCCAATTCAACTTAT





3013
TTN
2589621
TTTTCATAGTTAACTTCGAGGTTTT





3014
TTN
2589621
TCATAGTTAACTTCGAGGTTTTTCT





3015
TTN
2589621
TTTTCTCTTGGAGTTGGGTAGTTTC





3016
TTN
2589621
GTTTTTCTCTTGGAGTTGGGTAGTT





3017
TTN
2589377
GGCCGAACAGACTTCCCACACTTAT





3018
TTN
2589377
ACGGCTCGAAGCTTCTTGTGAACAA





3019
TTN
2589377
AACACGGTTAATTTCCAGCAGGACG





3020
TTN
2589377
GACCCTGGAGGGAGACTATCTACCT





3021
TTN
2589788
GTAGAGCCAAGAAATCTTACTGAGT





3022
TTN
2589788
CTTCCTTGAATGTGCAAACAACGAT





3023
TTN
2589788
GATCATTACGACATCCGGTTCATAG





3024
TTN
2589788
AACGGCTTCGAATAGGTCTTCTACT





3025
TTN
2589340
GTAGGAAGACTTGGTCAGAACCGTT





3026
TTN
2589340
GAAGACTTGGTCAGAACCGTTAACT





3027
TTN
2589340
ATCGGTAGGAAGACTTGGTCAGAAC





3028
TTN
2589340
TTTGGATCGGTAGGAAGACTTGGTC





3029
TTN
2589681
CACTGTCTACGTTGCACAGAAACCT





3030
TTN
2589681
CTACGTTGCACAGAAACCTCCTAAG





3031
TTN
2589681
TGTCTACGTTGCACAGAAACCTCCT





3032
TTN
2589681
GTCTACGTTGCACAGAAACCTCCTA





3033
TTN
2589599
GTGGATCGTATCTCCTTCAACTTCT





3034
TTN
2589599
CTTGGTGGATCGTATCTCCTTCAAC





3035
TTN
2589599
GACTTCTTCTCGGATAAAGTCTTCT





3036
TTN
2589599
AGGGTCTTCTTGGTGGATCGTATCT





3037
TTN
2589816
CTCTTTGTCGTGGACCTAAACATAT





3038
TTN
2589816
TGTCGTGGACCTAAACATATGAGAC





3039
TTN
2589816
GACCTAAACATATGAGACTCATACT





3040
TTN
2589816
GTGGACCTAAACATATGAGACTCAT





3041
TTN
2589334
TGAAGGCCCATAGACGACATTTGAC





3042
TTN
2589334
CCAGGTGGACGATTCTATTCTTAGC





3043
TTN
2589334
AGGTAGTGGGAACCGACCTCATTCG





3044
TTN
2589334
ACACCATAGGTTGGACTTTGGACCT





3045
TTN
2589771
CTGAGACCTCTCTATGAGGTGTGGG





3046
TTN
2589771
CCTCTCTGAGATCTCTCTATAAGGT





3047
TTN
2589771
GGGGTCCTCTCTGAGATCTCGCTAT





3048
TTN
2589771
TCTCTCTATAAGGTGTGGGGGTCCT





3049
TTN
2589838
TAGTCCAGACAATCCAGAGGTAACG





3050
TTN
2589838
CAGCCGGTCACGATCGATGCGTCGT





3051
TTN
2589838
GAGGTAACGAGTACGCATTCTGAGT





3052
TTN
2589838
CATTCTGAGTCCGTAGGTGGCACCG





3053
TTN
2589411
AGGTGTGGATGACAACGATTCGTAT





3054
TTN
2589411
GGATGACAACGATTCGTATTTAAAT





3055
TTN
2589411
ACTGAGGTGTGGATGACAACGATTC





3056
TTN
2589411
GAACTGAGGTGTGGATGACAACGAT





3057
TTN
2589818
CTACTACGACCTCTTATGTGATAAC





3058
TTN
2589818
GGCCACTTACGTTCGACCACTAAAG





3059
TTN
2589818
ACAACAAGCGTTATTCGTACCTCTT





3060
TTN
2589818
ACTCAATGTTGTTTGTTTGGCCACT





3061
TTN
2589312
CACCGACGTTGTTTGGCGAAGCCCT





3062
TTN
2589312
AGCCCTAACCGAGAATGAACGTCAG





3063
TTN
2589312
ATACACCATCTTGTTGCACTGCGAG





3064
TTN
2589312
CTCCAGTATCTCACAGCGTCGTCGT





3065
TTN
2589841
AACTCTACCAGTATCTACCACGGCG





3066
TTN
2589841
ACTTCGGGTGAAACTACGGTCTAGT





3067
TTN
2589841
TGTGGTGGCAGATAACGACGGTTTC





3068
TTN
2589841
AAGGAGGCTTCGGTTTCAGTTCTAG





3069
TTN
2589457
TGTGTCGCAAACTCATAACTGTTGT





3070
TTN
2589457
TTCGCACGTCGTGGGAACCAATCCT





3071
TTN
2589457
CTCTAAGAGAGGCTGGACTGGTACC





3072
TTN
2589457
TACTGGTGCCATAACGTTTTCGAGG





3073
TTN
2589325
CACGGTACGAATCTCACGTTGATGT





3074
TTN
2589325
GACGGTTACGGTACAGATAAGCAAC





3075
TTN
2589325
CCTTCTTGGGATGGTGCTACCACCG





3076
TTN
2589325
CCGGTCGCTTCGAAGTTCTGGATAT





3077
TTN
2589813
TACCGTCAACTGTAAAGACTTAGAC





3078
TTN
2589813
GTGAAAAGTAACGTTCTACAGACCT





3079
TTN
2589813
AGTTCTTAGTTCTTAATATCTTAAG





3080
TTN
2589813
TCAACTGTAAAGACTTAGACTTCGA





3081
TTN
2589594
TCAGGAACACGGATTTTTCCTTCGA





3082
TTN
2589485
GAGTTATTTCTATTCCACCTTCAGG





3083
TTN
2589485
TAGTCCGGAGGTGTTCTATAAGAAC





3084
TTN
2589485
TCTATGTAGCTGATGTCTAAACACT





3085
TTN
2589485
CACCTTCAGGTTACCGATTCTTTAT





3086
TTN
2589453
TGGTACCGTCTATACACTAATGTCG





3087
TTN
2589453
ACTGACCAGCGGGACATGGATGTTT





3088
TTN
2589453
CCTACGTGACGCTTTTCTGGTACCG





3089
TTN
2589453
AAACGTCGTCGGTCCCATCTTCAAA





3090
TTN
2589419
GTTAATATAATAACTCTTCTTCCTT





3091
TTN
2589419
GGTTAATATAATAACTCTTCTTCCT





3092
TTN
2589303
TACGACCGATAATGAAGGCCCAAAG





3093
TTN
2589303
CGAGATAACTTCTTGAGGCGTCACT





3094
TTN
2589303
AGGCCCAAAGTCGAGTCTTGTGAAA





3095
TTN
2589303
AGATCTTCACAGGAGTCAACACTAG





3096
TTN
2589793
GGTACAAACTTACACTTCAAAGACT





3097
TTN
2589793
GTGTAATTCCTGTAATTCCATGACC





3098
TTN
2589793
TCAAAGACTTGGACTGTAGTGACAT





3099
TTN
2589793
ATGACCTCTTCTTCGCTCGGTACAA





3100
TTN
2589686
CCTTTTATGTGAACAGTCTAGTTTT





3101
TTN
2589686
GCTACGACCCTACGTTCTCACGAAG





3102
TTN
2589686
TCACGAAGCGGTGCGATAGGCAAGA





3103
TTN
2589686
GTCTAGTTTTTGCTACGACCCTACG





3104
TTN
2589292
GACAGAGACTGTATTCCTCACGGAC





3105
TTN
2589292
CAAGCGAGTAAAATGCGACAGAGAC





3106
TTN
2589292
TCCCGGACACGGGAATATGAGATGT





3107
TTN
2589292
AGTTCATAAGGATACGGTCTCGTCA





3108
TTN
2589593
TAGTCAACGGAAGGCGGTTCTTCAT





3109
TTN
2589593
TCTTTTTCATAGTCAACGGAAGGCG





3110
TTN
2589593
TTTCATAGTCAACGGAAGGCGGTTC





3111
TTN
2589593
CGGAAGGCGGTTCTTCATCATCATT





3112
TTN
2589795
CACGTCCCTTTTGAGGTAGTCGACT





3113
TTN
2589795
GACACCGTTACTGGTTCAGTCACGG





3114
TTN
2589795
GGTCGTGTCTCCTGAGCCGTCTTAT





3115
TTN
2589795
ACACTCCACAGGGTGAAGTTACAGG





3116
TTN
2589645
ACTTCTCTTTTAAGTGCAACGGTAA





3117
TTN
2589645
GACTTCTCTTTTAAGTGCAACGGTA





3118
TTN
2589645
CTTTTAAGTGCAACGGTAAAGGTTT





3119
TTN
2589645
TCTCTTTTAAGTGCAACGGTAAAGG





3120
TTN
2589491
CACTTCATTCCTGTCGCTCTTGAAG





3121
TTN
2589491
GTTGTTTACAGATGACCTACTACTT





3122
TTN
2589491
ACTGTAGTATAGGTTCCCTCGTCAC





3123
TTN
2589491
TCGTCACGCGTAAGAACAGTAGTTG





3124
TTN
2589414
TCATGGAGAAGGCTCATCGACGCCT





3125
TTN
2589414
AGACTTACTTCCGTTGGTCATGGAG





3126
TTN
2589414
TGGACCCGGTGGATCTCTAGACCTT





3127
TTN
2589414
ACCTGCACCAGGAAAACAACTTTGT





3128
TTN
2589372
ACGACGTGGGACTCTGAAAAACAAG





3129
TTN
2589372
CGATGATAAAGTCCCAAGAGCGTCT





3130
TTN
2589372
CGGGCCCTGGTACCTCTTAGAAATC





3131
TTN
2589372
CGACTGGACGCGTTTCAACAATGAT





3132
TTN
2589657
TAGTAACTACATAGGAGATTTCGAC





3133
TTN
2589657
AAGCTTCTTGGAATACTGCTTGACC





3134
TTN
2589657
AGTAACTTAGAAAGCTTCTTGGAAT





3135
TTN
2589657
CTTAGAAAGCTTCTTGGAATACTGC





3136
TTN
2589765
CCGTCCCAAGTGGATCTGTAAACGT





3137
TTN
2589765
CACCTGGGTTCAGAAGAGTATATTC





3138
TTN
2589765
CCTCTGGTATAGTCTACTGGTGCGT





3139
TTN
2589765
ACCGAAGTTCCCTGGTTAACACGAG





3140
TTN
2589539
GTCTCCACGGTTTCCATCGACAGGG





3141
TTN
2589539
GGTTTCCATCGACAGGGTCTTTTCT





3142
TTN
2589539
TTTTCTTCCACGGACTTCGATAAGG





3143
TTN
2589539
ACTTCGATAAGGAGGGTTTGGCCTT





3144
TTN
2589541
CACGGTCACGGAGGAGGATTTTTCG





3145
TTN
2589541
TTTCGGACTTCACGGTGGGTGTTTT





3146
TTN
2589541
GGATTTTTCGGACTTCACGGTGGGT





3147
TTN
2589541
CCGAGGGTTTCTTCAACAAGGACTT





3148
TTN
2589543
GATTTTTCGGACTTCAGGGTGGACA





3149
TTN
2589543
GGGAGCCGAGGAGGATTTTTCGGAC





3150
TTN
2589543
GGATTTTTCGGACTTCAGGGTGGAC





3151
TTN
2589547
CCGAGGGTTTCTTCAACAAGGACTT





3152
TTN
2589547
CTTTCACGGTCACTGAGGAGGATTT





3153
TTN
2589547
CACGGTCACTGAGGAGGATTTTTTG





3154
TTN
2589547
TTCACGGTCACTGAGGAGGATTTTT





3155
TTN
2589548
CCGAGGGTTTCTTCAACAGGAACTT





3156
TTN
2589548
GGGAACCGAGGAGGATTTTTCGGAC





3157
TTN
2589548
GATTTTTCGGACTTCAGGGTGGACA





3158
TTN
2589548
ACGGGAACCGAGGAGGATTTTTCGG





3159
TTN
2589549
CAGGGTGTTCTTTAACACGGTCTTT





3160
TTN
2589549
TTCGGTCTTCAAGGTGGACAATGTC





3161
TTN
2589549
TTCAGGGTGTTCTTTAACACGGTCT





3162
TTN
2589549
TTTCGGTCTTCAAGGTGGACAATGT





3163
TTN
2589550
TGTTTTGGTCTTCGGGGTGGACGGT





3164
TTN
2589550
CTTTCAAGGATTCCGAGGAGGGTGT





3165
TTN
2589550
TCGAGTTCTTCAACAGGGTCTTTTC





3166
TTN
2589550
ACTTCGAGTTCTTCAACAGGGTCTT





3167
TTN
2589551
AGTTCTTCGGCGTCTTTTTCTTTAA





3168
TTN
2589551
GGTTTTTTGGTCTTCGAGGTTAACA





3169
TTN
2589551
TTTGGTCTTCGAGGTTAACAGGGTC





3170
TTN
2589551
GTCTTCAAGGAGTTCTTCGGCGTCT





3171
TTN
2589553
AGGGTTCCGTGGTTAGTTTTTTGGT





3172
TTN
2589553
TAGTTTTTTGGTCTTCGGGGGCGTC





3173
TTN
2589555
TAGACACCGACACGGGTTTTTTGGC





3174
TTN
2589555
ACCGACACGGGTTTTTTGGCCTTCG





3175
TTN
2589555
GACACCGACACGGGTTTTTTGGCCT





3176
TTN
2589555
ACACCGACACGGGTTTTTTGGCCTT





3177
TTN
2589558
CACGGTCACGGAGGAGGATTTTTCG





3178
TTN
2589558
TTTCGGACTTCACGGTGGGTGTTTT





3179
TTN
2589558
GGATTTTTCGGACTTCACGGTGGGT





3180
TTN
2589558
CCGAGGGTTTCTTCAACAAGGACTT





3181
TTN
2589559
AGGGTTCCGTGGTTAGTTTTTTGGT





3182
TTN
2589559
TAGTTTTTTGGTCTTCGGGGGCGTC





3183
TTN
2589561
TAGACACCGACACGGGTTTTTTGGC





3184
TTN
2589561
CTTTCGTAGACACCGACACGGGTTT





3185
TTN
2589561
TCGTAGACACCGACACGGGTTTTTT





3186
TTN
2589561
ACCGACACGGGTTTTTTGGCCTTCG





3187
TTN
2589565
TTTCGGACTTCACGGTGGGTGTTTT





3188
TTN
2589565
GGATTTTTCGGACTTCACGGTGGGT





3189
TTN
2589565
CCGAGGGTTTCTTCAACAAGGACTT





3190
TTN
2589565
CACGGTCACGGAGGAGGATTTTTCG





3191
TTN
2589566
GGATTTTTCGGACTTCAGGGTGGAC





3192
TTN
2589566
CCGAGGGTTTCTTCAACAGGAACTT





3193
TTN
2589566
GATTTTTCGGACTTCAGGGTGGACA





3194
TTN
2589566
GGGAGCCGAGGAGGATTTTTCGGAC





3195
TTN
2589567
TTTCGGTCTTCAAGGTGGACAATGT





3196
TTN
2589567
CAGGGTGTTCTTTAACACGGTCTTT





3197
TTN
2589567
TTCAGGGTGTTCTTTAACACGGTCT





3198
TTN
2589567
TTCGGTCTTCAAGGTGGACAATGTC





3199
TTN
2589568
ACTTCGAGTTCTTCAACAGGGTCTT





3200
TTN
2589568
TCGAGTTCTTCAACAGGGTCTTTTC





3201
TTN
2589568
CTTTCAAGGATTCCGAGGAGGGTGT





3202
TTN
2589568
TGTTTTGGTCTTCGGGGTGGACGGT





3203
TTN
2589569
TCTTCAAGGAGTTCTTCGGTGTCTT





3204
TTN
2589569
TTTGGTCTTCGAGGTTAACAGGGTC





3205
TTN
2589569
GTCTTCAAGGAGTTCTTCGGTGTCT





3206
TTN
2589569
GGTTTTTTGGTCTTCGAGGTTAACA





3207
TTN
2589571
TAGTTTTTTGGTCTTCGGGGGCGTC





3208
TTN
2589571
AGGGTTCCGTGGTTAGTTTTTTGGT





3209
TTN
2589573
TCGTAGACACCGACACGGGTTTTTT





3210
TTN
2589573
TAGACACCGACACGGGTTTTTTGGC





3211
TTN
2589573
ACCGACACGGGTTTTTTGGCCTTCG





3212
TTN
2589573
CTTTCGTAGACACCGACACGGGTTT





3213
TTN
2589577
CCGAGGGTTTCTTCAACAAGGACTT





3214
TTN
2589577
CACGGTCACGGAGGAGGATTTTTCG





3215
TTN
2589577
GGATTTTTCGGACTTCACGGTGGGT





3216
TTN
2589577
TTTCGGACTTCACGGTGGGTGTTTT





3217
TTN
2589578
TCTCGGACTTCAGGGTGGACAATTT





3218
TTN
2589606
CTCCTTCAAGATGGACTTCTTCTCC





3219
TTN
2589606
TCTCCTTCAAGATGGACTCCTTCTC





3220
TTN
2589606
AGGACTTCTCCTTCAAGATGGACTC





3221
TTN
2589606
GGACATCGAGATGGAGTCCTTCTCC





3222
TTN
2589840
AGCGATCCCTGGTGCGTGAAGAGAA





3223
TTN
2589840
ACCTAGTGAAGGAGATAGTCTAACC





3224
TTN
2589840
GACGGATGATCCCAGAGTCCCCAAA





3225
TTN
2589840
TCTCACCAAGCGAAGAAGTCACAGG





3226
TTN
2589857
GATTTTTCGGACTTCAGGGTGGACA





3227
TTN
2589857
GGATTTTTCGGACTTCAGGGTGGAC





3228
TTN
2589857
CCGAGGGTTTCTTCAACAGGAACTT





3229
TTN
2589858
TTCAGGGTGTTCTTTAACACGGTCT





3230
TTN
2589858
TTCGGTCTTCAAGGTGGACAATGTC





3231
TTN
2589858
TTTCGGTCTTCAAGGTGGACAATGT





3232
TTN
2589858
CAGGGTGTTCTTTAACACGGTCTTT





3233
TTN
2589859
CTTTCAAGGATTCCGAGGAGGGTGT





3234
TTN
2589859
TCGAGTTCTTCAACAGGGTCTTTTC





3235
TTN
2589859
TGTTTTGGTCTTCGGGGTGGACGGT





3236
TTN
2589859
ACTTCGAGTTCTTCAACAGGGTCTT





3237
TTN
2589860
GTCTTCAAGGAGTTCTTCGGCGTCT





3238
TTN
2589860
TTTGGTCTTCGAGGCTAACAGGGTC





3239
TTN
2589860
AGTTCTTCGGCGTCTTTTTCTTTAA





3240
TTN
2589860
TTTTGGTCTTCGAGGCTAACAGGGT





3241
TTN
2589870
GTCGGGACAACAGTAACATAACGGT





3242
TTN
2589870
CGACCGAGGTGCCTGATTTTATTAT





3243
TTN
2589870
ATAACGGTCATGGATTCTGTGTCAG





3244
TTN
2589870
GAGGAGACCGATCCGACATTCTTGG





3245
VGLL3
2684856
CATGTCATTGTATAAGTTACCAAGA





3246
VGLL3
2684856
ATGTCATTGTATAAGTTACCAAGAC





3247
VGLL3
2684856
ACATGTCATTGTATAAGTTACCAAG





3248
VGLL3
2684877
GTAACCCAGTCATCACCTACTTGTG





3249
VGLL3
2684877
CTTGTGAAGAGTTCTCGAAACCCGG





3250
VGLL3
2684877
AGTTTTTCGTTCTACCCCGATTGGG





3251
VGLL3
2684877
GAGTTCTCGAAACCCGGTTCGGTAG





3252
VGLL3
2684865
TCTTGGTTGATGTCAGTGGAGACGA





3253
VGLL3
2684865
TGTATCACGGGTCGCACCCTAAGCT





3254
VGLL3
2684865
TATCACGGGTCGCACCCTAAGCTAT





3255
VGLL3
2684865
CACGGGTCGCACCCTAAGCTATGTC





3256
VGLL3
2684854
GTGTAACTGCACCATTTCGAAATTG





3257
VGLL3
2684854
AGGTATGAGACCTTACGACGACTAG





3258
VGLL3
2684854
CACGTCTAAGAAGGATCGACTTCAC





3259
VGLL3
2684854
GTAGAACGCTACAGGATTCAGAGGT





3260
VGLL3
2684887
TCGGCGATATATTCGCGCCGTCCCT





3261
VGLL3
2684887
TATTCGCGCCGTCCCTTGTAGGCCT





3262
VGLL3
2684887
CAGGGACTCGGCGATATATTCGCGC





3263
VGLL3
2684887
CGACGCAGGGACTCGGCGATATATT





3264
VGLL3
2684861
ATCGGTTGGTGGAACAGTCCTTTCC





3265
VGLL3
2684861
GTAGACTCGGAAACGGTTGACACGT





3266
VGLL3
2684861
CGTCAACTGACCAAAAGCCGGAAAG





3267
VGLL3
2684861
AGTCGTTATCCTGTGCTTTCCGTAT





3268
VGLL3
2684829
AGTTTACGTCCAGAGTATTATACAC





3269
VGLL3
2684829
CAGTAATAGAAGTTAAACAAGTTAT





3270
VGLL3
2684829
GTTACTATATTCTACTACCTTCTGA





3271
VGLL3
2684829
TTGTATACAGTAATAGAAGTTAAAC





3272
VGLL3
2684873
CCTCAAGTAGGACTGAAGGTCCAGT





3273
VGLL3
2684873
CAGGAACCGGCCCTGTGTTGGACGT





3274
VGLL3
2684873
AGAGAGTTCGGTCGCCTTATCAAAG





3275
VGLL3
2684873
GACCGGAATAGGAAACTGTAGAGTC





3276
VGLL3
2684853
ATGTTCTCTGATAAACGTCTCTCGG





3277
VGLL3
2684853
CTCGACGTTCTGAAACAAGCTTTGT





3278
VGLL3
2684853
GGGATAAGGAAGACAACTTTCGAAT





3279
VGLL3
2684853
CGTACTGTGAGATAGGAAAGAACAC





3280
VGLL3
2684834
TCAGGCCTCCTTGCAAACTCGGACC





3281
VGLL3
2684834
GACTCAGGCCTCCTTGCAAACTCGG





3282
VGLL3
2684834
ATTAGGATCATAATATCCTCCGTCT





3283
VGLL3
2684834
GGATCATAATATCCTCCGTCTCCGA





3284
VGLL3
2684859
ACTGTACAAGTCGATCCGTCTCAAG





3285
VGLL3
2684859
ACGGAACACAGGAAGACTCAAAAGT





3286
VGLL3
2684859
ACATGAGAGTAGTGAGGCGTGAAAC





3287
VGLL3
2684859
GACAGACACGAAAGATCCAATGGAG





3288
VGLL3
2684835
ACTCCTTGACTCTTTACAACCCTTG





3289
VGLL3
2684835
CCTTGACTCTTTACAACCCTTGGAC





3290
VGLL3
2684835
GACCAAAGACGACATGTGTCCTTTC





3291
VGLL3
2684835
TTGACTCTTTACAACCCTTGGACCA





3292
VGLL3
2684869
GAGACGGGACCTAGGTAGGATACCC





3293
VGLL3
2684869
GGACCTAGGTAGGATACCCGGAGAC





3294
VGLL3
2684869
CCTAGGTAGGATACCCGGAGACGAC





3295
VGLL3
2684869
ACCGAGACGGGACCTAGGTAGGATA





3296
VGLL3
2684833
CCGTACATCCAGGTTAAGTCAAAAG





3297
VGLL3
2684833
CCCGATGATAGACGGAGGTGTTAAA





3298
VGLL3
2684833
GCTTGACAAAATAACTCCCGATGAT





3299
VGLL3
2684833
TGAGCCGACAATCCGGTAAGAGATT





3300
VGLL3
2684855
AAAGTACATCAATAATATCACGAAG





3301
VGLL3
2684855
GTTGTTAATCATAACCTGAAGGTAG





3302
VGLL3
2684855
TCAGTATTACAAACGCAACCGTAAA





3303
VGLL3
2684855
AGTGAGAACATTAGCTCTTCCTGAT





3304
VGLL3
2684831
ACGGTCAAATTACCTCTCCGAGGAT





3305
VGLL3
2684831
CCCTTAACGTGGTACATGTGAAAAT





3306
VGLL3
2684831
CGGCACCGATCTCGTTTTCAATTAT





3307
VGLL3
2684831
AGAACATCACGAGAGACCCTTAACG





3308
VGLL3
2684852
TCAGACCCTTTTATAGCAATTCAGT





3309
VGLL3
2684852
GAAGTCCTGATTAGTTCCTAGTTAC





3310
VGLL3
2684852
TGTACTATAGTACGATACACGGTAA





3311
VGLL3
2684852
ACACAGTTAATATTGAGTCATTCAG





3312
VGLL3
2684832
CAATGTTTCCCCATAACTACCGTCA





3313
VGLL3
2684832
GTCAATAACTTCTGCCTTCCTCAAG





3314
VGLL3
2684832
TTGTGTTGGTAAATGCTAGAGTCAG





3315
VGLL3
2684832
CTTCCTCAAGTGAACTCGGTAACGT





3316
VGLL3
2684889
CACCCGCGGCGTCGGGAGCGCCCTC





3317
VGLL3
2684830
AATCAATACGACAGTAAAAATTGAT





3318
VGLL3
2684830
CAATACGACAGTAAAAATTGATTAT





3319
VGLL3
2684830
ATACGACAGTAAAAATTGATTATTT





3320
VGLL3
2684830
TCAATACGACAGTAAAAATTGATTA





3321
VGLL3
2684883
CGGAATACCTCGCAGGGTCATAGAC





3322
VGLL3
2684883
GGGTCGGAATACCTCGCAGGGTCAT





3323
VGLL3
2684883
ATACCTCGCAGGGTCATAGACGGGT





3324
VGLL3
2684883
ACCTCGCAGGGTCATAGACGGGTTG





3325
VGLL3
2684871
GTACTGCACATGTACGCCGTGGTGG





3326
VGLL3
2684871
GTCGGTATACGTACTGCACATGTAC





3327
VGLL3
2684871
CACTCGGGTAGGATGTCGGTATACG





3328
VGLL3
2684871
TCGGGTAGGATGTCGGTATACGTAC





3329
VGLL3
2684867
TACGCCGGTCCTAAGGACGAGGGGT





3330
VGLL3
2684867
ACGTACGCCGGTCCTAAGGACGAGG





3331
VGLL3
2684867
ACGCCGGTCCTAAGGACGAGGGGTC





3332
VGLL3
2684867
CGTACGCCGGTCCTAAGGACGAGGG





3333
VGLL3
2684857
ACGCACGATGGTGTGTTCCGATTAT





3334
VGLL3
2684857
TCTACGCACGATGGTGTGTTCCGAT





3335
VGLL3
2684857
TGTCTACGCACGATGGTGTGTTCCG





3336
VGLL3
2684857
CACGATGGTGTGTTCCGATTATAAA





3337
VGLL3
2684885
GGCTCCTGGGCGGAAGCGGCGTCAT





3338
VGLL3
2684885
TACTTCCACGGGCGCGTACCCGGGG





3339
VGLL3
2684885
CCGGGGGCGACTAACGGTCAGGGAG





3340
VGLL3
2684885
GCGGAAGCGGCGTCATCGTCGACCT





3341
VGLL3
2684863
TGTTCTCATTCCTTAGTGGCACCAT





3342
VGLL3
2684863
CTCATTCCTTAGTGGCACCATGACT





3343
VGLL3
2684863
TCTGTTCTCATTCCTTAGTGGCACC





3344
VGLL3
2684863
GTTCTCATTCCTTAGTGGCACCATG





3345
VGLL3
2684879
TACCTCATGGAATTGAGAGCGACAC





3346
VGLL3
2684879
CTCATGGAATTGAGAGCGACACAGG





3347
VGLL3
2684879
GAGAGCGACACAGGAAAAGTGAATA





3348
VGLL3
2684879
CCTCATGGAATTGAGAGCGACACAG








Claims
  • 1. A method comprising: providing a biological sample from a prostate cancer subject; detecting the presence or expression level of at least one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and administering a treatment to the subject, wherein the treatment is selected from the group consisting of surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, hormonal therapy, and photodynamic therapy.
  • 2. The method of claim 1, wherein the alteration in the expression level of said target is reduced expression of said target.
  • 3. The method of claim 1, wherein the alteration in the expression level of said target is increased expression of said target.
  • 4. The method of claim 1, wherein the level of expression of said target is determined by using a method selected from the group consisting of in situ hybridization, a PCR-based method, an array-based method, an immunohistochemical method, an RNA assay method and an immunoassay method.
  • 5. The method of claim 1, wherein said reagent is selected from the group consisting of a nucleic acid probe, one or more nucleic acid primers, and an antibody.
  • 6. The method of claim 1, wherein the target comprises a nucleic acid sequence.
  • 7. A method comprising: (a) providing a biological sample from a subject with prostate cancer;(b) detecting the presence or expression level in the biological sample for a plurality of targets, wherein the plurality of targets comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348;(c) subtyping the prostate cancer in the subject based on the presence or expression levels of the plurality of targets; and(d) administering a treatment to the subject, wherein the treatment is selected from the group consisting of surgery, chemotherapy, radiation therapy, immunotherapy/biological therapy, hormonal therapy, and photodynamic therapy.
  • 8. The method of claim 7, wherein the expression level of said target is reduced expression of said target.
  • 9. The method of claim 7, wherein the expression level of said target is increased expression of said target.
  • 10. The method of claim 7, wherein the level of expression of said target is determined by using a method selected from the group consisting of in situ hybridization, a PCR-based method, an array-based method, an immunohistochemical method, an RNA assay method and an immunoassay method.
  • 11. The method of claim 7, wherein said reagent is selected from the group consisting of a nucleic acid probe, one or more nucleic acid primers, and an antibody.
  • 12. The method of claim 7, wherein the target comprises a nucleic acid sequence.
  • 13. The method of claim 7, wherein the prostate cancer subtype is selected from the group consisting of ERG+. ETS+, SPINK1+, and Triple-Negative.
  • 14. A system for analyzing a cancer, comprising: (a) A probe set comprising a plurality of target sequences, wherein (i) the plurality of target sequences hybridizes to one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; or(ii) the plurality of target sequences comprises one or more targets selected from Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and(b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target hybridized to the probe in a sample from a subject suffering from prostate cancer.
  • 15. The system of claim 14, further comprising a label that specifically binds to the target, the probe, or a combination thereof.
  • 16. A method of treating a subject with prostate cancer, comprising: providing a biological sample comprising prostate cancer cells from the subject; determining the level of expression or amplification of at least one or more targets selected from Table 1, Table 2, Table 6, Table 7, or Table 15 using at least one reagent that specifically binds to said targets; subtyping the prostate cancer based on the level of expression or amplification of the at least one or more targets; and prescribing a treatment regimen based on the prostate cancer subtype.
  • 17. The method of claim 16, wherein the prostate cancer subtype is selected from the group consisting of ERG+. ETS+, SPINK1+, and Triple-Negative.
  • 18. A kit for analyzing a prostate cancer, comprising: (a) a probe set comprising a plurality of target sequences, wherein the plurality of target sequences comprises at least one target sequence listed in Table 1, Table 2, Table 6, Table 7, Table 15 or SEQ ID NOs: 1-3348; and(b) a computer model or algorithm for analyzing an expression level and/or expression profile of the target sequences in a sample.
  • 19. The kit of claim 18, further comprising a computer model or algorithm for correlating the expression level or expression profile with disease state or outcome.
  • 20. The kit of claim 18, further comprising a computer model or algorithm for designating a treatment modality for the individual.
  • 21. The kit of claim 18, further comprising a computer model or algorithm for normalizing expression level or expression profile of the target sequences.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/216,196, filed on Sep. 9, 2015, which is hereby incorporated by reference herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2016/001344 9/9/2016 WO 00
Provisional Applications (1)
Number Date Country
62216196 Sep 2015 US